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s-PRIME ELEMENTS IN MULTIPLICATIVE LATTICES 

C. JAYARAM (Kwaluseni) 
E.W.  JOHNSON (Iowa City) 

Abst rac t  

Let s be a C-lattice which is strong join principally generated. In this paper, 
we consider prime elements of s for which every semiprimary element is primary. 
We show, for example, that a compact nonmaximal prime p with this property is 
principal. We also show that if every prime p ~ m has this property, then s is 
either a one dimensional domain or a primary lattice. It follows that if every prime 
p satisfies the property, and if there are only a finite number of minimal primes in s 
then s is the finite direct product of one-dimensional domains and primary lattices. 

By a ring, we mean a commutative, associative ring with identity. By a 
multiplieative lattice, we main a complete but not necessarily modular lattice L 
on which there is defined a commutative, associative, completely join distributive 
product. We denote the least element of L by 0, the greatest element of L by 1, 
and we assume the 1 is a compact multiplicative identity. 

We denote the set of all compact elements of L by L,.  By a C-lattice, we mean 
a multiplicative lattice L which is generated by a multiplicatively closed subset C 
of compact elements. In a C-lattice, the set L, is multiplicatively closed. The ideal 
lattice L(R)  of any ring R provides an example of a C-lattice. 

An element p < 1 of a multiplicative lattice L is prime if for a, b E L.,  ab ~ p 
implies a _~ p or b ~ p. An element q < 1 of L is said to be primary if, for a, b E L.,  
ab ~ qimplies  a _~ q or b ~ x / ~ =  V{xlx  ~ ~ q for some n}. An element q e L 
is p-primary if q is primary, p is prime and v ~  = P" These definitions agree with 
those given by R.P. Dilworth [4] if L satisfies the ascending chain condition, and in 
general for the ideal lattice L(R)  of a ring. 

If k E L, the interval [k, 1] is denoted L/k .  The lattive L / k  is again a multi- 
plicative lattice with a o b= ab V k. The element a V k of L/]c is frequently denoted 
a/]c. Under this convention, a /k  o b/k -- ab/k. Is is well known that for a ring R 
and an ideal I e L(R), the lattices L ( R / [ )  and [I, R] = L ( R ) / I  are isomorphic. 

Like the ideal lattice of a ring, any C-lattice can be localized at a multiplica- 
tively closed set. If S is a multiplicatively closed subset of L, in a C-lattice L, 
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then for a E L, as : V{x C L. I xs << a for some s E S} and Ls = {xsI  x E L}. 
Ls is again a mult ipl icat ive lat t ice under  the same order as L with the produc t  
as obs = (asbs)s,  where the right hand side is evaluated in L. The  meet  opera t ion  
is the s ame  for Ls as for L, and the join opera t ion  for L is given by aVb = (aVb)s ,  
where again  the r igh t -hand  side is evaluated in L. For a, b E L, a : b is the great-  
est element c sat isfying cb <<_ a (or, equivalently, a : b = V{z C n lxb < a}). If  
b is compact ,  then as : bs = (a : b)s. The r ight-hand side is evaluated in L. 
The  lef t -hand side can be evaluated either in L or in Ls .  If p E L is p r ime and 
S = {x E L. I x <_ p}, then Ls  is denoted Lp. As one would hope, the localizat ion 
theory is such t ha t  a < b iff a < b,~ for all max ima l  elements  m. In par t icular ,  a = b 
if and only if a,~ = b,~ for all max ima l  e lements  m. This  definition of local izat ion 
is somewhat  more  general than  tha t  given by Dilworth in [4]. Local izat ion at a 
pr ime agrees with Di lworth ' s  definition if L satisfies ACC. If R is a ring, S is a 
mult ipl icat ively  closed subset  of R, and S = {(s) Is  C S}, then L(Rs)  ~- L(R)-~. 

