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s-PRIME ELEMENTS IN MULTIPLICATIVE LATTICES

C. JayaraM (Kwaluseni)
E.W. Jounson (Iowa City)

Abstract

Let £ be a C-lattice which is strong join principally generated. In this paper,
we consider prime elements of £ for which every semiprimary element is primary.
We show, for example, that a compact nonmaximal prime p with this property is
principal. We also show that if every prime p < m has this property, then L is
either a one dimensional domain or a primary lattice. It follows that if every prime
p satisfies the property, and if there are only a finite number of minimal primes in £,
then £ is the finite direct product of one-dimensional domains and primary lattices.

By a ring, we mean a commutative, associative ring with identity. By a
multiplicative lattice, we main a complete but not necessarily modular lattice L
on which there is defined a commutative, associative, completely join distributive
product. We denote the least element of L by 0, the greatest element of L by 1,
and we assume the 1 is a compact multiplicative identity.

We denote the set of all compact elements of L by L.. By a C-latiice, we mean
a multiplicative lattice L which is generated by a multiplicatively closed subset C
of compact elements. In a C-lattice, the set L, is multiplicatively closed. The ideal
lattice L{R) of any ring R provides an example of a C-lattice.

An element p < 1 of a multiplicative lattice L is prime iffora,b € L., ab<p
implies ¢ < por b < p. An element ¢ < 1 of L is said to be primary if, for a,b € L.,
ab < g implies a < g or b < /g = V{z|z" < ¢ for some n}. An element ¢ € L
is p-primary if ¢ is primary, p is prime and /g = p. These definitions agree with
those given by R.P. Dilworth [4] if L satisfies the ascending chain condition, and in
general for the ideal lattice L(R) of a ring.

If k € L, the interval [k, 1] is denoted L/k. The lattive L/k is again a multi-
plicative lattice with a 0b = abV k. The element aV k of L/k is frequently denoted
a/k. Under this convention, a/k o b/k = ab/k. Is is well known that for a ring R
and an ideal I € L(R), the lattices L(R/I) and [I, R] = L(R)/I are isomorphic.

Like the ideal lattice of a ring, any C-lattice can be localized at a multiplica-
tively closed set. If S is a multiplicatively closed subset of L, in a C-lattice L,
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then for a € L, as = V{z € L.|zs < a for some s € S} and Ls = {zs |z € L}.
Ls is again a multiplicative lattice under the same order as L with the product
agobs = (aghg)s, where the right hand side is evaluated in L. The meet operation
is the same for Ls as for L, and the join operation for L is given by aVé = (aVb)s,
where again the right-hand side is evaluated in Z. For a¢,b € L, a : b is the great-
est element ¢ satisfying c¢b < a (or, equivalently, a : b = V{z € L|zb < a}). If
b is compact, then ags : bs = (a : b)s. The right-hand side is evalnated in L.
The left-hand side can be evaluated either in L or in Ls. If p € L i1s prime and
S ={z € L.|z < p}, then Lg is denoted L,. As one would hope, the localization
theory is such that a < b iff a < b,, for all maximal elements m. In particular, ¢ = b
if and only if a,, = b,, for all maximal elements m. This definition of localization
is somewhat more general than that given by Dilworth in [4]. Localization at a
prime agrees with Dilworth’s definition if L satisfies ACC. If R is a ring, S is a
multiplicatively closed subset of R, and S = {(s)|s € S}, then L(Rs) ~ L(R)z.

The relation of the prime and primary elements of L to those in Ls and L/k
is the same as it is for ideals of rings. In particular, any maximal element m is
prime, and any power m™ of a maximal element m is m-primary. In both L/k and
Lg, the products are frequently denoted by juxtaposition.

