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Glossary: Summary of notation employed for elasticity 

Q = Emb+(~,  R a) 
TQ 

Configuration Spaee, with elements denoted by ~ E Q. 
State Space; points in the state space correspond to configurat ions 
and velocities and are denoted by (q~, ~b). 
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P = T*Q 

( 6,~, 6p) 
so(3) 

so(3) 

'Jo(~) 
~., .~ 

~(~) 

A(m) 

J : P -+ so*(3) 
K : P - +  ~ 
V: Q -~. 
H : P - +  R 

s 
~~ 

J. C. SIMO, T. A. POSBERGH t~ J. E. MARSDEN 

Phase Space; points in P correspond to configurations and mo- 
menta and are denoted by z = (%p). 
Configuration-momentum variations in TeQ • T~,P. 
Special orthogonal group; orthogonal 3 • matrices with deter- 
minant 1. 
Lie algebra of SO(3); 3 x3 skew symmetric matrices. 
Infinitesimal generator; ~Q(~) -- r I • ~. 
Riemannian metric; for elasticity the inner product 

<6w,, 6w~>~ = f e~of 6wl �9 ~1~92 dV. 

Locked inertia tensor; defined as 

J (w)=  f (Iwl 213 - w | w) dr. 

First elasticity tensor; defined as 

= 02W] 

A(W) OF eFJF=n~ ," 

Angular momentum map; J(% p ) .  q = (p,  ~IQ(W)>. 
Kinetic energy. 
Potential energy. 
Hamiltonian function; H : K § V. 
Energy-momentum functional ( Routhian) ; 

H~ : K +  V--  ( S - - . e ) ' ~ .  

Lie derivative of b in direction a. 
Configuration dependent body force with potential L : Q ~ ~. 

w 1. Introduction 

The problem of the dynamical stability of mechanical systems has long been 
recognized as a fundamental problem of mechanics. An important class of such 
problems is concerned with the stability of steady motions. This type of problem 
arises naturally in the study of rotating systems and includes problems in celestial 
mechanics as well as classical problems in rigid-body mechanics concerned with 
spinning tops, gyrostats and so on. Over a century ago, in his Adams Prize-win- 
ning essay, ROUTH [1877] investigated the subject of the criterion for  dynamical 
stability. In this now classic work he constructed a modified Lagrangian function, 
which subsequent authors have called the Routhian, by appending integrals of the 
motion and applying an 'energy criterion of stability'. This fundamental work is 
described in many standard references, such as WHITTAKER [1959], PARS [1965] 
or GOLDSTEIN [1981], and constitutes the point of departure of the modern theory 
of  reduction of mechanical systems with symmetry; see, e.g., ARNOLD et al. 
[1988, Chapter 3], and MARSDEN & RATIU [1986] for recent surveys. Interestingly 
enough, ROUTH'S work also played a significant role in stability analyses of classi- 
cal linear control systems; e.g., the well-known Routh-Hurwitz criterion. 

The modern point of view on stability of relative equilibria is initiated in the 
work of ARNOLD [1966a] where explicit conditions for formal stability are given 
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when the symmetry group coincides with the configuration space. This situation 
encompasses classical rigid-body dynamics and incompressible perfect fluids 
governed by Euler's equations. Rigorous nonlinear stability results for planar 
incompressible fluid flows are given in ARNOLD [1966b]. This method was subse- 
quently formalized, extended and applied to additional examples, including fluids 
and plasmas, in HOLM, MARSDEN, RATIU & WEINSTEIN [1985] who coined the 
expression Energy-Casimir method. Further applications of ARNOLD'S method 
include the works of KRISHNAVRASAD &MAP, SDEN [1987] on rigid bodies with a 
certain class of attached flexible appendages, and LEWIS [1989] on self-gravitating 
planar drops, among others. However, as noted in ARNOLD [1966a], in SIMO, 
POSBERGH & MARSDEN [1989] and in SIMO, LEWIS & MARSDEN [1990], hereafter 
referred to as Part I, the extension of the Energy-Casimir method to more general 
mechanical systems, even to cases in which the configuration space is isomorphic 
to the symmetry group, encounters a fundamental difficulty: Casimir functions 
and, in general, conserved quantities in the reduced (convective) representation, 
for many simple mechanical systems of interest are difficult to characterize or may 
indeed not exist at all. That this difficulty is not merely formal is illustrated by 
the following examples where the existence of Casimir is not known: three- 
dimensional elastodynamics, general three-dimensional (Cosserat) rods, plate 
and shell models, and three-dimensional incompressible fluid flow, (the only known 
Casimir function is the helicity). By contrast, these examples possess well-known 
conserved quantities in the material or canonical representation as defined by the 
corresponding momentum maps. For three-dimensional elasticity, rods, plates 
and shells these conserved quantities are the classical linear and angular momen- 
tum and for the isotropic case, Eshelby's energy-momentum tensor. For three- 
dimensional isentropic flows the conserved quantity in the canonical description is 
the circulation along closed loops, as a result of the classical Kelvin circulation 
theorem. 

The basic difficulty alluded to above constitutes the main motivation for our 
approach to the stability of relative equilibria, which is formulated directly in the 
material representation and exploits in a crucial manner the energy-momentum 
mapping. This approach, referred to as the energy-momentum method, is intro- 
duced and applied to examples including rigid bodies with attached flexible 
appendages in SIMO, POSBERGH & MARSDEN [1989], and homogeneous elasticity 
in LEWIS & SIMO [1990]. Geometric aspects underlying the method are discussed 
in a general abstract setting in MARSDEN, SIMO, LEWIS & POSBERGH [1989]. An 
essential aspect in the application of the method is a result which states that a 
block-diagonalization of the second variation of the energy-momentum map can 
always be achieved by a suitable choice of coordinates which separates the rigid 
body modes associated with the action of the symmetry group from the inter- 
nal vibrational modes. This block-diagonalization leads to particularly tractable 
stability conditions and is examined in detail in w 2.E of Part I. 

For simple mechanical system with symmetry in the sense of SMALE [1970], 
the energy-momentum method can be reformulated in an alternative form, di- 
rectly in terms of SMALE'S amended potential, which achieves three crucial proper- 
ties: (i) The stability results are optimal (sharp). (it) Maximal reduction of 
dimension, as far as stability analysis is concerned, is achieved: The method 
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operates only in terms of configuration variations; in contrast with our original 
formulation of the energy-momentum method, variations in momenta play 
no role in the analysis. (iii) The enforcement of the conserved quantities is 
accomplished without explicit use of Lagrange multipliers. These properties, in 
particular, the maximal reduction of dimensions in the stability analysis, motivate 
the term reduced energy-momentum method coined in Part I of this work. 

In this paper we consider the concrete application of the reduced energy-mo- 
mentum method to an infinite-dimensional and highly non-trivial example: three- 
dimensional elasticity. Two main objectives motivate this work. First, we provide 
a detailed illustration of the abstract setting discussed in Part I of this paper in a 
concrete example which has a strong interest of its own. Second, we demonstrate 
that tke application of the method to an infinite-dimensional example leads to 
explicit and readily tractable stability conditions, which can be implemented by 
means of numerical analysis techniques or modern symbolic computations. In 
particular, our analysis leads to the following results: 

i. We provide a complete characterization of the possible relative equilibria of an 
anisotropic nonlinearly elastic body possessing a general form of stored energy 
function. 

ii. We derive sufficient conditions for formal stability of the relative equilibria by 
exploiting in a crucial manner our block-diagonalization theorem for general 
simple mechanical systems with symmetry in the context of the reduced energy- 
momentum method. 

iii. We provide a concrete mechanical interpretation for one set of stability con- 
ditions; namely, we show that stable stationary rotations are about the maxi- 
mum axis of a certain locked inertia dyadic associated with the relative equili- 
brium. Furthermore, we give a constructive procedure for the remaining set of 
stability conditions in terms of a straightforward eigenvalue problem. This ap- 
proach can be readily implemented in a numerical analysis context using a 
Galerkin finite element projection. 

iv. We give a concrete mechanical interpretation of the block-diagonalization 
procedure and discuss in detail the structure of the symplectic two form in the 
context of elasticity. In particular, we show that the block diagonalization proce- 
dure also puts the linearized dynamics in normal form. 

In contrast with the finite-dimensional case, in the present infinite-dimensional 
context our stability results are only formal. The reason for this formal nature 
of our results is the current status of existence theory in nonlinear elasticity, as 
summarized in CIARLET [1988, Chapter 7] or MARSDEN & HUGH~S [1983, Chap- 
ter 6]. We remark, however, that the present analysis gives conditional stability 
results for the relative equilibria by appealing to arguments discussed in detail 
in BALL & MARSDEN [1984]. This conclusion rests on the following considera- 
tions. First, relative equilibria are characterized as minimizers of the amended 
potential V~ e. Second, the amended potential consists of the potential energy 

associated with the stored energy function, assumed to be polyconvex, plus a 
term which gives the potential energy of the loading associated with the centrifugal 
loading in stationary rotation. Accordingly, the results of BALL [1977], and BALL 
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& MARSDE~ [1984] apply, provided that the loading potential is continuous as a 
mapping from WI'P(N) to L2(~). Such a requirement appears to hold in view of 
the structure of the locked inertia tensor in three-dimensional elasticity. 

w 2. Notation: Configurations and phase space for elasticity 

In this section we summarize some basic notions of three-dimensional elasti- 
city. For further details we refer to MARSDEN & HUGHES [1983] and CIARLEr 
[1988]. 

w 2.A. Configuration and phase space 

We denote by N ( R  3 the reference placement of an elastic body, and 
assume that N is open and bounded with smooth boundary 8N. We let 

Q : =  {el : N'-+I~ a ]det [Dg~ ] > 0} (2.1) 

be the configuration manifold. Typically, for elastodynamics, one assumes that 
Q ( H S ( ~ )  with s > ~- -k 1. The velocity phase space, i.e., the space of config- 
uration-velocity fields, is the tangent bundle, defined as 

TQ : =  {V~ = (% 69~ ) 19~ C Q and 69~ C Z(~, Ra)}, (2.2) 

where Z(s~, R 3) :=  {6 9 : N -+ Na} is the space of smooth vector-valued functions 
on N. The canonical phase space P is the space of configurations and momenta:  
the cotangent bundle P = T*Q. We shall use the notation 

T*Q = {z~ = (% p) IV E Q and p E Den (~)}, (2.3) 

where Den (~) is the space of one-form densities on r162 (i.e., one forms times the 
volume element). TQ and T*Q are in duality via the L2-pairing denoted by (-, -} 
in what follows. The canonical symplectic structure on P is induced by the symplec- 
tic two-form, ~ : TP • TP-+ R, defined by the standard expression 

s (6zl, 6z2) : =  (602, 69~) -- (6p~, 6p2), (2.4) 

for any 6z~ = (6q~, 6p~) E TzP, (~ = 1, 2). The state space and the phase space 
are related through the Legendre transformation FI.:TQ--> T*Q defined by 
the standard formula 

P : = 9r,f e~, (2.5) 

for (9% ~)  E TQ. Here ~ = 8~/~t is the material velocity field, and 9~f : Pr -+ R 
the mass density in the reference placement r162 