The  relat ion of the pr ime and p r ima ry  elements  of L to those in Ls and L / k  
is the same  as it is for ideals of rings. In part icular ,  any max ima l  e lement  m is 
prime,  and any power m n of a m a x i m a l  element m is m-pr imary .  In  bo th  L / k  and 
Ls, the products  are frequently denoted by juxtapos i t ion .  

We say an e lement  e of a mult ipl icat ive lattice L is meet principal if it satisfies 
the indent i ty  (i) a A be = ((a : e) A b)e. Dually, e is said to be join principal if it 
satisfies the ident i ty (ii) a V (b " e) = (de V b) : e. An element e E L satisfying the 
weaker ident i ty (i) '  a A e = (a " e)e obta ined  f rom (i) set t ing b = 1 is said to be 
weak meet principal and an element  e sat isfying the identi ty (ii) '  a V (0 : e) = ae : e 
obta ined f rom (ii) by set t ing b = 0 is called weak join principal. Elements  which are 
both  (weak) mee t  pr incipal  and (weak) join principal  are called (weak) principal. 
These identit ies were in t roduced by R.P. Dilworth in [4]. In a C-lat t ice,  weak prin- 
cipal e lements  are compac t  ([2], T h e o r e m  1.3). Principal  ideals in the ideal lat t ice 
L(R) of a c o m m u t a t i v e  r ing /~  with t are examples  of principal  ideals. The  compac t  
elements  of L(R) are the finitely generated ideals. Hence, for any commuta t i ve  ring 
R with 1, L(R) is a pr incipal ly  generated C-lat t ice.  Principal  elements  have been 
studied extensively by D.D. Anderson,  P.J. McCarthy,  the current  authors ,  and 
others. See, for example ,  [2], [7], [8]. 

If  e is compac t  in L, then elk is compac t  in L / k  and es is compac t  in Ls. If  e 
is join principal  in L, elk  is join principal  in L/k.  If  e is join principal  and compac t  
in L, then es is join principal  in Ls. 

An element  e E L is said to be a strong join principal element if it is compac t  
and join principal.  L is said to  be quasi local if it has a unique max ima l  element.  

An element  a E L is said to be semiprimary if vra is a pr ime element .  If  
v ~  = p is pr ime,  then a is said to be p-semiprimary. R.W. Gi lmer  and J.L. Mot t  
have s tudied extensively commuta t i ve  rings in which s emip r imary  ideals are p r ima ry  
(see [5], [6] and [9]). For various character izat ions of mult ipl icat ive latt ices in which 
semip r imary  are pr imary ,  the reader is referred to [1]. The  reader is referred to [2] 
for general  background  and terminology.  

Throughou t ,  L denotes a mult ipl icat ive latt ice with 1 C L. ,  and Z; denotes a 
C-la t t ice  which is generated by s t rong join-principal  elements.  
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The following basic facts are all known. We record them for the reader's 
convenience. 

PROPERTIES OF LOCALIZATION. Assume L is a C-lattice and S is a multi- 
plicatively closed subset of L , .  Then the following properties hold. 
(0.1) (Ls ) ,  = (L , ) s  = {as I a E L,}.  
(0.2) 

(0.3) 
(0.4) 
(0.5) 
(0.6) 
(0.7) 

(o.s) 

I f  p is maximal in the complement of S (i.e., rnaxirnal with respect to the 
property that s E S implies s ~ p) then p is prime. 
For a E L, V~  is the intersection of the prime elements of L over a. 

I f  a E L, then ~ = (V~)S = (v/-as)s. 
I f  p E L is a prime minimal over a then ap is primary. 
I f  p E L is a prime minimal over a then V ~  = P" 
I f  q is p-primary and p does not meet S (in the sense that s E S implies s ~ p) 
then qs = q, Ps = p, and qs is ps-primary in Ls .  
I f  qs is ps-prirnary in Ls ,  then qs is ps-primary in L. 