We say an element e of a multiplicative lattice L is meet principal if it satisfies
the indentity (i) a Abe = ((a : €) Ab)e. Dually, e is said to be join principal if it
satisfies the identity (i) a V (b : €) = (ae V b) : e. An element e € L satisfying the
weaker identity (1)’ a A e = (a : e)e obtained from (i) setting b = 1 is said to be
weak meet principal and an element e satisfying the identity (i)’ aV (0 :e) = ae : ¢
obtained from (ii) by setting b = 0 is called weak join principal. Elements which are
both (weak) meet principal and (weak) join principal are called (weak) principal.
These identities were introduced by R.P. Dilworth in [4]. In a C-lattice, weak prin-
cipal elements are compact ([2], Theorem 1.3). Principal ideals in the ideal lattice
L(R) of a commutative ring R with 1 are examples of principal ideals. The compact
elements of L(R) are the finitely generated ideals. Hence, for any commutative ring
R with 1, L(R) is a principally generated C-lattice. Principal elements have been
studied extensively by D.D. Anderson, P.J. McCarthy, the current authors, and
others. See, for example, {2], 7], [8].

If e is compact in L, then e/k is compact in L/k and eg is compact in Lg. Ife
is join principal in L, e/k is join principal in L/k. If e is join principal and compact
in L, then eg is join principal in Lg.

An element e € L is said to be a strong join principal element if it is compact
and join principal. L is said to be quasi local if it has a unique maximal element.

An element a € L is said to be semiprimary if \/a is a prime element. If
v/@ = p is prime, then a is said to be p-semiprimary. R.W. Gilmer and J.L. Mott
have studied extensively commutative rings in which semiprimary ideals are primary
(see [5], [6] and [9]). For various characterizations of multiplicative lattices in which
semiprimary are primary, the reader is referred to [1]. The reader is referred to [2]
for general background and terminology.

Throughout, L denotes a multiplicative lattice with 1 € L., and £ denotes a
C-lattice which is generated by strong join-principal elements.
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The following basic facts are all known. We record them for the reader’s
convenience.

PROPERTIES OF LOCALIZATION. Assume L is a C-lattice and S is a multi-

plicatively closed subset of L,. Then the following properties hold.

(0.1) (Ls). = (L)s = {as|a € L.}.

(0.2) If p is mazimal in the complement of S (i.e., mazimal with respect to the
property that s € S implies s & p) then p is prime.

(0.3) For a € L, \/a is the intersection of the prime elements of L over a.

(0.4) Ifa € L, then (/a5 = (\/a)s = (\/as)s.

(0.5) If p € L is a prime minimal over a then a, is primary.

(0.6) If p € L is a prime minimal over a then \/a, = p.

(0.7) If q is p-primary and p does not meet S (in the sense that s € S implies s £ p)
then qs = q, ps = p, and qs is ps-primary in Lg.

(0.8) If g5 ts ps-primary in Lg, then qs is ps-primary in L.

Proor. (0.1) is known but the statement does not appear in the literature.
The proof is routine. The proofs of the remaining statements parallel the proofs of
their ring theoretic analogues. The proof of this version of (0.2) is similar to [2],
Theorem 2.2. Also, (0.3) is similar to [2], Theorem 2.4. The proof of (0.4) is routine
(cf. [3], Proposition 3.11). Here, \/as can be computed either in L or in Lg, the
other two terms in L. The proof of (0.5) is also routine. Then (0.6) follows from
(0.4), (0.5) and the definition of p-primary. (0.7) follows from (0.1), as does (0.8).
|

We introduce the following definitions.

DEFINITON 1. A prime element p € L is said to be a weak s-prime if every
p-semiprimary element is p-primary.

DEFINITION 2. A prime element p of L 1s said to be an s-prime if every prime
element ¢ < p 1s a weak s-prime.

Note that maximal elements are weak s-primes (cf. [10], p. 153). Comple-
mented maximal elements and prime elements which are both maximal and minimal
are examples of s-primes. A minimal prime is an s-prime if and only if is a weak s-
prime. Every prime is a weak s-prime element iff every maximal prime is an s-prime
iff every semiprimary element is primary.

We first consider weak s-primes.

THEOREM 1. Let p be a nonmazimal prime of L. Then the following state-
ments are equivalent:

(i) p is a weak s-prime element.
(i) p is the only p-semiprimary element.