Classical three-dimensional elasticity is an infinite-dimensional Hamiltonian 
system with canonical phase space (P, ,Q), and Hamiltonian H :  P -+ R equal to 
the sum of potential and kinetic energy, defined by the expression 

H = K + V :=  �89 f ~" ~2 ~r~f~-' dV + f W(X, DqO dV. (2.6) 
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Here K:  P--> R is the kinetic energy, and V: Q-+  1% is the potential energy 
defined in terms of a stored energy function W: N • GL+(3, N) -+ R, which 
depends on the motion locally through the deformation gradient F : =  Dg~. We 
assume that W is fi'ame-indifferent in the sense that 

W(X, F) = W(X, AF) for all A E SO(3), X E N and F E GL+(3, R).  (2.7) 

Equivalently, the stored energy function W is left-invariant under the (left-) action 
of SO(3). Given any r/C R a we denote by t/o(9~ ) E T~Q the infinitesimal genera- 
tor of the SO(3)-action, defined by 

expso(3) [e~]~ = ~90 : =  r j •  (2.8) ~o(~) :=  ~ ~=0 

where so(3) is the Lie algebra of SO(3). Recall that so(3) is the linear space of 
skew-symmetric matrices whose Lie bracket is the ordinary matrix commutator 
denoted by [', "]. The Lie algebra (so(3), [-,-]) is identified with (]1% 3, • where 
• denotes the ordinary cross product, in the standard fashion via the Lie algebra 

isomorphism ^ : so(3) --> R 3 defined by (2.8). One has the standard relation 

[~, ~] = ~ •  for all ~, ~/ER a. (2.9) 

With this notation at hand, the differentiation of the invariance condition (2.7) 
with respect to the group action and the use of (2.8) yields the relation 

;jF:O~:W(X,F)= ;~:OFW(X,F)F~=O, for all ~ R ~ ,  (2.10) 

where the symbol " : " denotes the inner product of two rank-two tensors. This 
relation implies the classical symmetry condition on the Kirchhoff stress tensor: 

: =  ~ F w ( x ,  ~)  F ~ = ~ .  ( Z l l )  

Of course, (2.11) is equivalent to the local form of balance of angular momentum. 

w 2.B. Momentum maps 

The Hamiltonian H:  P -+ R defined by (2.6) is invariant under the left action 
of the orthogonal group in the sense that 

H(A . z) = H(z), for all (z, A) E P• (2.12) 

where the (symplectic) left action of SO(3) on P is defined by A �9 z : =  (Aq~, Ap) 
for z = (q~, p). The invariance property (2.12) follows from the assumption of 
frame-invariance on the stored energy function and the fact that rotations are 
isometries relative to the Euclidean dot product. 

By the classical Noether theorem, associated with the invariance property 
(2.12) there is a conserved quantity called the momentum map, denoted by 
J:P--> so*(3), and given by the abstract formula (see, e.g., ABRAHAM & MARS- 
DEN [1978, p. 285]) 

J(z). r / =  (p, r/o(q~)} for ~ E so(3). (2.13) 
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Here, so*(3) is the dual of the Lie algebra so(3) identified with R 3 via the Euclid- 
ean dot product and, in the present context, (., .) is the Lz-pairing. Since 
*/o(tf) ----- ~ •  the abstract formula (2.13) gives 

J(z)'~7 = f * l x q ~ ' p d V =  rj. f (q~xp)dV, (2.14) 

for any r/E R 3. Consequently, the associated momentum map as a function 
J :  P--> R 3 is given by the explicit expression 

J(z) = f q~• dV, (2.15) 

which, as expected, is the classical definition of total angular momentum of the 
system. 

From expression (2.6), it follows that the Hamiltonian function for elasticity 
is also invariant under the group of translations in phase space, i.e., under map- 
pings (% p) ~-> (9 -k c, p), for any c E R 3. The associated conserved quantity is 

the momentum map J :  P-->R 3 defined via the general formula (2.13) by the 
expression 

J ( z ) =  f p d V .  (2.16) 

As expected, J defined by (2.16) gives the total linear momentum of the system. 
Note that the two momentum maps derived above correspond to the left action 
of the Euclidean group realized as the semidirect product N3•  SO(3). 

According to the preceding discussion, we view classical three-dimensional 
elasticity as a particular instance of a Hamiltonian system with symmetry. The 
symmetry arises through the (symplectic) action of the Euclidean group on the 
canonical phase space, and gives rise to the conserved quantities (momentum 
maps) (2.15) and (2.16). Our next objective is to characterize explicitly particular 
solutions of Hamilton's equations known as relative equilibria, a terminology due 
to Poincar6, and examine their stability under finite perturbations of the initial 
conditions. 

w 3. The energy-momentum functional: First variation 

By definition, relative equilibria are dynamic solutions of Hamilton's equations 
which are also group orbits. For SO(3) these are uniformly rotating states. It 
is a general fact that the relative equilibria of a Hamiltonian system with sym- 
metry are critical points of the energy subject to the constraint of constant mo- 
mentum map. This is the content of the general Relative Equilibrium Theorem 
in w 1.B of Part I. As discussed in w 2.B, for elasticity the symmetry group is the 
Euclidean group acting on the left and the momentum maps (the conserved quan- 
tities) are the total linear and angular momentum. According to this constrained 
variational characterization, the relative equilibria can be conveniently computed 
by the classical method of Lagrange multipliers as stationary points of the energy 
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momentum functional Hjze,le " PX [R s XR 3] -->R defined by 

ntze,le ".= n - -  ~ ' ( J  - -  ~e) - -  u "  ( Y - -  le). (3.1) 

Here, (u, ~) E R 3 •  3 are the Lagrange multipliers, (p~, le) E R 3 • 3 are 
the total angular momentum and linear momentum at the relative equilibrium 

Ze E P, and J(z) and J(z) are the total linear and angular momentum maps com- 
puted in w 2.B. Note that the identification so(3) ~-. ~r~ 3 is used in the preceding 
expression. The explicit computation of the stationary points of (3.1) O.e., the 
relative equilibria) is considered in detail below. 

w 3.A. The effective potential: First variation 

Our first step is to reformulate the energy-momentum map in an alternative 
format better suited for our subsequent stability analysis (see Proposition 2.1 
and 2.2 of Part I for the general result). To this end, recall that the kinetic energy 
is associated with a Riemannian metric (., .)g on the state space TQ which, in 
the context of elasticity, is simply the L2-inner product weighted by the density 
function; i.e., 

(6~o~, 6~%>~ : =  f erof'~Wl " '~W2 dr,  (3.2) 

for all 6~1, 6,1% in T~Q. Further, recall that ~e(~) :=  ~ • v is the infinitesimal 
generator of the left action of G = SO(3) on Q. 

Either by a direct computation, or from the general result in Proposition 2.1 
of Part I, it follows that the energy momentum function (3.1) can be written 

nlze,I e = Vr -~ X~,u ~- ~ " ~e -~- I t"  1 e. (3.3) 

Here, V~,, : Q • [R 3 •  3] -+ R is the augmented potential function defined in 
terms of the kinetic energy metric (3.2) by 

v~,.= V +  L~,., 
where (3.4) 

L,,,(q)) = _ 1  f~ref I u + ~• dV, 

whereas K},, : P •  [R 3 •  3] - + R  is the augmented kinetic energy, given by the 
expression 

KMz) = �89 f I P -  e~of( u + ~X~~ eYef' d r .  (3.5) 

It will be explicitly shown below that each of the functions Vr and Ke,u indepen- 
dent@ has a critical point at a relative equilibrium. This fact constitutes the 
main motivation for rephrasing the energy-momentum map as (3.3). 

To compute the first variation of (3.3) we introduce some notation. Let 

~, = 6q~ ; e ~ 9~ : =  (q~ -k e rig)) E Q be a curve in Q with ef~],=o = %  and ~ =0 
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so that 699 E T~Q. This curve induces a curve in T*Q = P obtained by setting 

e ~+ z~ : =  (9%,P + e 6p) E P,  (3.6) 

so that (699, 6t)) E T~P. We shall use the following notation for the directional 
derivative 

d L H(z~). (3.7) DH(z) �9 6z = ~ee =o 

We shall also denote by (6H/6z)(z)  the functional derivative, which is defined in 
the standard fashion as 

6Ht~)\ 
D~I(z) . 6~ = 6 z , - - 3 - Z / ,  (3.8) 

where {.,-} denotes the duality pairing chosen, in the present context, as the 
Lz-pairing, and not the metric pairing (3.2). 

With the preceding notation in hand, substitution of (3.6) into the potential 
energy part of the Hamiltonian (2.6), use of (3.7) and integration by parts yields 

DV(99) . 699 = f t3rW: V(699) dV  

-- f 699. Div (8FW) d V  + f 699. [arw] N d r .  (3.9) 

After making use of a standard vector-product identity, we can write the first 
variation of the potential function L~,~ defined by (3.4)2 in the form 

DL~,,,(99) . 699 = -- f qr~f(~X d99) " (u + ~• 

= f699 .~o,ed#x(u + ~x99)] dr .  (3.10) 

On the other hand, substitution of (3.6) into (3.5) and use of (3.7) yields the first 
variation of the augmented kinetic energy function as 

0 -1 dV. (3.11) DK~,u(z)" Oz = f (61, - ~ref~X (~99)" [p - -  Qref(U -2_ ~X99)] ~=ref 

The classical optimality conditions for (Ze, ~, U) E P X R 3 X R  a to be a critical 
point of/-/~e,te require that 

~ H . e , t ( z . ,  ~e, u.) = 0, 
~ (3.12) 

~-~ H~e,t(z~, ~,, u,) = O, and ~ H,  je(Z,, ~e, Ue) = 0. 

The last two conditions simply tell us that J(z~) = t~e and J(z,) = l~. From 
expressions (3.4), (3.5) and (3.3) it follows that the optimality condition (3.12)~ 
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holds if and only if 

(~V~e,U e (}g~e.U e 
~v (~e) : 0 and 0------~- (ze) = 0, (3.13) 

which, in view of (3.9), (3.10) and (3.11), result in the following relative equilibria 
conditions: 

/)e = Qref[~e X~e @ Ue] / 
in N,  (3.14) J Div [OFWe] = ~eX~ref[~e • -t- Ue] 

along with the stress-free boundary condition [OFWe] NI~ = o. Here N : ~ M  
S 2 denotes the unit-outward normal to ~N, where S 2 = {x E 1~ 3 : Ix[ = 1} is 

the unit sphere in 11~ 3. 
Conditions (3.14), which characterize the relative equilibrium configuration 

~e E Q as critical points of the augmented potential Vee,, e and characterize the 

momentum Pe E T~eQ (defined by (3.14)~)) as a critical point of Ke,u, are of course 
consistent with the general result in Propositions 2.1-2.2 of Part I. 

An interesting question is concerned with the existence of solutions to the 
boundary value problem (3.14). In general, this is a problem to which the tech- 
niques of BALL [1977] may be applied. In this context, the problem reduces to 
the existence of minimizers for Ve,, (or glze,le ; see w 5.D for further details). Alter- 
natively, if ~ E R a is small so that the relative equilibrium is near the reference 
(stress-free) state, the methods of CHILLINGWORTH, MARSDEN & WAN [1983] 
show that there exist slowly rotating smooth relative equilibria in a neighbor- 
hood of the reference state. 

w 3.B. Interpretation of the relative equilibrium conditions 

Conditions (3.14) result in the following mechanical interpretation of the pos- 
sible relative equilibria associated with the action of the Euclidean group (realized 
as ~3• on the phase space P. 