PROOF. (0.1) is known but the statement does not appear in the literature. 
The proof is routine. The proofs of the remaining statements parallel the proofs of 
their ring theoretic analogues. The proof of this version of (0.2) is similar to [2], 
Theorem 2.2. Also, (0.3) is similar to [2], Theorem 2.4. The proof of (0.4)is routine 
(cf. [3], Proposition 3.11). Here, ~ can be computed either in L or in Ls,  the 
other two terms in L. The proof of (0.5) is also routine. Then (0.6) follows from 
(0.4), (0.5) and the definition of p-primary. (0.7) follows from (0.1), as does (0.8). 

We introduce the following definitions. 

DEFINITON 1. A prime element p E L is said to be a weak s-prime if every 
p-semiprimary element is p-primary. 

DEFINITION 2. A prime element p of L is said to be an s-prime if every prime 
element q _< p is a weak s-prime. 

Note that maximal elements are weak s-primes (cf. [10], p. 153). Comple- 
mented maximal elements and prime elements which are both maximal and minimal 
are examples of s-primes. A minin~l  prime is an s-prime if and only if is a weak s- 
prime. Every prime is a weak s-prime element iff every maximal prime is an s-prime 
iff every semiprimary element is primary. 

We first consider weak s-primes. 

THEOREM 1. Let p be a nonmaximal prime of s  Then the following state- 
ments are equivalent: 

(i) p is a weak s-prime element. 
(it) p is the only p-semiprirnary element. 

PROOF. (ii)=~(i). Clear. ( i )~( i i ) .  Suppose q is p-semiprimary. As p is 
nonmaximal and 1 is compact, p < m for some maximal element m of L. Choose 
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any jo in  pr inc ipa l  e lement  b_< p s u c h  t h a t  b ~ q. Then  (q : b) _< p < m as q is 
p -p r imary .  Then  mb < q V mb q V mb is p -p r imary ,  and  p < m, so b _< q V rnb. But  
b is jo in  pr incipal ,  so 1 = b : b _< (q V rob) : b = (q : b) V m = m, a cont radic t ion .  
Therefore  q = p. �9 

We use the following resul t  which is proved in [1], L e m m a  1.1. 

LEMMA 1. Let L be a multiplicative lattice with i compact. Suppose d = 
vin=lai, where the al ~s are join-principal elements. I f  d <_ b V cd, then c V (b:  d) = 1. 
Hence if d = cd, then c V (0 : d) = 1. 

LEMMA 2. Let L be a C-lattice. I f  e is compact and idempotent, then e is 
principal. 

PROOF. An  e lement  e E L is p r inc ipa l  if and only if e is compac t  and c~ is 
pr inc ipa l  in Lm for every m a x i m a l  e lement  rn of L. As c is compac t ,  we can assume 
L is quasi  local  wi th  m a x i m a l  e lement  rn. By L e m m a  1, e i de mpo te n t  impl ies  
e V (0 : e) = 1. As L is quasi  local,  it  follows tha t  e = 1 or e = 0. In ei ther  case, e 
is pr incipal .  �9 

THEOREM 2. Let p be a nonmaximal  prime element of s  Then the following 
statements  are equivalent. 

(i) p is a compact idempotent element. 

(ii) p is a compact weak s-prime element. 
(iii) p is a compact element and p = p m  for  all maximal  e lements  rn > p. 

PROOF. ( i ) ~ ( i i ) .  Suppose  (i) holds.  As p is compac t  and  idempo ten t ,  v G  = p 

implies  a = p. (ii)=>(i). ~ = p, so p2 is p - semipr imary .  By Theorem 1, p2 = p. 
( i ) ~ ( i i i ) .  If  p is i d e m p o t e n t  then p2 = p, so for any m a x i m a l  e lement  m _> p, also 
p -= rap. (iii)=~(i).  Suppose  (iii) holds.  By L e m m a  1, rn V (0 : p) = 1 for every 
m a x i m a l  e lement  m > p. I t  follows t ha t  p V (0 : p) is not  conta ined in any m a x i m a l  
element ,  so p V  (0 : p) = 1. But  then p = p2. �9 