Proor. (ii)=(i). Clear. (i)=-(il). Suppose g is p-semiprimary. As p is
nonmaximal and 1 is compact, p < m for some maximal element m of L. Choose
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any join principal element & < p such that b £ ¢. Then (¢ : b)) < p < m as g is
p-primary. Then mb < ¢V mb ¢V mb is p-primary, and p < m, so b < ¢ V mb. But
b is join principal, so 1 = b :b < (gVmb) : b= (g :b) Vm = m, a contradiction.
Therefore g=p. W

We use the following result which is proved in [1], Lemma 1.1.

LEMMA 1. Let L be a multiplicative latlice with 1 compact. Suppose d =
VP ;a;, where the a;’s are join-principal elements. Ifd < bVed, then cV (b: d) = 1.
Hence if d = cd, then ¢V (0:d) = 1.

LEMMA 2. Let L be a C-lattice. If e is compact and idempotent, then e 1s
principal.

PROOF. An element e € L 1s principal if and only if e is compact and e,, 1s
principal in Ly, for every maximal element m of L. As e is compact, we can assume
L is quasi local with maximal element m. By Lemma 1, e idempotent implies
eV (0:e)=1. As L is quasi local, it follows that e = 1 or e = 0. In either case, ¢
is principal. ‘W

THEOREM 2. Let p be a nonmazimal prime element of L. Then the following
statements are equivalent.
(i) p is a compact idempotent element.
1 s a compact weak s-prime element.
p P p
(iéi) p is a compact element and p = pm for all mazimal elements m > p.

Proor. (i)=(ii). Suppose (i) holds. As pis compact and idempotent, /a = p
implies a = p. (i1)=(i). \/175 = p, so p? is p-semiprimary. By Theorem 1, p® = p.
(i)=(iii). If p is idempotent then p? = p, so for any maximal element m > p, also

= mp. (iil))=(i). Suppose (iii) holds. By Lemma 1, m V (0 : p) = 1 for every
maximal element m > p. It follows that pV (0 : p) is not contained in any maximal
element, so pV (0:p) = 1. But thenp=p>. N

LEMMA 3. Let p be a prime element of L. If p is a weak s-prime, then for
every mazimal element m > p, pn, 15 a weak s-prime element of L. Conversely, if
DPm 5 @ weak s-prime element in L, for every mazimal element m > p, then p is a
weak s-prime element of L.

Proor. If \/a;, = pm in Ly, then \/a,, = p in £ (0.4). Then p is a weak
s-prime in £ implies a,, is p-primary in £, which implies a,,, is p-primary in L,
(0.7). Now, assume that p = p,, is a weak s-prime in £,, for every maximal element
m > p. Assume a € L satisfies v/a = p. If p is a maximal prime, then a is p-
primary. If p is not maximal, and if m > p is maximal, then \/a,, = pm in L,,, so
(Theorem 1) am = p,. Hence, a,, = py, for every maximal element m > a, For any
maximal element m ¥ a, ¢, = 1 = p,,. Hence a,, = pp, for all maximal elements
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m,andsoa=p. W

THEOREM 3. Let p be a nonmazimal prime element of L. Then the following
statements are equivalent.
(1) p is weak s-prime and locally compact.
(i) p is idempotent and locally compact.
(iii) x = xp for all compact elemenis z < p.
(iv) p is weak meet principal and p = pm for all mazimal elements m > p.
(v) p is idempotent and weak meet principal.