Theorem3.1. Let z e = (flge, Pe) E P be a relative equilibrium. Define the total 
mass and the position of the center of  mass by 

1 
M := f Q r e f d V ,  go : = _ . ~ f ~ r e f ~ e d V "  (3.15) 

Then the following results hoM: 
i. The total linear momentum at equilibrium, J(Ze) = le, is given by the classical 
formula 

te .0 = M~e, with ~e • le = O. (3.16) 

ii. The center of  mass, with position vector 9~ ~ moves with constant velocity 

~90 = Ue "t- ~eX~ 90 =~ constant. (3.17) 
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iii. The angular velocity ~e 6 R 3 at equilibrium (for given angular momentum I~e) 
satisfies the relation 

0 0 
~e : J e ~ e  @ e p e X l e ,  (3.18) 

where j0:1%3__> R3 is the locked inertia tensor relative to the center of  mass 
of the relative equilibrium configuration q~e, which is given by 

,~-0 : :  "r - -  M[l~e ~ 12 13 - -  ~o  @ ~oo]. 

where (3.19) 

~-e : :  f Oref[]~0e [2 13 -- q~e | t~ge] dV 

and 13 is the three-dimensional identity tensor. 
iv. The total linear momentum and total angular momentum satisfy the condition 

ueX l  e -[- ~eX/ff e = 0. (3.20) 

v. The vector ~e E R 3, which defines both the axis of  stationary rotation and the 
angular velocity of  the relative equilibrium satisfies the condition 

~e• = 0 i f  and only i f  JO~e = 2e~e- (3.21) 

Therefore, ~ must be aligned with a principal direction of" the locked inertia tensor 
J o  e (relative to the center of  mass). 

Proof. i. Integration of (3.14)2 over M and use of the divergence theorem and 
the stress-free boundary condition yield 

~e X f Pe dV = 0, (3.22) 

which in view of (2.16) and (3.12)2 is equivalent to (3.16)2. To prove (3.16)1 we 
differentiate (3.15)2 with respect to time and use the Legendre transformation 
to obtain 

.f ~)ref~e dV = f t,~ dV = : l e = M~~ (3.23) 

ii. To prove (3.17) we integrate (3.14)1 over M, and use (2.16) and (3.12)3 along 
with (3.15) to obtain the result 

l~ = M[u~ + ~e X~0oe]. (3.24) 

Differentiation of this expression with respect to time and use of (3.16) yields 

d 
--~l e : ~ e x M ~  ~ = ~ e X l e  : 0.  (3.25) 

Hence, l e : constant, and (3.17) follows from (3.24) and (3.16)1. 
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iii. By making use of (2.15), (3.12)2 and (3.14)x, we can compute the equilibrium 
value Pe = J(ze) as follows: 

~l e = f ftge XPe dV  

= f [~e•215  +q)e• 

: { f  [1(~19 e ]2 1"3 -  ~0e @ (10el Qref dV} 'e J r - { !  Qreff~ge dV}XUe.  (3.26) 

The substitution of definitions (3.19) and (3.15)2 into (3.26) results in the ex- 
pression 

~e = J e  ~e @ M9 ~~ • Ue" (3.27) 

Now we use (3.24) to write the the second term in (3.27) as 

Ml~Pe 0 x u  e = --Ml~Oe 0 x ( ~ e x ~  90) @t~ )Oxl e 

= -M[ l~~  2 13 - go | q~o] ~e @ f~e 0 X l e. (3.28) 

By combining (3.27) and (3.28), and using (3.19)~ we obtain expression (3.18). 
iv. To prove (3.20) we recall that the left SO(3)-invariance condition (2.11) on 
the stored energy function implies the relation 

3 
~] q~,A X T A = 0, where T A :=  [SvW] E A. (3.29) 

A=I 

Here {E A} is the standard basis in R 3 and T A is the nominal traction vector. By 
the divergence theorem, the invariance requirement (3.29) along with the stress- 
free boundary condition results in the relation 

3 
fq~e•  [bFWeldV= f ~ e •  Y'~ fq~e,A• ] d V =  O. (3.30) 

.Y3 0~1 A = I 

The substitution of (3.14) into the left-hand side of (3.30) yields the equivalent 
expression 

fW eX [ ~eX P , ]  dV = 0. (3.31) 

By making use of Jacobi's identity, the equilibrium condition (3.14)~, and (3.24) 
we find that 

0 : ~e x ( f  flgeXPe d g  i 4- f PeX( e X ~ e ) d g  ] 

: ~eXlle @ fO~ref(~eXflge @- Ue) X(~eXftge) dV  

= ~eXPe @UeX f~ref(~eX99e) dV 

= +"e• fp dV 

= ~eXtle + UeXle, (3.32) 

which proves (3.20). 
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v. To prove (3.21) we use (3.18) along with (3.17), (3.16) and Jacobi's identity 
to obtain 

~eXlge ~- ~eX~'0~e @- ~eX(~O0Xte) 

= - -  w 0 X ( t e X  - -  teX( eX  ~  

= ~ e X ~ e 0 ~ e  - -  ~eX(~0 0 - -  He) 

~e X 0 (3.33) = ~ e  ~e - -  lie X le, 

which in view of (3.20) implies (3.21). [ ]  

Remarks 3.2. 1. Since the center of mass moves with constant velocity, and le = 

J(ze) is constant, without loss of generality we may assume that 

9~ ~ = 0 implies ~b ~ = 0. (3.34) 

This requirement amounts to selecting a reference frame with origin at the center 
of mass of the equilibrium configuration. Relative to this coordinate system one 
has 

u~ = 0, and J e  ~ = J~ .  (3.35) 

One then speaks of a center-@mass reduction. In what follows we shall assume 
that this reduction is made and drop the subscript (i.e., H~e,l e = H,e, etc.) 

2. Condition (3.20) is the concrete version of the abstract condition ad~due = 0, 

(see Proposition 1.2.ii of Part I) since for G = SO(3) one has adg~pe = ~ •  

We conclude this section by providing a mechanical interpretation of the 
effective potential g~e in the context of elasticity. As remarked above, we assume 

throughout that a center-of-mass reduction has been made so that (3.35) holds. 
The relative equilibrium condition (3.14)2, and the stress-free boundary con- 

dition, which constitute the optimality conditions for the effective potential V~e, 

lead to the following boundary value problem for the relative equilibrium con- 
figurations: Find the configurations cf~ E Q such that 

Div [OrW(D~e)l + ~refB((~e) = 0 in ~ ,  

[~FW(D~e)] N = 0 on ~ .  
(3.36) 

Here, ~refB : Q-~  •3 is an equivalent configuration-dependent body force given 
by 

: =  o or 12 
where (3.37) 

~e 

which has the physical interpretation illustrated in Figure 3.1. The body force 
~ r e f e ( ~ e )  gives the centrifugal force, acting on a configuration 9~e C Q in a rela- 
tive equilibrium, corresponding to a stationary rotation about the axis ~/1~1 
with constant angular velocity [~  [. 
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Axis of rotation" 

Fig. 3.1. Interpretation of the loading term ererB = 9ref I~e !2 9~ ~ 
as a centrifugal force. 

Note that the centrifugal force Orefn(l~19 ) is a configuration-dependent con- 
servative body force with potential function given by L~e:Q---> R. Making use 

of a standard vector-product identity, we can write (3.4)5 as (recall relation 
(3.35)2) 

L~e(~) = --�89 ~e " J ( ~ )  ~e, (3.38) 
where 

:=  f I s 13 --  f/9 @ ~1 dV. (3.39) 

That L~e(~ ) furnishes the appropriate potential for the loading term ~rCrB(9~) in 

(3.36) is the result of (3.10). 

w 4. The pure traction boundary value problem for the relative equilibria 

In this section we consider the structure of the boundary value problem for 
the relative equilibrium configurations. By examining the left-invariance proper- 
ties of the augmented potential under the (left) action of the proper orthogonal 
group, we develop a crucial decomposition of the tangent space of variations, 
which plays a fundamental role in our subsequent stability analysis. We consider 
first the general case of the pure traction boundary value problem in elastostatics 
in which the configuration-dependent loading at an arbitrary configuration does 
not possess full invariance under the left action of SO(3). Subsequently, we specialize 
our results in w 4.C to the the boundary value problem for the relative equilibrium 
configurations. 

w 4.A. The pure traction boundary value problem in elasticity 
with partial SO(3)-invariant, configuration-dependent loading 

Consider the following general Neumann boundary value problem: Find the 
configurations ~v~ E Q such that 

Div [~,W(D9%)] + ~rB(9%) = 0 in ~ ,  
(4.1) 

[O~W(D~)] N = 0 on ON. 
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Here ~r~fB : Q -+ t{ 3 now denotes a configuration-dependent body force which is 
assumed to be derived from a general potential L : Q -+ R according to the rela- 
tion 

--DL(~e)" 6~ = <6~, ~erB(~e)> for all 6q~ E T~eQ. (4.2) 

In view of the definition (3.8) of the functional derivative, this condition is equi- 
valent to 

0L 
erefB(~e) -- ~ (~e), (4.3) 

and thus boundary value problem (4.1) may be re-stated as 

a--~ [V(~) + L(c~e)] ---- 0. (4.1 *) 

The weak form of the boundary value problem (4.1) is given by 

G(9%, 69~ ) :~ f [~FW(Dg~) ] : V(r dV -- f O~rB " ~ dV, (4.4) 

for all r E TveQ. 
Next, we record the necessary conditions for the existence of solutions to 

boundary value problem (4.1). 

i. Let 6~ = constant which, in view of (2.2), is in Z~e Q. Since V(O~) ---= 0, 
we conclude that 

J "0refB(~e) d V  ~- - -  " ~  (~ge) dV = 0. (4.5) 

ii. Let 3el = gQ(9%) = g •  be a superposed infinitesimal rigid-body motion, 
which, in view of (2.2), is also in T~e Q. It follows that 

VgO(~e ) = ~D~e.  (4.6) 

Since "~, = ~FW(D~e) IDle] T is symmetric by (2.11), we have 

a(fpe, ffO(fl)e)) = f [~FW(Dq),) D~r~]: ~ dV- -  fe,,rB(9~,), f f•  dV 

-- g. f go,• d V =  O, (4.7) 

which must hold for all ~ E 1%3; hence 

f ~9 e M e~ofB(q~e) dV = 0. (4.8) 

Conditions (4.5) and (4.8) are the statement of force balance and moment balance 
for the body force at equilibrium. 
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An equivalent formulation of condition (4.8) in terms of the potential L is 

0 = -- f Qrefn(cpe)" gO(~ige) dV 

- 

= DL(~e)" ffQ(~), (4.9) 

which, upon using the definition of Lie derivative (denoted by s leads to 

(s (~) = 0, for all fiE so(3). (4.10) 

The preceding conditions are therefore equivalent to the requirement that the 
loading potential L : Q --> g be infinitesimally left-invariant under the action of 
the Euclidean group at an equilibrium solution 99~ E Q. Assuming that transla- 
tional invariance holds, we are led to the requirement that 

L(~e) must possess full infinitesimal SO(3)-invariance at ~o e E Q. (4.11) 

The crucial observation to be made is that while L must possess full SO(3)- 
invariance at an equilibrium solution ~ E Q of the boundary value problem (4.1), 
in general, L : Q--+ R need not be invariant for all ~ E Q; Equivalently, the 
loading term QrefB(~e) need not be fully SO(3)-invariant, even at the equilibrium 
point ~0~. As we shall see below, this is the case for loading which results from 
centrifugal forces in a stationary rotation of the body. 

