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A THEORETICAL STUDY OF THE DISTRIBUTION
OF SUBSTANCES AROUND ROOTS RESULTING
FROM SIMULTANEOUS DIFFUSION AND
MASS FLOW

by P. H. NYE and F. H. C. MARRIOTT

University of Oxford

Nutrients and other soluble substances move to roots by diffusion
and by mass flow induced by the transpiration stream. Our aim is to
relate the concentration of solute to its distance from the root sur-
face and the absorption time, in terms of the diffusion characteris-
tics of the solute in the soil, the movement of the solvent, and the
absorbing power of the root.

Roots move through the soil at rates of the order of 1 cm per day;
and an element of root absorbs for many days aiter it is produced.
Diffusion through the soil occurs over distances of a few mm per day
at most, and high transpiration rates may induce water to move
around 1 mm per day near the root surface. Hence we shall regard
the direction of movement as normal to the root surface.

Nyeand Spiers? expressed the variation of concentration around
unit length of root with time and radial distance in terms of a second
order partial differential equation, which they did not solve; though
they did discuss the variation of concentration with radial distance
in the special case when a steady state was attained after long times.
Nye 7 has also given an analytical solution for the corresponding
problem of absorption at a planar surface, which gives an insight into
the complexities of the cylindrical case. We give here computer
solutions of the Nye and Spiers equation, and include a more
comprehensive boundary condition.
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THEORETICAL CONSIDERATIONS

Mathematical formulation
Consider 1 cm of root cylinder in soil.

Let C = total conc. of diffusible solute (g.cm3 of soil)
C; = conc. in soil soln. (g.cm—3 of soln.)
Cii = initial uniform conc. in soil soln. {g.cm=3 of soln.)
C3, = conc. in soil soln. at rp (g cm~2 soln.)
v, vo = inward flux of water at radius r, 1o (cc/cm?2/sec)
D = differential diffusion coefficient of solute in soil (cm?2
sec™1)
b = differential buffer power (defined as dC/dC;)
F = inward radial flux of diffusible solute (g sec™! cm—2)
T = radial distance from the root axis (cm)
ro = radius of the root (cm)
k = root absorbing power at low C; (cm sec™1) (defined by

F = kCy)

Consider the balance of solute in a small annular element, thick-
ness dr, over time, ét. For conservation of solute we have
82mrF éC
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also

F=D % + v( 2
also, for conservation of water,
2nrv == 2mroVvo (3)
Hence from (1), (2) and (3) and b = dC/dC; we obtain
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Choice of boundary conditions
For the solution of Equation (4) two boundary conditions. are
required. The first is:

t=20 f>r0 Cl:(‘}f
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The second relates the flux to the concentration at the root sur-
face. Many uptake studies in stirred nutrient culture show the flux
across the surface follows the Michaelis type equation

kCy

Fee o 0 5
1 + kclo/Fmax ( )

At low values of Gy, F = kCy .
At high values of G, F = Fpax, a constant.

Since we include solutions in which Cy, rises to high values at the
root surface, we have used Equation (5), and investigated the effects

of both Fpax and k.
Accordingly, the second boundary condition is:

Lt ©

5Cy
t 0 = Db — Gy — — 0
=0 r=rto Db Vol = NG o

Further assumptions

We have assumed that Fyax and k are independent of vo. It is
generally found that at low concentrations of a nutrient culture
solution, and with plants of low salt status, uptake of nutrients is
little affected by the rate of transpiration. At high concentrations
of the solution, the rate of uptake may be increased by increasing
the rate of transpiration, though the effect depends greatly on the
nature of the nutrient, the plant species, and the conditions of the
experiment (see Russell and Barber 14, for a review). We do not
pursue these possibilities in detail. However, should it seem desirable
to test their effects further, only a trivial change in the computer
programme is required to take account of the fact that k and Fax
are some known function of vg.