Proor. (i)<(ii). This follows from Theorem 2 and Lemma 3. (ii)=(ii).
Assume p satisfies (ii) and let /n > p be a maximal element of £. Fix some compact
element ¢ < p. Then in £,,, p, is idempotent and compact, and so (Lemma 2)
satisfies pp V(0 : Pm) = 1. Then 2, < pi, S0 PmEm = Tp,. If m is maximal and
m ¥ p, then pp, = 1y, 80 again pmzm = Tm. In L, this yields (pz)n, = z,, for every
maximal element m, and hence pr = x. (iii)=(iv). Assume (iii}. By hypothesis,
L is compactly generated, so p is weak meet principal ([2], Proposition 1.1). Let
z < p be a join-principal element. Then z = zp,so pV (0 : z) = 1 (Lemnma 1). If
m > p is a maximal element, then also mV (0 : z) = 1, so £ = mz. As p is the
join of join-principal elements, p = mp. (iv)=>(v). Assume (iv). Let m > p be a
maximal element. If a,, < py, 1n Ly, then a,, < pp, = p in £, s0 a,, = pe for some
c € L. It follows that a,, = ppcy In Ly, and hence that p,, is weak meet principal
in L. Pass to L. As L, is also a strong join principally generated C-lattice,
it follows by [2], Theorem 1.2, that pn, is (completely) join irreducible, and hence
weak principal. As pp, = pmmyy, it follows that 1,, = m, V (O : pm). Hence,
Pm = Om. But then (p?),, = pn. Also, if m is maximal and m ¥ p, then pm, = 1,
so again (p?),, = pm. Hence, p is idempotent, and so (iv)=>(v). (v)=>(ii). Assume
p is weak meet principal and idempotent. Then, as in the proof of (iv)=-(v), p is
locally (completely) join irreducible, and hence locally compact. M

We now consider s-primes.
LEMMA 4. Let p be an s-prime of L. Then p is either minimal or mazimal.

ProOOF. Let p be an s-prime with p; < p for some prime element p; of L.
Choose any strong join principal d < p such that d £ p;. Let p» be any prime
minimal over d? V p; such that p, < p. Note that (d? V p1),, is py-semiprimary. If
p2 is nonmaximal, by Theorem 1, ps = (d*Vp1),,. So d < (d*V p1),,, and therefore
dy < d*V p; for some y £ p3. Then y < (A Vpy):d=(p1:d)Vd<p Vd<ps.
But this contradicts the choice of y £ ps. Therefore p; < p is maximal, and hence
p = p2 1s maximal. M

COROLLARY 1. IfL is a domain, then nonzero s-prime elements are mazimal.

LEMMA 5. Let p be a nonminimal prime which is an s-prime element of L
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and let Q, be the collection of all p-primary elements. Then AQ, is prime and the
only prime element properly contained in p.

PROOF. Let p; be any prime element such that p; < p. If ¢ is p-primary, then
P14 is pi-semiprimary, so (Theorem 1) p1g = p1, hence py < AQp. Let d < AQ, be
any strong join-principal element such that d £ p;. Then p is a minimal prime over
(d?Vp1) (by Lemma 4), so (d?V p1), is p-primary. Then d £ (d?V p1),. Otherwise,
as in the proof of Lemma 4, there is an element y £ p with dy < d? V p;, and then
y < p, a contradiction. But this contradicts the choice of d < AQ,. Therefore AQ),
is the only prime element properly contained in p. W

THEOREM 4. Let m be a prime element of L. Then m is an s-prime element
if and only if m satisfies any one of the following conditions.
(i) m is both mazimal and minimal.
(it) m is a minimal prime and a weak s-prime.
(iii) m is mazimal but not a minimal prime, there exists a unique prime p < m,
and p 1s a weak s-prime.

PROOF. Suppose m is an s-prime. By Lemma 4, m satisfies either (i) or (ii).
Suppose m 1s maximal but nor minimal. Let p be a prime element such that p < m.
Then (Lemma 5) p is the only prime contained in m and p is a weak s-prime. The
condition that a maximal element m is an s-prime is equivalent to the condition
that every prime p < m is a weak s-prime. Hence, each of (i)-(iil) implies m is an
s-prime. W

L is said to be a domain if the zero element is prime. L is a primary lattice

if it contains exactly one prime element m (say). In the latter case, it is clear that
L is quasi local and that every element ¢ < 1 is primary for the maximal element.

THEOREM 5. Suppose m is a mazimal element of L. Then m is an s-prime
if and only if L is either a one-dimensional domain or a primary lattice.