LEMMA 3. Let p be a pr ime element of s  I f  p is a weak s-prime, then for  
every maximal  element m > p, pm is a weak s-prime element of s  Conversely, i f  
Pm is a weak s-prime element in s for  every maximal  element rn >_ p, then p is a 
weak s-prime element of s  

PROOF. If  ~ = p,~ in s then ~ = p in s (0.4). Then  p is a weak 
s -pr ime in s impl ies  am is p - p r i m a r y  in s  which implies  a,~ is p - p r i m a r y  in /2,~ 
(0.7). Now, assume tha t  p = P m  is a weak s -p r ime  in s for every m a x i m a l  e lement  
rn _> p. Assume  a E L satisfies x/rd = p. I f p  is a m a x i m a l  pr ime,  then a is p- 
p r i m a r y .  I f p  is not  m a x i m a l ,  and  if m > p is max ima l ,  then ~ = p,~ in s  SO 
(Theorem 1) am = Pro. Hence, am = p,~ for every m a x i m a l  e lement  rn > a, For any 
m a x i m a l  e lement  m ~ a, am = 1 = p,~. Hence a,~ = p,~ for all m a x i m a l  e lements  
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m, and s o a = p .  �9 

THEOREM 3. Let p be a nonmaximal  pr ime element of s  Then the following 
s tatements  are equivalent. 

(i) p is weak s-prime and locally compact. 

(ii) p is idempotent  and locally compact. 

(iii) x = xp for  all compact elements x < p. 

(iv) p is weak meet principal and p = p m  for all maximal  elements m > p. 

(v) p is idempolent  and weak meet  principal. 

PROOF. (i)<=>(ii). Th is  follows f rom T h e o r e m  2 and L e m m a  3. (ii)=>(iii). 
Assume p satisfies (ii) and let rn > p be a max ima l  element of L;. Fix some compac t  
e lement  x < p. Then  in L;,~, Pm is idempoten t  and compact ,  and so ( L e m m a  2) 
satisfies Pm V(0m :p,~) = 1,~. Then  x,~ < p,~, so p,~x,~ = x,~. I f m  is max ima l  and 
m )r p, then p,~ = lm, so again pmx,~ = xm. In s  this yields (px),~ = x,~ for every 
m ax ima l  e lement  m, and hence px = x. ( i i i )~ ( iv ) .  Assume (iii). By hypothesis ,  
L; is compac t ly  generated,  so p is weak meet  principal  ([2], Proposi t ion 1.1). Let 
x _< p be a jo in-pr incipal  element.  Then  x = xp, so p V (0 : x) = 1 ( L e m m a  1). If  
m > p i s  a m a x i m a l e l e m e n t ,  then also m V ( 0  : x) = 1, so x = mx.  A s p i s  the 
join of  jo in-pr incipal  elements,  p = rap. ( i v ) ~ ( v ) .  Assume (iv). Let m > p be a 
m ax ima l  element .  If am < pm in Z:m, then am <_ Pm = P in L;, so a,~ = pc for some 
c E L:. It  follows tha t  am = PrnCm in s and hence tha t  Pm is weak meet  pr incipal  
in Z;m. Pass to Z;m. As /2,~ is also a s t rong join principally generated C-lat t ice ,  
it follows by [2], T h e o r e m  1.2, t ha t  p,~ is (complete ly)  join irreducible, and hence 
weak principal .  As p,~ = p,~m,~, it follows tha t  1,~ = m ~  V (0,~ : p,~). Hence, 
p m =  0,,~. But  then (p2),,~ = pro. Also, if m is max ima l  and m ~r p, then P m =  1,,~, 
SO again (p2)m = prn. Hence, p is idempoten t ,  and so (iv)=>(v). (v)=>(ii). Assume 
p is weak mee t  pr incipal  and idempoten t .  Then,  as in the proof  of ( i v ) ~ ( v ) ,  p is 
locally (comple te ly)  join irreducible, and hence locally compact .  �9 

We now consider s-pr imes.  