Equation (4) assumes that D is independent of v. It is known that
on a microscale flow through porous materials is irregular, and tends
to disperse solutes, so increasing the apparent value of D. Nielsen
and Biggar 3 have found that in Aitken clay loam the apparent
diffusion coefficient of Cl was 2.5 x 1075 ¢cm? sec* when v was
16 x 1076 cm sec™!, and 9.4 X 105 cm?2 sec™l when v was
950 x 10-8 cm secl. The true diffusion coefficient is 2.0 x 10-3
cm? sec™1. These velocities are very much higher than the maximum
likely to be found near roots (v of the order 10-6 cm sec—1), and there
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is no data for lower velocities. Hence, on present evidence, it seems
reasonable to assume that D will be unaffected over the range of v
considered here.

The possible presence of root hairs is a complication. If they are
closely spaced, it has been argued (Passioura,12 Nye 6) that the
effective radius of the root is the radius of the cylinder joining their
tips. The solute within this cylinder will certainly contribute to the
plant’s uptake, and it has been calculated (Nye 6) that the relative
contribution from this source will be large when the diffusion coef-
ficient and absorption time are small. However, we are here con-
cerned with the dependence of the concentration outside the cylin-
der, on radial distance and time. This should not be affected, pro-
vided it is understood that k, ro, Fmax, Vo refer to the surface of the
cylinder.

We take no account of a third ‘root interception’ process proposed
by Oliver and Barber 1. The roots in passing through the soil
push out of their way portions of the soil solid and liquid, but
solutes in them still have to move to the root surface before they can
be adsorbed. They are not engorged by the advancing roots, for it is
most unlikely that the root cap is an efficient absorbing surface.

We have assumed that b and D are independent of concentration;
which implies that there is a linear relation between C and C; over
the range of interest. If this is not so, the values assigned to b and D
in the examples given should be regarded as averages between the
concentration limits calculated (Nye 6).

We have assumed that the root radius is constant. Except for a
very short length near the tip this is often true. In the examples
given it will be shown that the relative concentration at the root
surface Cy /Cy; approaches vo/k, so that the effect of any increase in
the root radius may be judged from its likely effect on this ratio.

We have not allowed for a possible decline in k and vo with the
age of the root element. In diffusion experiments with onion roots
in soil Drew, Vaidyanathan and Nye (unpublished) found the
absorbing power to be effectively constant for at least 16 days.
When more experimental information about these parameters is
available, their effects on the relative concentration in the root zone
could be roughly assessed by inspection from Figs. 1 and 2 in this

paper.
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COMPUTATION OF THE RESULTS

The numerical solutions were calculated by the Crank-Nicolson method
(Crank 2, p. 189). In this technique, the first and second differentials at
each point in time and space are replaced by first and second differences be-
tween the concentration values at points of a closely spaced lattice. The
problem can then be reduced to that of solving a set of simultaneous equations.

Suppose for each time-step C; is estimated at N + 1 points at distances
from the axis of the cylinder increasing by steps of h. The concentration C
ranges from a distant value Gy, to the surface value Cy,, and an additional
value C;, included for computational purposes. The last point lies inside

the cylindrical root; the computed value of C;_, has no physical meaning, but
aC a2C

is used in calculating the differences corresponding to~d—— and — at the

T

surface. Now if the values of C; are known at time t, it is possible to set up
simultaneous equations for the values Cy" at time t - g, where g is a small
time-step. Each equation will involve three successive values of C; and the
corresponding values of Cy’; the first equation relates Ci_,,, 3" and Cy,- to
Ci,, Gy, and Cy,, and so on. There are thus N — 1 equations in the N 1
unknowns. Two additional conditions are required; first, Cy,, the concentra-
tion at the most remote point, is supposed to remain constant, and secondly
the surface flux is governed by the equation

0Cy Gy, k
—_ =2 ———— — vg ) (see Eqn. (6)),
or Jg Db\ 1 + kCi/Fmax

which is replaced by the corresponding difference equation. The equations
are now easily solved by a condensation procedure.