Our objective in this section is to provide a precise characterization of the 
space of admissible variations for boundary value problem (4.1), and to introduce 
a split of this space that plays a crucial role in our subsequent analysis. This 
characterization is intimately related to the invariance properties of the loading 
term ~'refB(~e). TO motivate our discussion, we start out by considering the case 
of a potential function L : Q-+  1% which possesses fuU SO(3)-invariance at any 

E Q. The more important case of interest in which L is only partially SO(3)- 
invariant (away from equilibrium) will be considered subsequently. 

4.A.1. The ease of full  SO(3)-invariant loading. Assume that L :  Q-->R is 
SO(3)-invariant at any 99 E Q, not necessarily an equilibrium solution of boundary 
value problem (4.1). This assumption means that 

L(Ag~) = L(99), for all ~ E Q and A E SO(3). (4.12) 

Differentiating (4.12) we find that it implies objectivity of 8~rB(99) at 9% E Q, 
i.e., 

ar~r~rB(Aq~e) = ~rcfB(9%), for all a E SO(3). (4.13) 

By taking A ~-- exp leVI for any ~ E so(3) and differentiating-! (4.i3) at e = 0 
we obtain its infinitesimal counterpart, i.e., 

d 
/ exp [--e~] erefB(exp [e~19%) = 0. (4.14) : =  
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With the preceding observations in mind, we examine the characterization of 
those trivial solutions associated with a given solution to the boundary value 
problem (4.1). Let 99e E Q be a solution of (4.1). Consider an SO(3)-orbit of con- 
figurations: 

99+ := A99e, for AE SO(3). (4.15) 

One writes 99 + E [SO(3) "99e]. Since the stored energy function is, by assumption, 
objective we have 8FW(AD99) = A 8FW(D99). Therefore 

a(99e +, d99) = f [A 0FW(D99e)] : V 099) dV-- f e~r8(A99~)" ~99 dV 

= f qror[aB(99~) -- B(a99e)]" 099 dV, (4.16) 

which vanishes for all 699 E T~eQ if and only if the condition of objectivity (4.13) 
holds. 

The preceding (standard) argument shows that any configuration given by 
(4.15) in the orbit SO(3) "99e of a solution 99e E Q is also a solution of boundary 
value problem (4.1). Trivial solutions associated with a given solution to (4.1) 
are therefore eliminated by restricting the admissible configurations for problem 
(4.1) to the orbit space: 

cg :=  Q/SO(3). (4.17) 

That is, configurations 99e E Q modulo rigid rotations of the form 99e = A99e, 
for A E SO(3), are identified by the choice o f ~  in (4.17). The space of admissible 
variations, denoted by ~ ,  is then simply the tangent space to the quotient mani- 
fold c~; i.e., 

~/" :=  T~eQ/[so(3 ) "99~], (4.1 8) 
where 

[so(3) "99e] : :  {~Q(99e) = ~ ~99e E T~eQ [ ~] E so(3)}. (4.19) 

An explicit realization of "/P is obtained through the identification 

~--- (099 E T~Q l (6% ~Q(99e))g = 0, ~ E ~3}, (4.20) 

where (., .)g is the Riemannian metric defined by (3.2). 

4.A.2. The case of partially SO (3)-invariant loading: Decomposition of the space 
of variations. Now consider the case of interest for which the loading term Qrefn(99e) 
is only partially SO(3)-invariant. In view of condition (4.10) this assumption means 
the existence of non-zero elements ~ E so(3) for which (s Qr,rB) (99e) 4 = 0. 
Consequently, 

:=  (~E so(3) I (s162 (l~lge) = 0} < SO(3) (4.21) 

is no longer the full Lie algebra so(3). Using standard properties of the Lie deri- 
vative one can easily show that f# is, in fact, a Lie subalgebra of so(3), since 
[if, ~'] E f~ for ~, ~ E f~. Let 6 be the associated symmetry group; i.e., 

d = {A E SO(3) 1 dr~rB(A99e) ~- ~rB(99e)} �9 (4.22) 
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AS in the case of a fully SO(3)-invariant loading, the configuration manifold is 
now taken as 

cK :-~ Q/G. (4.23) 

The tangent space of admissible variations, now given by T~eQ/[C5 �9 ~e], is then 
isomorphic to the constrained subspace 

:= ( ~  E T~eQ I ( ~ ,  ~Q(l~ge)~g = O, for all ~ E ~}. (4.24) 

Next, we introduce a splitting of  ~e- of the form 

~/F __-- ~PRm O ~//'mr (4.25) 

by means of the following construction: 

i. The tangent space of rigid body variations ~trRlC. We define a subspace 
if• C so(3) by the orthogonality condition 

if• = (~ E so(3) 1 (~Q(~e), ~Q(~e)~g ~ O, for all ~ E ~}. (4.26) 

Note that from the definition of infinitesimal generator and (3.2), we have 

(•O(fige), ~Q(ft~e)~g = n " ,J~e~, (4.27) 

where "J~-e iS the locked inertia tensor at the relative equilibrium configuration 
(~9 e defined by (3.19). (Recall that ~ = JOe, since a center-of-mass reduction is 
assumed throughout). Since or e is positive-definite, (4.27) defines an inner product 
on fg. Moreover, since (~ 0 f ~  = so(3), we have 

(~r/Q [Qrefn]) (~[~e) ::~ 0, for all ~ E f~<; (4.28) 

i.e., if• C so(3) generates those rigid body variations for which the loading is 
not SO(3)-invariant. We set 

~RIG := (nQ(~e) E T~eQ I 0 E ~• (4.29) 

From (4.24) and (4.26) it follows that ~/'Rm C ~ .  To motivate the defining 
condition of the subspace "~INT given below, we first observe that the following 
result holds. 

Lemma4.1.  For any r c~ • and ~ E f~ one has 

~(s ~-~)(ftge), ~Q(f~e)~g = --<(s  B )  (~tge), ~Q(~ge)>g = 0 .  (4.30) 

Proof. From relation (4.3) and the definition of the Lie derivative we have 

_ d exp [--e~] O~r [e/~lq%) 
de e=0 

~2~rB(~) -- ~ef ~TB(~e) ~ c "  (4.31) 
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Since VB(We) ~- --\72L(We), it follows that 

~ (s ~ )  (We), ~-Q(We) ~ ~ f [~Q(We) " \72L(We) ~Q(We) 

+ '~qrorB(We)" g • d r .  

Using Jacobi's identity on the second term of (4.32) we obtain 

~(s ~Q(We)) = -- f ~Q(We)" ~ref[VB(We) ~We -- ~B(We)] dV 

f qrefB(We)" [~ X ~] We dm 

79 

(4.32) 

Remarks 4.2. 1. The space "]/'INT may be viewed as a constrained subspace of 
T~Q obtained by enforcing the orthogonality condition (OW, gQ(We))g----0 

ii. The tangent-space of internal deformations r Loosely speaking, the 
OL 

result in the lemma above says that the loading term ~ -  (We), which is not SO(3)- 

invariant as a result of condition (4.28), "looks invariant" when tested by varia- 

tions gO(We) generated by ~. We define the space ~ iNr  Q ~P precisely by this 
condition, but now enforced on ~• i.e., 

/ l  
(W~), dW~ 0, all ff/"INT:~--'{f~W~ff/~ ~t~,lQ-~) = for ~Ef~• (4.35) 

From Lemma 4.1 we conclude that "f'Ria/5 r = {0}. Furthermore 

dim ['r = dim [~1] = dim [so(3)] -- dim [ff]; (4.36) 

since the number of constraints in (4.35) equals dim [~-'] it follows that ~/" = 
~ R m  | ~ iNr  as required. 

We show below that the preceding construction leads to the following crucial 
result: The second variation of V 4- L block-diagonalizes on "[/"RIG )4. "g/INT. Ob- 
serve that by assumption, V @ L has a critical point at We ~ Q and, therefore, the 
second variation D2[V + L] (W~) is symmetric and makes intrinsic sense. 

= - f ~Q(We)" (~Q~ref B) (We) dV 

-- f QrefB(We) " [~, ~]Q (We) dg. (4.33) 

By definition of f#, (s (We) = 0 for ~ E f#. On the other hand, by the 
invariance condition (4.10), we have 

- f eroeB(We)" [;J, ~]O (We) dV = DL(We)" [?, ~]Q (We) ---- 0, (4.34) 

so that (4.33) vanishes, and the result holds. [ ]  
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along with the requirement in (4.35). The result in Lemma 4.1 then shows that 
these two conditions are consistent. 

2. Alternatively, one could define ~/'iNr by the requirement that (r/Q(~o), c~)g 

= 0 for ~ E 3 • However, as shown in w 6.D, such a definition does not lead to 
a block-diagonal structure of the second variation o f[V -? L]. This latter definition, 
on the other hand, results in a diagonal structure of the symplectic two-form. 
The structure of the symplectic two-form is examined in Section w 5.C. 

3. The construction given above leads to the following decomposition of the 
tangent space T~%Q: 

TeeQ = [ ~  "(iOe] (~ ~V~RIG (~ ~"INT" (4.37) 

SO(3)-invariant rigid infinitesimal 
body variations deformations 

all rigid body variations 

4. In general, the decomposition (4.25) is valid if the locked inertia tensor 
is nonsingular or, more generally, if the Arnold form is non-degenerate; see 
Part I, w 2 for a detailed discussion. 

w 4.B. The second variation: 
Block-diagonalization in elasticity 

Here, we examine the structure of the second variation at a relative equilibrium 
~e E Q. We show in the concrete setting of elasticity that the decomposition 
(4.37) leads to a block-diagonalization of the second variation of the effective 
potential Ve. 

4.B.1. The second tangent of the internal energy. We start our analysis of the 
second variation by recalling the standard expression for the second tangent 
associated with the internal energy, namely, 

D 2 W(~) (dq~,, d~2) = f V(d~l)  : A@) : V ( d ~ )  dW, (4.38) 

for all 6~1, 6~2 E T~Q, where A(q~) is the first elasticity tensor at ~ E Q given 
by 

 2W__ I 
A(r .-- OF ~ti'[F=Dq~" (4.39) 

Observe that, except for dead loading, in general the first variation of the internal 
energy term, V: Q -~ R, does not have a critical point and, therefore, the second 
variation does not make intrinsic sense; see ABRAHAM, MARSDEN & RATIU [1988, 
p. 113]. We shall, therefore, refer to (4.38) as the second tangent to V(~) at ~ E Q. 