LEMMA 4. Let p be an s-prime of s  Then p is either minimal  or maximal. 

PROOF. Let p be an s -pr ime with Pl < P for some pr ime element  Pl of Z:. 
Choose any s t rong join principal  d _< p such tha t  d ~ Pl. Let P2 be any p r ime  
min ima l  over d 2 V Pl such tha t  P2 < P- Note tha t  (d 2 7 PI)p2 is p2-semipr imary.  I f  
p2 is n o n m a x i m a l ,  by  T h e o r e m  1, P2 --- ( d2 YPl)p2. So d < (d 2 Vpl)p2, and therefore 
d y <  d 2 V p l  for s o m e y  f p 2 .  Then  y <  (d 2 V p l )  : d :  (p~ :d)  Y d < p ~ V d < p 2 .  
But  this contradic ts  the choice of y ~ P2. Therefore  P2 _< P is maximal ,  and hence 
p = p2 is max ima l .  �9 

COROLLARY 1. [ f  s is a domain, then nonzero s-prime elements are maximal. 

LEMMA 5. Let p be a nonmin imal  prime which is an s-prime element of f_. 
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and let Qp be the collection of all p-primary elements. Then AQp is prime and the 
only prime element properly contained in p. 

PROOF. Let Pl be any prime element such that  pl < p. If  q is p-primary,  then 
Plq is p l -semipr imary,  so (Theorem 1) Plq = Pl, hence pl <_ AQp. Let d < AQp be 
any strong join-principal  element such tha t  d ~ Pl. Then p is a minimal pr ime over 
(d 2 Vpl)  (by L e m m a  4), so (d 2 Vpl)p is p-primary.  Then d f (d 2 Vpl)p. Otherwise, 
as in the proof  of L e m m a  4, there is an element y ~ p with dy < d 2 V Pl, and then 
y _< p, a contradict ion.  But this contradicts the choice of d < AQp. Therefore AQp 
is the only prime element properly contained in p. �9 

THEOREM 4. Let m be a prime element of s  Then m is an s-prime element 
if  and only if  rn satisfies any one of the following conditions. 

(i) m is both maximal and minimal. 
(ii) m is a minimal prime and a weak s-prime. 

(iii) m is maximal but not a minimal prime, there exists a unique prime p < m, 
and p is a weak s-prime. 

PROOF. Suppose m is an s-prime. By L e m m a  4, m satisfies either (i) or (ii). 
Suppose m is maximal  but  nor minimal.  Let p be a prime element such tha t  p < m. 
Then  ( L e m m a  5) p is the only prime contained in m and p is a weak s-prime. The  
condit ion tha t  a maximal  element m is an s-prime is equivalent to the condit ion 
tha t  every pr ime p < m is a weak s-prime. Hence, each of (i)-(iii) implies m is an 
s-prime. �9 

L is said to be a domain if the zero element is prime. L is a primary lattice 
if it contains exactly one prime element m (say). In the latter case, it is clear tha t  
L is quasi local and tha t  every element q < 1 is p r imary  for the maximal  element. 

THEOREM 5. Suppose m is a maximal element of f_.. Then m is an s-prime 
if  and only if  s is either a one-dimensional domain or a primary lattice. 

PROOF. We can assume L is quasi local with maximal  element m. (=>). 
Assume tha t  m is an s-prime. If m is minimal,  the result is immediate.  Assume tha t  
m is not minimal.  Then  (iii) of Theorem 4 holds. Let p be the unique minimal  pr ime 
satisfying p < m. Then  p = x/0, so 0 is p-semiprimary,  and therefore (Theorem 1) 
p = 13. (=>). It  is clear tha t  every prime in a pr imary  lattice or one-dimensional  
domain is an s-prime. �9 

COROLLARY 2. The following statements are equivalent for s 
(i) Every maximal element is an s-prime. 