If an initial constant value of C; is assumed at every pointat t = 0, it is
thus possible to build up the values of C; at any subsequent time by proceding
in small time-steps and solving a set of simultaneous equations at each step.
The computations were carried out on an Elliott 803 computer, and the pro-
gramme, in Elliott ALGOL, is available in the library of the Department of
Agriculture, Oxford.

The only difficulties in the computation arise in choosing the size and num-
ber of the time and space steps. If the differences are to approximate well to
the corresponding differentials, g and h must be fairly small, especially where
the curves are steep. On the other hand, unnecessarily small steps can greatly
increase the amount of calculation, and this is particularly important on a
relatively slow computer.

The initial rate of change of C; at the surface is very rapid in many cases,
and a very short time-step is needed. There is, in fact, a discontinuity in
d0Cy/6t at t = O, and this introduces some distortion into the finite-difference
approximation. Fortunately, this presents no great problem: since only the
first differential is involved, the time-step can be varied without difficulty.
In practice, the equations were calculated at steps of g up to 10 g, then by
steps of 10 g up to 100 g, and so on. The first one or two sets of values may be
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inaccurate, but the inregularities soon even out, and any inaccuracy carried
forward appears only as a small error on the time scale.

The space step is more difficult to deal with, because it is harder to change
the step when second differentials are involved. The condition that Cy is
constant replaces the theoretical condition that C; is constant at infinity.
This change affects the solution at infinite time; in particular, the computa-
tion always reaches limiting values, even when the theoretical solution
diverges. It is thus important to take Cy, at a point remote enough to ensure
that the wave of disturbance does not reach it within the period for which the
computation is required — otherwise, the solution will be distorted.

On the other hand, the concentration gradient near the surface in the steady
state may be very steep. It involves a term in r—Voro/Db and the exponent may
be as large as 50. In this case, a very small value of h is needed to get a satis-
factory approximation to the limiting form.
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Fig. 1. The effect of the rate of soil solution flow on the relative concentra-
tion near a root surface. (k = 2 x 10-7cmsec~!; D = 10-7cm2sec1; b = 0.2;
Frax high; ro = .05 cm).

1A vg = Ocm sec™1, 7.¢. diffusion alone. Cy/Cy; continues to drop at the root surface and
the zone of depletion to spread outwards at 106 secs.

1B vo = 10~7 cm sec~%. C1,/Cy has not reached the limiting value vo/k = 0.5 after
108 secs.

1C vo = 4 x 1077 cm sec~L, Cy,/Cn has nearly reached the limiting value vo/k = 2 after

TgVg
10% secs, but the zone of accumulation continues to spread outwards since ob = 1

ToVo

For a steady state must exceed 2.

ovo

1D vo = 10-% cm sec™l. = 2.5. After 108 secs C;3/Cu has almost reached the

steady state value vo/k = 5. and the zone of accumulation has ceased to spread out-
wards.

ovo

T
IE vo =2 x 106 cm sec—1. = 5. Both Cy,/Cy; and the zone of accumulation have

nearly attained the steady state after only 105 secs. Cy,/Cy; is increased to vo/k = 10
but the zone of accumulation is compressed.

Fortunately, these difficulties do not arise together. If the concentration
gradient is very steep in the steady state, the spread of the wave of disturbance
is correspondingly small. It is usually possible to get a satisfactory ap-
proximation with a reasonable number of steps, but the value of h must be
chosen rather carefully. In this study, values of N ranged up to 200. The com-
plete programme, involving about 40 values of t, then ran for about 1} hours
on the Elliott 803.

An alternative approach to the computation problem would be to replace r
by z = loge r, and solve the differential equation

e 0 (D L V0 ) L pes ety (7)
5z\ " oz b B '

in which D depends on z. This method was not used in the present study.

Values for the concentration at the root surface when v = 0, obtained by
the numerical solutions, agree well with those calculated from the analytical
solution of this particular case by Carslaw and Jaeger 1 (p. 336).
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Fig. 2. The effect of the root absorbing power on the relative concentration
near the root surface. (vop = 2 X 10-¢cmsec1; D = 10-7cm2secl; b = 2;
Fmax high; ro = .05 cm).