Next, we recall that the frame-indifference condition (2.7) implies that 
W(X, F) = W(X, C) where C : =  FrF is the right Cauchy-Green tensor. We 
use the notation C(q)) : =  Dg~ r D~. From definition (4.39) of the elasticity tensor 
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A@), we obtain the relation 

V ( 5 ~ 0  : A(~) :  V(6~2) = V(6~,)  : [V(6~2) S] 

+ �88 [De(iT) �9 d99~] : C(~) :  [DC(99 ) �9 5(T2 ]. (4.40) 

Here S : =  F -1 8rW = 28c Iff is the symmetric (second) Piola-Kirchhoff tensor, 
and 

C(W ) :=  4 ~----d-~!c__~o,.lT1) ~ (4.41) 

is the second elasticity tensor. Furthermore, we have 

Dg(9~).599 : =  D T r v ( 5 ~ )  q- [V(5~0)] r D~ .  (4.42) 

Formulae (4.39)-(4.41) are standard; see, e.g., MARSDEN & HUCH~S [1983, Chap- 
ter 2]. 

At a relative equilibrium (jo e ~ Q, the second tangent of V, as a bilinear form 
evaluated on (r~O(~e), 6~) E Y/~RIo • yS, is given by the following 

Proposition 4.3. At an equilibrium configuration (jOe ~ Q, the second tangent o f  V 
is 

02  V(ctTe) ((~ft ~, ~Q(ffe)) = f (~ff " ~Qrefn((~t)e) dV,  (4.43) 

for  any &f E ~/" and rlo_(~f~ ) E ~f'ma. 

Proof. First observe that since r/a(q~ ) = r / •  we have V(r/a(~)) = ~iF, where 
F = Dg~. Relation (4.42) then yields 

DC(~) . riO(el) = Fr~F + Fr~rF = O, (4.44) 

since ~ + ~r  = 0. Hence, ker [DC(9~e) ] = [so(3) "tfe ]. Consequently, if 
�9 /o((T~) E ~f~Rzo, then by (4.38), (4.40) and (4.44) we have 

D2V(~fe) (699 , ~Q(9~)) = f V(dg~) : [V(J/o(~) ) Se] dV. (4.45) 

Using the divergence theorem, the stress-free boundary condition and the fact 
that V(~(tT~)) = ~F~, we reduce (4.45) as follows: 

D 2 V(~e)  ((~p, ~O(ftDe)) = f vo~ ): [~tFeS~] dV  

= - f (~w" Div [~ (OrWe)] dV 

+ f ,~" ,~ • [O~W~N] dA 
OOj] 

= - -  f dq~. ~ Div [OFWe] d V  

= f d ~ .  ~ier~fB(~0e) dV, 

which completes the p r o o f .  [ ]  

(4.46) 
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4.B.2. The second tangent of the loading potential. Now consider the potential 
term L : Q --> P~. We have 

Proposition 4.4. At a relative equilibrium 9~ E Q: 

O2Z(9e) (~9, qQ(9)) = -- f (~9 " Qref Vn(9e) ~Q(9e) dV, 

for all Jla(9,) E flYinG and 8 9 E "f~. 

(4.47) 

6L 
Proof.  Recalling that ~9 --QrefB we have 

so that 

DL(9) " ~)9 = -- f Qrefn(9) " (~9 dV, (4.48) 

O [ O Z ( ~ P e )  " ~ 9 ]  " ~Q(~ge) = - -  f ~ 9  �9 ~refVn(~oe) ~O(f~lge) d r ,  (4.49) 

which proves (4.47). [ ]  
As alluded to above, neither DzV(9~) nor D2L(9~) make intrinsic sense 

(independent of the coordinate chart) since these functions do not possess a critical 
point at 9e E Q. However, V-k L does have a critical point at 9e E Q and its 
second variation defines a symmetric bilinear form. Furthermore, this bilinear 
form possesses the following crucial property: 

Theorem4.5. (Configuration Block-Diagonalization Theorem). Let 3V'R1 G and 
~U~Nr be defined by (4.29) and (4.35), respectively. Then 

D2[V + L] (ge)" ('~O(ge), ~9) = 0, (4.50) 

for ~9 E ~INr and ~iQ(ge) E ~Rm" 

Proof. Combining the results in Propositions 4.3 and 4.4, and making use of the 
definition of the Lie derivative we obtain 

D2[V-k L](ge) " (~Q(ge), ~9) : -- f ~9" ~ref[--0B(ge) -]- VB(ge)" c}9] d g  

"d-~-~d e~0 : -- f f  (39 exp l--e0] 9refB(exp [eO]9e ) dV 

= - f ~9"  (~Et/Q~refB]) (9e) dV 

6L is SO(3)-invariant, the second variation of V-k L Thus, if 9refB 69 

vanishes identically when evaluated at (r/Q(ge), ~9)E ~//'RI~• On the other 
hand, if  OrefB only possesses partial SO(3)-invariance, result (4.50) follows from 
(4.51) and the defining condition of ~/f/Nr in (4.35). [ ]  
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w 4.C. Application: Centrifugal body force in a stationary rotation 

We now apply the results of the preceding sections to the boundary value 
problem for the relative equilibrium configurations ~e E Q formulated in w 3.B, 
[see (3.36)-(3.37)]. Here the potential function for the external loading is L~ : Q • 
R a - +  R defined by (3.4)2. We have 

i. The Lie algebra ~ Q SO(3) associated with the symmetry group of L~ at 
a configuration q~ E Q is ~ ~ N~e, defined by 

N ~ e = { ~ E s o ( 3 l ] g •  l [ ~ , ~ e ] = O  }. (4.52) 

This re suit follows from the computation below which uses the fact that SO(3) 
acts by isometries: 

(s (9) = --<s162 @) ~eO(~), ~eQ(q))>g 

= -<[~,  ~e]o (~), ~eo(~)>~ 

= 0, for [~,  ~l = 0. (4.53) 

It follows that dim [Nee ] = 1. Clearly G# e ~ G C SO(3) is the group of rota- 
tions about  ~e. 

ii. At a relative equilibrium ze =- (~e, Pe) E P, with total angular momentum 
~t e ~- J(Ze) , Nee coincides with fq, e' the Lie subalgebra invariant under the co- 
adjoint action, i.e., 

Nk, e : =  {~E so(3) [ ad*(pe) -- ~X//e = 0}. (4.54) 

Furthermore, the subspace Nr177 coincides with the orthogonal complement N)e in 
the standard Euclidean inner product, i.e., 

N L :=  {~ E so(3) l r/. g~ = 0}. (4.55) 

This conclusion follows from the equilibrium condition J e  ~ = 2 ~e, expression 
(4.27) and definition (4.26). 

iii. At a relative equilibrium configuration f~9 e ~ Q, the loading is equilibrated 
in the sense that conditions (4.5) and (4.8) hold. Equivalently, by (4.10), L~e(flge) 

is infinitesimally left-invariant under the full group SO(3). The abstract proof  of 
this fact is contained in Part I. 

With these results in hand, we consider the explicit characterizations of the 
spaces ~//-, "~WRl G and ~/~INT for boundary value problem (3.36). We have 

Proposition 4.6. A relative equilibrium configuration ~e E Q is a solution o f  
the weak form (4.4) of  the boundary value problem (3.36) with tangent space of  
admissible variations given by 

= I O~E T~eQ ]~e" fqror o• #,v d V = 0/.  (4.56) r 
t 1 
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Moreover, $/" splits as $ / =  ~'RIG ~) 3P"INT, where 

" r  i.e., ~ .  _~e=O}, (4.57) 

and 

"[PINT = { ~  E ~ ] t/�9 ident t (6~) = 0, for all ~ E fqL}' (4.58) 

where 

ident~ t (dq0 : =  f 0rcr[2(~eX~,)X6q) -- ~,X(9%XSq~)] dV. (4.59) 

Note that the condition in (4.58) is equivalent to requiring that identee(6~)E f#~,~ 
Jot all 6ep q se'IN r. 

Proof. The characterizations in (4.56) and (4.57) follow from the definitions (4.24), 
(4.29) and (4.26) along with (4.54). 

To prove (4.59) we compute the defining condition in (4.35). Using the defi- 
nition of Lie derivative and the fact that QrefB(~e) = --Qref~e X (~e X~Oe), we have 

~L~e\ -- "~ ,=0 (~r~Q W ) ( I ~ . . ) =  d exp [--e6] @refB(ex p [e61~r ) 

~--- qref{~ X B(~e) -- VB(~  X~e)} 

= --q~,r{r/• [~, •215 -- ~e• [~e•215 (4.60) 

Making use of standard vector-product identities, we reduce (4.60) to 

(}L~e\ 
-(~e x rl) XPe -- [(~eX rl) X ~e] Xeref~e, (4.61) J~;qQ W )  (l~e) = 3  ~" 

where Pe : =  ~rer~eXq~e" Therefore, the condition in (4.35) yields 

= (~e x r/). identr (6q~) = 0. (4.62) 

Since ~ • r/4= 0 lies in fqJe for any ~ E Ni~e, the result is proved. [ ]  

Remarks 4.7. 1. The expression (4.57) agrees with definition (2.26) of Part I for 
idente~ : "r ~*. In fact, from (3.19) we have 

ident;, (Oq~) : =  --D[J(9~e) �9 090] ~e 

= --D [/ ~eXQref(~eXC~e) dV] " ~r 

= - f [~0XQref(~eX(iOe) -~-(iOeXQref(~eX(~9)] d r .  (4.63) 

Using Jacobi's identity and rearranging terms we recover (4.57). 
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2. Expressions (4.57) and (4.58) for ~ m o  and ~IN~ respectively agree, 
therefore, with the general definitions in Part I, namely, equations (2.34) and 
(2.35). 

3. There is also a block-diagonalization result on variations in phase space; 
see Part I and w 6 below. 

w 5. Stabifity analysis by the reduced energy-momentum method 

In this section we examine the stability of the relative equilibria characterized 
by Theorem 3.1 using the reduced Energy-Momentum method discussed in 
the general setting of Hamiltonian systems with symmetry in w 2 of Part I. The 
method exploits a reformulation of the energy-momentum map H,e, which has 

two remarkable properties: 

i. Enforcement of conservation of total angular momentum is built at the 
outset into the Hamiltonian, which now coincides with the energy-momentum 
map, thereby bypassing the need for Lagrange multipliers. 

ii. The second variation test for formal stability of the relative equilibria 
is formulated solely in terms of the configuration variables. Equivalently, the 
method operates on the configuration space Q and not on the full phase space 
P = T*Q and leads, therefore, to a substantial reduction of the original problem. 