(ii) For each element m, ~.~ is either a one-dimensional domain or a primary 
lattice. 

By Corol lary 2, if every maximal  element is an s-prime, then every nonmaxi-  
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mal prime is a locally compact  s-prime. This and Theorem 3 yield the following. 

COROLLARY 3. The following statements  are equivalent for  f~. 

(i) Every maximal  pr ime is an s-prime. 

(ii) Every nonmaximal  element is idempotent and locally compact. 

By the kernel of  an element a E L, we mean the meet of all p r imary  elements 
of the minimal  primes of L/a .  We denote the kernel of a by a*. It is easy to see 
that  a* = A{ap [p is a prime minimal  over a}. The  following result can be obtained 
f rom a related result in [1]. However, we give an independent proof. 

LEMMA 6. Every maximal  element of s is an s-prime if and only if every 
element is equal to its kernel. 

PROOF. (=~). Assume every nonmaximal  prime is a weak s-prime. Fix a E / : .  
Let Q be the set of primes minimal  over a, and let M be the set of maximal  primes 
containing a. For q G Q, set Mq = {m  E M I m  >> q}. Note that  if q E Q and q is 
maximal ,  then for m E M,  q = m and hence am = aq. On the other hand, if q E Q 
is not maximal ,  then (Theorem 5) for m E Mq, qm =Om < aq < q = qm. Hence, 
in either case, aq = am for all m E Mq. Then a = ArnEMam = AqEQ ArnEMq am : 

Aqeqaq = a*. ( ~ ) .  Assume every element is its own kernel. Let p be a nonmaximal  
prime and assume x/~ = p. Then  p is the unique prime minimal over a, so a = ap. 
As ap is p r imary  in l:p, it is also pr imary  in s  Hence a is p-primary.  It follows 
that  every nonmax ima l  element is a weak s-prime, and hence that  every maximal  
element is an s-prime. �9 

THEOREM 6. Assume  s is modular. Then the following are equivalent. 

(i) f~ contains only finitely many minimal  primes and every nonmaximal  prime 
is idempoten! and weak meet principal. 

(ii) s is a finite direct product of pr imary C-lattices and one-dimensional C-lattice 
domains, and each factor  of the direct product is strong join-principally generated. 

PROOF. (i):>(ii).  Let Pl, P2, �9 �9 Pk, Pk+l, �9 �9 �9 Pn be the distinct minimal  prime 
elements. By Theorem 3, nonmaximal  primes are weak s-primes, and so maximal  
primes are s-primes. Assumes tha t  for 1 < i < k, Pi is nonmaximal  and for k + 1 < 
j <_ n, pj is maximal .  By L e m m a  5, pi 's are pairwise comaximal.  By Lemma 6 
and Theorem 1, 0 = Pl A - . .  Apk A qk+l A . . .  A qn, where each qj is p j -p r imary  for 
k + 1 < j < n. Again  since the pi 's  are pairwise comaximal,  it follws tha t  the pi 's  
and qi' s are pairswise comaximal  and so s "~ s  x . �9 �9 x f /Pk x f / qk 41 x . . . x s / qn. 
Note tha t  by Theorem 5, each s (1 < i < k) is a one-dimensional domain and 
each Y_,/qj (k + 1 <_ j <_ n) is a p r imary  lattice. ( i i )~ ( i )  is s traightforward.  �9 

COROLLARY 4. Let f. be an r-lattice. Then the following s tatements  are equiv- 
alent: 
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(i) s contains only finitely many minimal primes and every nonmaximal prime 
is idempotent and weak meet principal. 

(it) f_. is a finite direct product of primary r-lattice and one-dimensional r-lattice 
domains. 

The authors  wish to thank the refere for his assistance in making  this paper  
accessible to a broader  audience. 
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