2A k = 0, 5.. no absorption by the root. C;,/Cu continues to increase and the zone of
accumulation to spread outwards.

2B k = 2 x 1077 The limiting value of C1)/Cyi = 10 is approached very slowly.

2C k = 2 x 10-5cmsec—1, The limiting value of C1,/Cu (vo/k = 0.1)israpidly approached
at this high value of k, but the rate at which the zone of disturbance spreads out-
wards is little affected.
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RESULTS

The effects of variation in turn of v, k, D and b when Fpuax is
high are shown first. The effect of variable Fpyayx is then discussed.
v and k are controlled by the plant, unless soil moisture limits v,
while D and b are controlled by the soil. rg is given the value 0.05 cm
throughout.

Variable v

In Fig. | the effects of a change in vo from 0 to 2 x 1076 are
shown. k =2 X 1077, D = 1077, b == 0.2, Fmax is high. Values of
the fixed parameters might be found for absorption of SO4” from a
weakly anion adsorbing soil at a low moisture level. The maximum
value of v chosen is such that rgve = 10-7 cm? sec™!. The transpira-
tion rate of lucerne measured by Ogata ¢/ al.10 yields a maximum
value of rgvp = 3.7 X 1077 cm? sec~! when an evaporating pan was
losing 1 cm per day. '

It will be noted that:

1) Ci/Cy approaches the value vo/k at the surface more rapidly,
the greater is vyq. ‘

2) The zone of disturbance is closer to the surface, the greater is vy.
If a steady state is reached Nye and Spiers 9 showed, by solving

. .. 9C
equation (4) Wlthﬁ = 0, that

=1
Cu T k

To

Cl Vo — k T ~revo/bD
N ®)

ToVo
bD

= 2.5, 5) have nearly at-

The steady state is only attained if > 2. It will be seen that

r
curves for v = 10-6, 2 x 10-6 ove
Db

tained the theoretical steady state after 108 secs. When vg = 0,

ToVvo
1077, 4 x 107
(55

= 0, .25, 1) no steady state is reached: the

concentration at the root boundary still: approaches vo/k, but the
zone of disturbance continues to spread outwards.

The effect of increase in v on the uptake of solutes has been further
discussed by Passioura 12, and by Marriott and Nye 4.
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Variable k

Figure 2 shows the effect of an increase in root absorbing power
when the transpiration rate is high. vg =2 x 1078, D = 107,

v
b = 2, Fpax is high. Sinceﬁ = 0.5 in all cases no steady state

is reached. The limiting value vy/k is approached more rapidly as k
is increased. However, the rate at which the zone of disturbance
spreads outwards is little affected by k. The same conclusions were
reached in the planar case.

Variable D and b (D X b constant)

It may be inferred from Equation (4) and the boundary conditions
that if Db is kept constant, the effect of a change in D (or b) should
appear only as a change on the time scale in figs. 1-3. Thus if D is
reduced tenfold and b is increased tenfold, the times are increased
tenfold.

Variable D X b

The product Db is related to the moisture level of the soil. If a
solute is relatively immobile when adsorbed on the soil solid, which
is true for important nutrient ions (Nye 8),

dC
D= D1V1f1 ——————d Cl (9)
or
Db = Divify (10)

where Dj is the diffusion coefficient of the solute in water
vy is the volume fraction of solution in the soil
f; is an impedance factor.

D) = 10-3 cm? sec~! within a factor of 2 for the simple inorganic
nutrient ions. But since f; falls sharply as vy falls the product Db
depends sensitively on the moisture content.

In a sandy loam soil, Rowell ef al. 13 found that vif) changed from
0.2 at pF2 to 7 x 104 at pF 4.2. The corresponding range for
Dyvifi = Db would be about 2 x 1076 to 7 x 109 Curves for
Db=2x 109, 2 x 1078, 2 x 1077 are shown in Fig. 3. vp =
=2x 1076, k=2 x 1077, b = 2, Fpax is high. In moist soil,
when Db = 2 x 107, giving rv/Db == 0.5, the approach to the
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Fig. 3. The effect of Db on the relative concentration near the root surface.
Db increases as the moisture level in the soil increases. (vo = 2 X 106 cm
sec™l; k = 2 X 10~7cm sec1; b = 2; Fyx high; ro = .05 cm).