As discussed below, the crucial idea is to introduce a change of variables in 
the original Hamiltonian via a shifting operator which projects the phase space P 
onto the level set J- '(0).  In terms of these shifted variables, the restriction to the 
level set J-~(0) of the original Hamiltonian can be easily enforced at the outset, 
and leads to a particularly convenient expression involving an amended potential 
introduced by SMALE [1970a, b] but having its origins in early work of RIEMANN 
[1860] and ROUTH [1877]. In this setting, the critical points of the kinetic energy 
correspond to zero values of  the momenta, and the critical points of the amended 
potential define the relative equilibrium configurations. Furthermore, the test 
for definiteness of the second variation reduces to a test for definiteness of the 
amended potential at the relative equilibrium configuration. 

w 5.A. The reduced Hamiltonian and SmaIe's amended potential 

The reparametrization of the energy momentum function possessing proper- 
ties (i) and (ii) summarized above is constructed according to the following steps : 

Step 1. The shifting map. Introduce a map X: P - +  P which projects the 
phase space P onto the level set J-l(0) Q P by means of the formula 

S(z) :=  (% p -- F L ( ( J - I ( ~ )  J(z)) o (~))) 

= (~/9, p - -  eref,J~'--l(~9) S(z) X~o) ,  (5 .1 )  
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where J(z) is the total angular momentum. Note that .J-~(~) J(z) gives the angular 
velocity associated with the angular momentum J(z). That the map defined by 
(5.1) does in fact project P onto J-~(0) can be verified by the following calculation 
(see Proposition 2.2 of Part I for the general proof): 

J(Z(z))  = f ~ • [t, - eref('~i~--l(~ 9) J(Z)) X~] dV 

= J ( z )  - y ( ~ ) y - ~ ( ~ ) J ( z )  - -  0 .  (5 .2 )  

The shift term ~ r e f J - l ( ~ ) J ( z ) •  can therefore be interpreted as defining the 
momenta of an 'equivalent' rigid body with shape defined by q~ E Q and total 
angular momentum J(z). One speaks of the "locked system' at configuration ~v. 

Step 2. Reformulation of the energy-momentum map. In terms of the shifting 
map ~' : P - +  P, the original Hamiltonian H = V + K, where V and K are 
the potential and kinetic energies respectively, can be expressed as 

H(z) = Vs(z)(~) + K(S(z)), (5.3 a) 
where 

V1o)(~) :=  V(~) + �89 J(z) de-~(~) J(z). (5.3b) 

This result can be verified by a direct calculation using definition (5.1) (see 
Proposition 2.2 of Part I). Restricted to the level set J-~(Pe) ~ P, the energy- 
momentum function and the Hamiltonian coincide. From (5.3) we therefore con- 
clude that 

H,e(Z)])-l(,e) = H(z)ls-l(,e) = Vue(q~ ) + K (X(z))]s-,(~e~, (5.4) 

where V~e(99):Q-+R is Smale's amended potential defined by (5.3b)with 

S(z) : t~e. 

Step 3. Change of variables. Finally, we consider the Hamiltonian HJj-,(,e) 

defined by (5.4) as a function of the shifted variables 

= (~9,/)) : =  (f/9, p - -  eref(,$~---l(~lg) •e) X(~lVe) E J-l(O). (5.5) 

This change of variables leads to a Hamiltonian function hge: J -a (0 ) -+R,  

referred to as the reduced Hamiltonian in what follows, and given from (5.4) and 
(5 .5 )  as 

h.e(Z ) : V~,e(q~ ) @ K(Pe) ,  
(5.6) 

Vpe(~9 ) : :  V(~)  -~ �89 t/e " ,-~-i(~9)//e" 

The preceding construction results in a (reduced) Hamiltonian function in which 
the restriction to the level set (e.g., the constraint of constant angular momentum) 
is replaced by the requirement that ~ be in the level set J-~(0). This proves par- 
ticularly convenient in calculations. In particular, in terms of these shifted vari- 
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abies, the relative equilibrium conditions take the following form. From (5.6), 
the first variation of htt e is given by 

e--- ,  

Dhue(Z ) �9 6z = DV&(99) " 699 4- f e;ef~[, �9 6p dr/. (5.7) 

Making use of the well known expression for the derivative of the inverse of a 
tensor, we can express the first term in (5.7) as 

DV~,f99). 699 = DV(99). 699 -- �89 j-1(99) ~e" [D~e~'(99) " (~1~] ~--1(99)//e" (5.8) 

In view of (3.4), (3.9) and (3.10) (recall that u = 0 since a reduction to the center 
of mass is assumed at the outset), it follows from (5.7) and (5.8) that the critical 
points of h,e are characterized by the conditions 

(}Vlze (}V~e e 
(~99 (99e) ~ ~ (99) ~ 0 and /)e = 0, (5.9) 

where ~e:= J-~(99e)/re" Conditions (5.9) are equivalent to conditions (3.13) and 
therefore equivalent to the relative equilibrium conditions (3.14) since, by the 
change of variables (5.5), we have 

Pe = 0 if and only if p~ = ~?ref~eX99e (5.10) 

which is the relative equilibrium condition (3.14)1. In summary, the relative 
equilibrium conditions (5.9) associated with the reduced Hamiltonian h~ are 

identical to those associated with the energy momentum map Hue derived in w 1. 

For the general statement of this result, essentially due to SMALE [1970a, b], see 
Part I, w 2. To simplify our notation in what follows we shall write ~ in place 
of ~e : =  "f-l(99e) Pd" 

w 5.B. The second variation of the reduced Hamiltonian: 
The reduced test for formal stability 

We start our analysis of the second variation by characterizing the space of 
admissible variations at a relative equilibrium ?e E J-l(0), denoted by 5~ ~ TTeP 
in what follows. First, any 6~E50o must lie in ker [J-l(0)]; equivalently, 

D J ( z ) . 6 ~ =  f[d99•215 f 9 9 e •  (5.11) 

since .be = O. By taking the dot product of (5.11) with any g EP~ 3 we obtain 

( 6 p ,  gQ(99e)) = f gQ(99e) " 6 p  d V  = 0 (5.12) 

for all ~ E so(3). Hence, admissible variations ~p are Lz-orthogonaI to infinitesi- 

mal rigid body variations of 99e. Equivalently, 6p must lie in the annihilator 
(relative to the L2-pairing) of the tangent space so(3) �9 99e to the orbit SO(3) �9 99e, 
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denoted in what follows by [so(3) �9 9e]'q Second, admissible variations (69, 61)) 
E 50o must be taken modulo directions along which the second variation of h~, e 
vanishes identically. These directions are precisely superposed infinitesimal rota- 
tions with axis ff E ]83. The preceding two conditions lead to the following con- 
crete realization of the space 5~ 

500 :-- {(.6% 6p)[699 E ~/" and ( tp ,  ~O(99e)> ~ 0 for all .~ E R3}. (5.13 a) 

Equivalently, 500 is given by 

5oo : Y/" �9 [so(3).99e]A. (5.13b) 

Next, we compute the second variation of the reduced Hamiltonian h~e. 
Differentiation of expression (5.7) for the first variation gives 

O2ht~,e(Ze) (6z1, 6z2) = O2Vge(99e ) (691, 6~t)2 ) -~ f e;~ 1 6p l  . 6p2 d r .  (5.14) 

The second variation of the amended potential V,e is readily obtained from (5.8) 

as follows. Using the chain rule, the relative equilibrium conditions, and the fact 
that identr (699) : =  --D[J(9%) ~].699, we obtain 

O2V.e(99e) (691, 6992) = D2V(99e) (691, 6992) -- ~- [D2j(99e) �9 (699~, 8992)] 

+ ident~ (69j) �9 ~b~-l(~f)e) identr (6992) . (5.1 5) 

In view of (3.4)1 aud (3.10)~, the first two terms in (5.1 5) give the second variation 
of Vr which can be recast in the compact form: 

D2V~(99e) (6991, 8992) = D2V(99e) (691, 8992) -- fOref~X6991 " ~ x 6 9 2  dr .  (5.16) 

The second variation D 2 Va~ then takes the fina! form 

D z V~e(99e ) (691, 692) = D 2 V~(ge) (691, 6~2) 

+ ident~ (69~1) �9 ~r ident~ (6992). (5.17) 

In view of (5.17), it is apparent that expression (5.14) does not involve terms 

coupling 6 9 and 6p. Furthermore, the term involving 6p is the second variation 
of the kinetic energy, which is clearly positive-definite. Therefore, it follows that 
definiteness of the reduced Hamiltonian restricted to the constrained subspace 
500 holds if and only if definiteness of Vn~ restricted to ~/F holds (see Part I, w 2 

for a general proof). To summarize: 

D~gl~e(99e)l~x~ > 0 ==> z e = (f/ge, Pe) E P is formally stable. (5.18) 

Thus, as pointed out above, the reduced test (5.18) for formal stability involves 
only configurations and configuration variations. Furthermore, the constraint that 
the total linear and angular momentum be conserved is automatically enforced. 
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w 5.C. Implementation of the reduced stability test: 
Bloek-diagonalization of the amended potential 

The implementation of the reduced test (5.18) for formal stability of a rela- 
tive equilibrium relies crucially on the fact that D z V~e(q~e) block-diagonalizes on 

~K'Rm • ~/'~NT. A concrete proof of this result in the context of elasticity is given 
below, and rests on the following identities. 

Lemma 5.1. Let ~ E so(3) and c3q) C ~/#. Then, the following identities hold: 

i. 

ii. 
D 2 V.~(~e) (~Q, ( ~ )  = ~ X /~ " ident~  (c~9~). 

ident~(r/o(q~e) ) = - -  t 1 • ff~ - -  J ( ~  x rl) .  

(5.19) 

(5.20) 

Proof. To prove (5.19) we make use of the general result (4.50). From expression 
(3.37) for the body force in a relative equilibrium, the definition of Lie derivative, 
and repeated use of Jacobi's identity we obtain 

--(s B) (q)e) = ~ver{-- 11X [~ X (~ Xq)e)] @ ~ X [~ X (r/X~e)] } 

= c,Oref{(~X(iOe) X (~ X ~) -}- ~X [(~X ~)X~Oe] } 

= ~%r{2(ffx r/) X(~X~e)  -- [ ( f ix  r / )x  if] X~e}. (5.21) 

Substitution of this expression into (4.51) and comparison with (4.59) in Lem- 
ma 4.6 yieIds (5.19). 

Making use of (4.59) and repeated use of Jacobi's identity, we obtain 

ident~ (i/0(9~e)) = f [2Pe X (~ Xg~e) -- ~er(~ X (9~e • (I/Xg~)))} dV 

= f { [ - , ~ x ( ~ e x p ~ ) - ~ e x ( p ~ x , ~ ) l  

- ~o, or[(,~ x ~ )  x (~ x ~ O  + ~ x (~e x (,~ x,~o))]} dV 

= f { - - ~ X ( ~ X P e ) +  ~re~.X [ (~X~0•  

+ 0,~r~O~ X [~X (,~ Xq~e)]} dV 

= f { - , j  x (~e Xpe) -- ~O~o,~e X [(~ X ,~) X ~ ] }  dV 

which proves (5.20). [ ]  

(5.22) 

Note that relation (5.20) follows directly from the abstract result in Propo- 
sition 2.3 of Part I [eq. (2.38)] merely by observing that ad* Pe = r/• tte for 
G ~- SO(3). The preceding lemma immediately yields the following block diago- 
nalization result. 
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Proposition 5.2. (Block-diagonalization for elasticity). The second variation of 
V~ at q~r E Q equals zero on ~e'R1c • ~IUr, i.e., 

02 ~ll~e(~ge) (~Q(f~e), (~9) --- O, for (~, ( ~ )  ~ ~P~e • ~"INT" (5.23) 

Proof. That D2Ve(9~) (qo(goe), &P) = 0 follows from (4.59), (5.19) andthefac t  

that )/• ~ E fq~e for ~ E fr a result also in agreement with Theorem 4.5. On 

the other hand, by (5.20) we have 

identr (~9~) �9 J-l(~0~) idente (Oq~) = idente (69~) �9 [J-~(r/• q- r/• ~]. (5.24) 

Next, we observe that J - a ( r / •  ) is in ~• since I~te~ 

~" ~ - - l ( ~ •  = ~ ' --1~" n•  

= Pe " /~X/ge = 0. (5.25) 

Thus, (5.24) vanishes by the characterization of ~//'mr in (4.59), and so (5.23) 
follows. [ ]  

As a result of the preceding block-diagonalization theorem, the reduced test 
(5.18) for formal stability of a relative equilibrium is equivalent to the following 
two uncoupled conditions 

D2gue(~e)[,,:l/'RlG• RiG > 0 and D2VIze(~Oe)J~//'INTXTF.INT > O. (5.26) 

These conditions for formal (orbital) stability agree with the abstract results in 
w 2 and w 3 of Part I, and lead to the following explicit results. 