ProoF. We can assume L is quasi local with maximal element m. (=).
Assume that m is an s-prime. If m is minimal, the result i1s immediate. Assume that
m is not minimal. Then (iii) of Theorem 4 holds. Let p be the unique minimal prime
satisfying p < m. Then p = 1/0, so 0 is p-semiprimary, and therefore (Theorem 1)
p = 0. {=). It is clear that every prime in a primary lattice or one-dimensional
domain 1s an s-prime. W

COROLLARY 2. The following statements are equzvalent for L.
(i) Every mazimal element is an s-prime.

(ii) For each element m, L,, is either a one-dimensional domain or a primary
lattice. :

By Corollary 2, if every maximal element is an s-prime, then every nonmaxi-
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mal prime is a locally compact s-prime. This and Theorem 3 yield the following.

COROLLARY 3. The following statements are equivalent for L.
(i} Every mazimal prime is an s-prime.
(i1) Every nonmazimal element is idempotent and locally compact.

By the kernel of an element a € L, we mean the meet of all primary elements
of the minimal primes of L/a. We denote the kernel of a by a*. It is easy to see
that ¢* = A{ap | p is a prime minimal over a}. The following result can be obtained
from a related result in [1]. However, we give an independent proof.

LEMMA 6. Every mazimal element of £ is an s-prime if and only if every
element is equal to its kernel.

PROOF. (=). Assume every nonmaximal prime is a weak s-prime. Fixa € L.
Let @ be the set of primes minimal over a, and let M be the set of maximal primes
containing a. For ¢ € Q, set M, = {m € M |m > ¢}. Note that if ¢ € Q and ¢ is
maximal, then for m € M, ¢ = m and hence a,, = a,. On the other hand, if ¢ € Q
is not maximal, then (Theorem 5) for m € My, ¢m = Om < a4 < ¢ = ¢m. Hence,
in either case, a; = a,, for all m € M. Then a = Apemam = Age@ Amem, am =
Age@aq = a*. (<=). Assume every element is its own kernel. Let p be a nonmaximal
prime and assume /a = p. Then p is the unique prime minimal over a, so a = a,.
As a, is primary in L, it is also primary in £. Hence a is p-primary. It follows
that every nonmaximal element is a weak s-prime, and hence that every maximal
element is an s-prime. W

THEOREM 6. Assume L is modular. Then the following are equivalent.
(i) L contains only finitely many minimal primes and every nonmazimal prime
1s idempotent and weak meet principal.
(ii) L is a finite direct product of primary C-lattices and one-dimensional C-lattice
domains, and each factor of the direct product is strong join-principally generated.

Proor. (i)=(ii). Let p1,p2, - - ., Pk, Pk+1, - - - Pn be the distinct minimal prime
elements. By Theorem 3, nonmaximal primes are weak s-primes, and so maximal
primes are s-primes. Assumes that for 1 < i < k, p; is nonmaximal and for k41 <
J < n, pj is maximal. By Lemma 5, p;’s are pairwise comaximal. By Lemma 6
and Theorem 1, 0 = py A -+ - Apk Agr1 A -+ - A gn, where each g¢; is p;j-primary for
k+ 1< j<n. Again since the p;’s are pairwise comaximal, it follws that the p;’s
and ¢;’s are pairswise comaximal and so £ >~ L/py XX L/pr X L/qui1 X -x L/ qn.
Note that by Theorem 5, each £/p;, (1 < i < k) is a one-dimensional domain and
each £/q; (k+ 1 < j < n)is a primary lattice. (i1)=>(1) is straightforward. W

COROLLARY 4. Leil L be an r-lattice. Then the following statements are equiv-
alent:
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Q)
(ii)

JAYARAM AND JOHNSON

L contains only finitely many minimal primes end every nonmazimal prime
1s idempotent and weak meel principal.

L s a finite direct product of primary r-lattice and one-dimensional r-lattice
domains.

The authors wish to thank the refere for his assistance in making this paper

accessible to a broader audience.
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