3A Db = 2 x 10-9, corresponding to a very dry soil. C,/Cy; at the root surface rapidly
attains its limiting value, and the zone of disturbance is very compressed.
3B Db = 2 x 10-% corresponding to a moderately dry soil. C;/Cu has attained its
limiting value after 106 secs, and the zone of accumulation is less compressed.
3C Db = 2 x 10-7, corresponding to a moist soil. C1,/Cri increases very slowly, and the
zone of disturbance spreads outwards more rapidly than in 3B. No steady state will
rovo

be reached because = 0,5,
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limiting value of 10 at the root surface is very slow. As the soil is
dried, the limiting value is attained more rapidly and the zone of
disturbance is more compressed.

The effect of variable Fygq

If conditions are such that the concentration at the root surface
rises so that the flux approaches its maximum value, the root is no
longer so efficient in absorbing the solute swept towards it, and the
relative concentration at the root surface may rise considerably

above vo/k.
A limiting value of C; /Cy; at the surface will be attained it the
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Fig. 4. The effect of Fuax, the maximum flux at the root surface, on the

change of relative concentration at the root surface with time. (k = 2 x 1077

cmsecl; vp = 2 X 106 cm sect; D = 109 cm2 sec™; b = 2; Cy =

.001 g cm=3). C1,/Cy; at the root surface approaches a limiting value with time
Fmax is > 2 X 1079 gsec~lcm2.

voCu

Figures on curves are values of
max
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amount of solute being brought into the zone of disturbance in a
given time equals the amount absorbed by the root, 7.e.
kCy,

2avrCy = 2mr0 ———
TTVIL1i ALY T+ kclo/Fmax

(11)

which leads to

Vo 1
G, /[Cy = — 12
wlC k(l—w%mm) 12

When voCyi <€ Frax, Clo/cli____‘;)—‘ However, when vgCy ap-

proaches Fmax, C1,/Cyi may reach high limiting values; and when
voCli > Fmax nolimiting value is attained. It will be seen intuitively
that the condition voCy > Fmax implies that solute is being swept
towards the root faster than the maximum rate at which it can be
absorbed.

Figure 4 shows the effect of Fyax on the increase in concentra-

Cis
tion at the root surface. Values of Vot are 0, 0.5 and 1; and
max
) voCy,
vo/k = 10. It will be seen that when = 0.5, G/Cl, ap-
max
e V()Clo
proaches the limiting value of 20, but when —— = 1.0, no

max
limit is reached, while the assumptions of the model used hold good.

SUMMARY

The change in concentration of a solute in soil, moving near the surface of
a root by both mass flow and diffusion, has been calculated by a numerical
method with a computer. The effect of change in the plant controlled variables
v (the solvent flux at the root surface) and k (the root absorbing power), and
the soil variables b (the buffer power) and D (the diffusion coefficient) are
described in turn.

The concentration at the root surface, relative to the undisturbed soil
solution, approaches a limiting value vo/k. As vg is increased, the limiting
value is approached more rapidly, and the zone of disturbance is more com-
pressed. A steady state is reached if rove/bD > 2, but if reve/bD < 2 the
disturbance continues to spread outwards even though the concentration at
the root surface has nearly attained its limiting value.

As k is increased, other factors being constant, the limiting relative con-
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centration at the root surface is approached more rapidly, but the spread of
the disturbance away from the root is little affected.

As Db is decreased, corresponding to a decrease in soil moisture, the con-
centration at the root surface reaches its limit more rapidly and the zone of
disturbance is compressed.

If, because of increase in the concentration at the root surface, the effi-
ciency of root absorption declines, the relative concentration will exceed v/k,
and may reach no limit — at least until the assumptions of the model used
break down.

Received December 19, 1967
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