5.C. 1. Stability conditions associated with ~/'Rz6. Combining expressions (5.17), 
(5.19) and (5.20), and using the equilibrium condition /t e = J ( ~ e ) r  = ;ter 
we obtain 

D 2 VlZe(~ge) (~Q(~ge), lYO((10)) = -- ~elg--l(t~ge) ~ X ltge" ident e (VQ(epe)) 

= ,~X[./e ~ [~ig-l(t~e ) [•XlUe] ~- ~XV] 

= rl X t~e. [ j - l ( ~ )  __ 2~-1 11VX/~. (5.27) 

Since ~X'~e E ~ e  for ~ E  ~ e '  we conclude that (5.27) cannot vanish, provided 
that  dim [span (~)] = 1. Under this condition, it follows that (5.27) is definite 
i f  and only i f  ~ E ]B s is an axis of  either maximum or minimum inertia of  the 
locked inertia tensor J(rfe ). We must choose the maximum value of 2~ since the 
kinetic energy term in the second variation of the reduced Hamiltonian is always 
positive-definite. 

5.C.2. Stability conditions associated with "~INT o The second stability require- 
ment (5.26)2 involves a test for positive-definiteness on the constrained subspace 
~zu r  defined by (4.58). We show below that condition (5.26)2 can be recast in 
terms of an eigenvalue problem formulated in the entire (unrestricted) tangent 
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space of variations Tee Q, which is amenable to a straightforward implementation 
in concrete applications. 

First, we recall that the block-diagonalization theorem implies that ~Rzo 
and ~"INT a r e  in fact orthogonal with respect to the second variation D z Vt~ e at 

% E Q ,  i.e., 

69  E ~/F,Nr if and only if D 2 V~e(9~) (6~, r/O(ge) ) = 0 for all ~ E cgJe. 

(5.28) 

Also recall from Lemma 5. I that D 2 V~e(9%) (6 9, g0(ge)) = 0 for any 6 9 E T~eQ. 
Next, we select a particularly convenient basis for all rigid body variations 

in so(3)"ge, namely, the principal directions of the locked inertia dyadic J .  
Accordingly, let g(a) A = 1, 2, be such that 

~r = 2(a~ g(a), 2 (A) > 0, (5.29) 

where, we also assume that no added symmetries are present to that the eigen- 
values 2 (a) are distinct. Set 

//yl = ~(1) Xf~Oe, 1~)2 = ~(2) X(i0e, ~33 = ~ •  (5.30) 

so {~'1, ~'2, ~Pa} is an orthogonal basis which spans [so(3) "9el" Let B e :T~eQ• 
Z,;oeQ-~.~9~, be the bilinear form induced by D2g~e at 9eEQ, i.e., 

Be(" , ") :-- D2gue(9e) (', "). (5 .31 )  

Note that Be(~f3, ~03) = 0. Our implementation of conditions (5.26)2 is formulated 
in terms of the modified bilinear form B~ : TcpeQ )4, T,:peQ I->- ~ defined as 

2 
"Be(', ") = Be(', ") - -  Z Be(lPA' ") @ Be(~PA" ") 

A=I Be(WA, ~OA) (5.32) 

where Be(~a , ") : Z~e Q --> T~e Q is the linear operator associated with the bilinear 

form, Be and ~o A E [so(3) "ge]. The modified bilinear form/}e is the unique ex- 
tension of the operator B e from ~/rz~ r • ~/'~Nr to T~e :< T% with the following con- 
venient property. 

Lemma 5.3. The bilinear form Be has the canonical form 

where 

0 0 0 O 

so(3) �9 9e ~V'INT 

so(3) �9 9e (5.33) 

Belr iNr •162 ---- Bel~iNr•162 (5.34) 
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Proof. That.[/}e(d~,, ~A) -= 0 for any 

since 

he(6 , = Be(6 , - -  Be(6W, 
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6~ 6 T~eQ follows directly from (5.32) 

~/'A) = 0; for all 6~ E T~Q. (5.35) 

Consequently, dim [ker/~e] ~ 3, and the diagonal structure in (5.33) holds. Fur- 
thermore, again from (5.32) along with the orthogonality condition (5.28), we 
have 

Be(6 , U') = Be(6 , U') - -  

= Be(6 , U') 

Be(U'A, Be(U'A, U') 

A=~'al Be(WA, WA) 

for all ~p, 6~  6 "~PINT, (5.36) 

so that (5.33) holds. [ ]  

We show below that the preceding result reduces the test for orbital stability 
on the subspace ~INT to the solution of a standard eigenvalue problem. In par- 
ticular, if a standard Galerkin finite-element projection is introduced; see, e.g., 
C*ARLET [1978], the test for stability merely reduces to the computation of the 
lower part of the spectrum of a symmetric matrix. From a numerical analysis 
standpoint, this task is straightforward and can be easily accomplished by using 
well-known algorithms for the standard symmetric eigenvalue problem; see, e.g., 
GOLUB & VAN LOAN [1989] for a recent overview. 

The unrestricted eigenvalue problem. The stability test o n  "]/'INT M ~/~INT reduces 
to the following unconstrained test: Find the four lowest eigenpairs (2, q0 E 
• T~Q such that 

Lemma 5.3 ensures that {~,~, ~2, ~3} are eigenvectors o f / ~  associated with the 
zero eigenvalue 2 = 0. The stability conditions (5.26)2 then reduces to testing 
whether the next eigenvalue of problem (5.37) is positive. If the condition 

L ---- min Be(~t~9, I~1~9) > O, (5.38) 
<~,~a>L~(~=O <6~, 6~)L~(~ ~ 

holds, then we conclude formal stability on "~INTX'fPlNT . 

w 5.D. Polyconvexity and conditional stability 

In this section we discuss some of the severe technical difficulties involved in 
a rigorous rather than merely formal stability analysis of relative requilibria. 

Definition 5.4. A relative equilibrium ze E P & conditionally stable relative to 
a G,e-invariant metric d i f  for all initial data z E P near to ze (in the metric d), the 

solution of the initial vahte problem with initial condition z remains near to the G,e- 

orbit of  z~ for as long as it is defined in a given function space. 
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We assume that a function space, typically a Sobolev space, has been chosen 
for the existence and uniqueness theory. Furthermore, we assume that in this 
function space conservation of energy has been established (or at least that the 
energy is a non-increasing function). For  example, one possible choice of function 
spaces is that in HUGHES, KATO & MAWSDE~ [1977]. It should be noted, however, 
that the metric d usually involves a topology that is weaker than the topology 
for which current existence and uniqueness theory is known. This is, however, 
the best one can hope for, given the state of the art in existence theory. One 
would expect that with the addition of dissipation one can say more since, with 
our definition of formal stability, such an addition will move the spectrum of the 
linearized equations into the left half-plane and thus be helpful to the existence 
theory. For  example, in the case of rods, one should be able to use this to prove 
global existence of smooth solutions near a stable solution. 

There is a method for establishing conditional stability based on Theorem 4.9 
of BALL & MARSDEN [1984]. This result is given for equilibrium (rather than 
relative equilibrium) solutions of nonlinear elasticity. It states that if the equilibrium 
satisfies certain technical conditions [(H1)-(H7) of that paper with p > 3], 
which include, for example, constitutive relations discussed in BALL [1977] and 
CIAV, LET& GEYMONAT [1982], and if the equilibrium is a strict local minimum of 
the stored energy function in a metric d induced by the Wl'l-topology and 
finiteness of the energy, (see BALL & MARSDEN [1984], p. 270) then the equilibrium 
lies in a potential well with respect to the metric d. In particular, if these conditions 
hold, then one has conditional stability. The metric d can be replaced by a metric 

which is related to the Wl'P-norm (loc. cit. p. 274). 
One of the important  assumptions that examples in BALL & MARSDEN [1984] 

show is not easy to omit, is the assumption that the equilibrium is a strict local 
minimizer. Certainly formal stability is necessary for this, but the examples show 
that it is not sufficient. This is an unfortunate obstacle to a satisfactory theory. 
The example constructed in BALL & MARSDEN [1984] is actually a homogeneous 
equilibrium (in fact, the identity in a natural state) for which the second variation 
of the energy is positive-definite in the W 1'l-topology, yet it is not a local minimum 
in the Wl'r-topology intersected with the C~ for any r < 1 + (3/p). 
This is not  a contradiction because the energy function is not differentiable on 
these spaces. One cannot, on the other hand, use a stronger topology in which 
calculus does guarantee a local minimum since it is known that there is no 
potential well in these cases. Of course at a global minimum of the energy, the 
minimum condition is automatically satisfied, and so one has conditional sta- 
bility. In summary, the quoted result of BALL 8r MARSDEN may be useful for 
establishing conditional stability, but one is left with a fairly nontrivial hypo- 
thesis to check (that the equilibrium is a local minimizer). The examples show 
that it is not obvious how to make use of the positivity of the second varia- 
tion to establish this condition. 

There are several ways out of this apparent dilemma which warrant further 
investigation in the future. First, one could take advantage of dissipation; the 
formal stability results will then guarantee that the spectrum moves into the left 
half-plane, and one can attempt to use this fact to get an improved asymptotic 
stability result. Second, one can truncate the system by a finite-element model, 
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for example, and argue that this is stable and that the high-frequency modes cut 
out by this process are not of interest anyway. Third, one can employ special 
arguments for particular materials, such as the convexity arguments used in 
fluid mechanics (see HOLM et al. [1985]) to show by methods other than calculus 
methods that one has a local minimizer. Then again one has conditional stability. 
A successful application of this last approach to the stability of planar rotating 
liquid drops is contained in the work of LEWIS [1989]. For elastic rods with stored 
energy function of the Saint Venant-Kirchhoff type, see SIMO, POSBE~G~ & 
MARSDEN [1990]. 

In our context, all of the above arguments must, of course, be modified to 
take into account the fact that we are dealing with a relative equilibrium and 
not a true equilibrium. Notice that the modification required in the transition 
from the stored energy function to the amended potential involves terms that are 
algebraic in the deformation, and so do not affect the technical potential-well 
arguments. Another point that requires further attention is the sense in which 
any of the relative equilibria of LEwis & SIMO [1990] are also equilibria of the 
full three-dimensional elasticity problem. By contrast, the situation is far more 
clear in classical hydrodynamics; see, e.g., CrImqDRASEgZnAR [1977]. 

w 6. Block-diagonalization and symplectic structure 

The decomposition ~K" = "[/'INT (~ ~"RIG at the configuration level defined 
above induces in a natural manner decompositions at the phase-space level rela- 
tive to which both the Hamiltonian and the reduced Hamiltonian block-diagona- 
lize. The simplest proof of these results uses the following two-step construction: 

i. First, on the level set J-l(0) of zero momentum, define the split 500 = ~~ 
�9 5:0Ri~ of the tangent space 5:o given by (5.13), so as to achieve a block-dia- 
gonal structure of the reduced Hamiltonian h,e. As shown below, the space 5%RIG 

consists of rigid configuration variations (in ~Rzc) with zero momentum. This 
choice defines the entire construction. 

ii. Second, map forward the result in i to the tangent to the level set J-l(pe) 
using the tangent to the (inverse) shifting map restricted to level set. This restric- 
tion, denoted by ~V~el:J--~(lae)-+ J-a(O), is defined from (5.1) as 

X:Te'(~ ,/~) = (%/5 + P~e); where P"e :=  er~ •  (6.1) 

We show below that this construction does in fact yields a split of the tangent 
to the level set J--1(/~e) relative to which the second variation of the original 
Hamiltonian block-diagonalizes. 

w 6.A. Block-diagonalization on the zero-momentum level set 

We define the space 5:0Rla Q 5% of rigid variations simply by appending 
zero-momentum variations to the space ~/'RIG of rigid configuration variations. 
With this definition and view of the characterization (5.13) of the space 5Vo, the 
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only possible choice is to define the space 5e0iNr Q 50o merely by appending all 

possible momentum variations 6p C [so(3) �9 99~]A to the space ~INr. Accordingly, 
we set 

500RIG :~  "~RIG (~ {0}, and ,~Z~OINT : =  "U1Nr ~ [so(3)" 99,]A. (6.2) 

It  follows from (6.2)1 that dim 50ORI~ = dim ~ m c  = 2. Moreover, again from 
(5.13) and the fact that ~ - -  "[/'RIG @ "~INT we have 

50o = 5e0Rio �9 5%INr, (6.3) 

as required. Finally, inspection of expression (5.14) for the second variation of 
the reduced Hamiltonian along with (5.13) and definition (6.2) of the split, yields 
the following block-diagonal structure 

ff/"RIG ~INT [so(3) " 99e] A 

2 
D VIteI~K'RIG• G 0 0 I 

l 2 D2hu~lS~o• = 0 D V,e]~INTXC/-IN T 0 . (6.4) 

o o (q~of., -) 

Each column of the matrix of (6.4) lies in the space shown above it. Observe 
that the definition of 500Rla in (6.2)1 determines the entire construction leading 
to the bloek diagonalization result (6.4). The mechanical motivation for (6.2)1 
is clear: If  50oeio is to model rigid-body variations about the equilibrium 

~ = (99e, 0), then 6p = 0 is the only possible rigid body momentum variation 
consistent with the constraint of zero total angular momentum. 

w 6.B. Bloek-diagonalization on the ttcmomentum level set 

Let 5 ~ Q TzeJ-l(tte) be the tangent space of admissible configuration-mo- 

mentum variations associated with the relative equilibrium point Ze = (9% Pe)" 
Variations in 50 satisfy the linearized constant angular momentum condition modu- 
lo infinitesimal rotations about the axis/~e (which must be parallel to g). Formally, 
we thus have: 

50 = ker [DJ(z~)]/[so(3)~ e "99e]. (6.5) 

In the developments that follow, however, it is more convenient to characterize 5 ~ 
simply as the image of 50o under the linearization of the inverse of the restricted 
shifting map X -1 : J - a ( 0 ) ~  J--l(t~e) defined in (6.1). It is clear from (6.1) that 

/ t  e 

this map is one-to-one and onto. The split 50 = 50tr (~ 501NT iS then defined 
merely as the image of the split of 50o according to the diagram: 

500 = 500RIG 0 500RIG ~" 50 = 50RIG ~ 50RIG" (6.6) 
e....v 

If  we set (099, Op) = D . ~ e l ( Z e )  " ( 0 9 9 ,  Op), a direct computation from (6.1) that 
uses the relative equilibrium conditions (3.14)1 and the relation ident~ (099)---- 



96 J.C.  Siuo, T. A. POSBERGH 8r J. E. MARSDEN 

--D[J(q~e) " 69q ~ (see (4.63)) yields the result 

6p = Op + ~ref~X 69~ + OrerJeX[ident~ (c~99)]. (6.7) 

This expression leads to an explicit characterization of the variations in 5aRm, 
denoted by Az = (A% Ap), which is useful in computations. In fact, since 
variations in 5a0Ri~ are of the form r1• with q �9 ~ ----- 0, from (6.6), (6.7) and 
(5.20) along with Jacobi's identity, we conclude that 

Aq~ = J/x9%, and zip = ~ref,.,c~-l[llle x q]  @ rlXPe. (6.8) 

The block-diagonalization result (6.4) for the reduced Hamiltonian h~e, along 

with definition (6.6) of the decomposition 5 a = 5"Rx~ �9 ~O~INT, determine an 
analogous block-diagonalization result for the restriction Hl.r-~(Ue) of the original 

Hamiltonian to the fie-momentum level set. The proof  of this result rests on the 
identity 

H(Z,~'(~)) = h#e(~), V z E J-'(O), (6.9) 

which follows at once from (5.3) and (6.1). Differentiation of (6.9), and use of 

the equilibrium condition Dh~(}e) " Oz = 0 along with the chain rule yields 

O 2 O ( ~ ; e l ( Z e )  ) " (O2l ;e l  �9 (~z, O ~ ; e l  �9 z i z )  = hlze(Ze) " ((}Z, z iZ ) ,  (6.10) 

for all c3z, ziz C 5Co. In particular, if we choose 6z C 5%iNr and Az E 5%Rm, it 
follows from (6.6) that 

6z := DZL' .6z  and ZIz := DSL  .ziz  (6.11) 

Since D2h, e(~e) " (Oz, Az) = 0, it follows from (6.10) that DZH(z~) �9 (6z, ziz) = O. 
This result can also be checked by a direct computation using formula (6.8), as 
in SIMO, POSBERGrI & MARSDZN [1990]. 

w 6.C. BIock-diagonalization and the sympIectic two-form 

We conclude this section with a few remarks on the structure taken by the 
symplectic two-form when the splitting 5 e = 5eRx c �9 5emr is introduced. Although 
this structure is not  relevant to the stability analysis of relative equilibria, it does 
play a crucial role in the formulation of the linearized dynamics and in the study 
of the possible bifurcations at the relative equilibrium. 

Let D : TP • TP --> R be the canonical sympIectic two-form defined by (2.4). 
If  the first entry is restricted to 5aRm, then f2(ze)]som~• becomes 

f2(Ze) (Az, 6z) = --  feref(gXg~e) " 69~ dV = : --{g0(9%), 69~)g (6.12) 

for any 6z = (6% 61)) in 5 a and any Az in 5aRm as given by (6.8), where we 
have set g :---- J(/~e X r/). This result can be checked by a direct calculation as 
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follows. Substitute (6.8) into (2.4), and identify the explicit expression for DJ(ze) 
to obtain 

-Q(ze) (az, 699) = f [(,~X99~) " 6p  -- (erefgX996 --~- r/XPe) " 699] d V  
N' 

= r~. f [99~ • 61, + 699 • dV - -  g. f e~erWe • 6p dV 

= ,~. [DJ(z~). 6z] -- g .  f erof99~ • 699 d r .  (6.13) 

Equation (6.12) then follows merely by noting that 6z  restricted to 5 ~ satisfies 
the condition DJ(ze) " 6z = O. It should be noted that the symplectic two-form 
restricted to 5a = 5aR1C e 5aINr does not block-diagonalize since the coupling 
term in (6.12) does not generally vanish. Accordingly, we have the following 
structure: 

5aRIG 5alNT 
[ rigid ] [rigid-internal ] ] 
[component I [ coupling J /  

.Q(ze) (AZ ,  6 Z )  : __ [rigid.internall [ internal 1 1 "  (6.14) 
[ coupling ] [component] J 

For elasticity this is a particular instance of a general result pointed out in 
Remark2.8 of Part I. The preceding observations suggest at least two possible 
options to define the split 5a -= 5aRrG 0 "~INT: 

i. Define 5alNr according to the diagram in (6.6). Then, the second variation 
becomes block-diagonal restricted to 5axNr• but, in view of (6.14), the 
symplectic form is not block-diagonal. 

ii. Define ~e'iN r by the orthogonality condition 

(~io(996), 699)g = O, for 699 E ~ i u r  and //E fr (6.15) 

Then, the second variation restricted to 5atNr• 5aeIa is not block-diagonal, 
but the symplectic form now block-diagonalizes on 5atur• 5aRm. 

Clearly, option i above is the most convenient one from the point of view of a 
stability analysis of relative equilibria. 

w 7. Summary and concluding remarks 

The Relative Equilibrium Theorem characterizes relative equilibria as ex- 
tremals of the energy subject to the constraint of constant angular momentum. 
In w 3 this constrained variational principle is transformed into an unconstrained 
variational principle, which involves only the configurations, by using Smale's 
effective potential. The associated momenta play no role, and can be computed 
explicitly from the relative equilibrium configurations. For elasticity, we have 
shown that the effective potential is merely the total stored energy in the body 
augmented by the potential of the centrifugal loading. Formally, the associated 
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Euler-Lagrange equations lead to a Neumann boundary value problem in elasto- 
statics with configuration-dependent body force defined by the centrifugal potential, 
as discussed in detail in w 4. Although a fairly complete qualitative characteriza- 
tion of  the relative equilibria is possible (see Theorem 3.1), explicit solutions in the 
general case may only be obtainable numerically. 

Our main contribution lies in the explicit characterization of  the formal sta- 
bility conditions for relative equilibria in nonlinear elasticity, along with a frame- 
work for future development of bifurcation analysis. First, the constrained test 
for formal stability dictated by the energy-momentum map is reduced to an 
essentially unconstrained test formulated in terms of  the amended potential V,e, 

which involves only configuration variations. Second, the implementation of  
the final stability test is remarkably simplified by introducing the decomposition 
#/" = ~Y'RtO @ q :mr  relative to which the second variation of the reduced 
Hamiltonian becomes block-diagonal, i.e., 

I D2 V,e I:RIG • :RIG 

D2 nuelSQ • = 0 

0 ~ ~ 1 
D2VI%I~/'INT• 0 . 

0 (eroe ", "} 

configuration variations momentum variations 

The conditions for formal stability can be read off directly from this expression. 
In fact, as shown in w 5.C.1, the conditions associated with the r are 
explicit and generalize the classical rigid body conditions. On the other hand, as 
shown in w 5.C.2, the stability conditions associated with the #:rut-block reduce 
to the computation of  the lowest eigenvalue of a standard self-adjoint eigenvalue 
problem. This computation can be easily implemented numerically. 

In addition to these stability results, for purposes of bifurcation theory, it 
is remarkable that the same choice of coordinates leading to our block-diagonal- 
ization result also brings the symplectic form, and hence the linearized equations 
of  motion, into normal form. See LEWIS, MARSDEN, RAT1U 8r SIMO [1990] for 
more information on this point. 
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