
Journal o/ Automated Reasoning 7: 489-510, 1991. 489
(" 1991 Kluwer Academic Pubhshers Printed m the Netherlands

T A B L E A U X : A General Theorem Prover for

Modal Logics 1

L A U R E N T C A T A C H
LITP - Parts 6 Umversio', IBM Paris Sczenttfic Center, France

(Received: 27 June 1988: accepted: 8 April 1991)

Abstract. We present a general theorem proving system for propositional modal logics, called
TABLEAUX. The main feature of the system is its generality, since it provides an unified environment
for various kinds of modal operators and for a wide class of modal logics, including usual temporal,
eplstemic or dynamic logics. We survey the modal languages covered by TABLEAUX, which range from
the basic one L(D, O) through a complex multimodal language including several families of operators
with their transitive-closure and converse. The decision procedure we use is basically a semantic
tableaux method, but with shght modifications compared to the tra&tlonal one. We emphasize the
advantages of such semantical proof methods for modal logics, since we believe that the models construc-
tion they provide represents perhaps the most attractwe feature of these logics for possible apphcations m
computer science and AI. The system has been implemented in Prolog, and appears to be of reasonable
efficiency for most current examples. Experimental results are given in the paper, with two lists of test
examples

Key words. Modal (temporal, dynamic, eplstemlc) logics, theorem proving, decision procedures, tableaux
method, experimental results.

I. Introduction

TABLEAUX is an automated theorem proving system for a wide class of modal
logics, based on an adapted version of the traditional semantic tableaux method
for these logics [20, 21, 30, 49]. This method also works for many extensions of
traditional modal logic, such as temporal logics [3, 4, 15, 58], dynamic logics [29, 43],
or epistemic logics [27, 31], which have become of some importance in computer
science and AI.

In fact, the tableaux method is frequently used within the theoretical presentation
of a modal system; this is due to some of its inherent advantages:

�9 it is a proof method closely related to the semantics of the modal operators,
�9 it provides a completeness theorem and a decision procedure, and may also be used

to prove complexity results about the logic (e.g. the Fischer-Ladner filtrations
method for dynamic logic [22]),

�9 the technique has a general scheme, so it can be adapted from one logical system
to another,

�9 it works for proving both the validi O, and the satisfiabili O' of formulas,
�9 it is constructive, i.e. it explicitly builds a model (resp. a counter-model) when a

formula is found to be satisfiable (resp. non-valid).

490 LAURENT CATACH

The basic tableaux method is simple, but faces important problems of complexity;
this is certainly the reason why few real implementations have been built [25, 42, 44,
51, 53]. Other methods have been explored to achieve automated deduction for these
logics (see Section 5), but complexity is always crucial, especially for modal languages
including transitive-closure operators.

Our motivations for developing TABLEAUX and the purposes of such a system

are the following:

�9 To build a general theorem prover for many modal logics, and to use it as a tool
for studying these logics. Of course, such a system is interesting for the logician, but
we believe that it can also be very helpful for new developments in computer science
and especially for experimenting with ideas, exploring possible applications and

creating prototypes.
�9 To be able, in that theorem prover, to choose a modal system in the most declarative

way, i.e. by defining the language of modal operators and by giving semantic or
axiomatic characterizations of the logic.

�9 Most automated deduction methods recently proposed for modal logics are syn-
tactic, in the sense that they do not rely on the explicit construction of models. On
the contrary, we believe that it is precisely this feature of modal logics which is
perhaps the most attractive, if modal logics are to be of any practical interest in
computer science and AI. Thus, one of our motivations was to use a semantic
deduction method.

�9 As shown by TABLEAUX, starting with a basic modal language and the tableaux
method, one can obtain many of the modal systems developed in the literature,
from the aspect of both the expressiveness (operators of temporal, epistemic,
dynamic, etc. logics) and of the behavior (simulation [40], model checking [10],
epistemic puzzles, etc.); thus, an important feature of TABLEAUX is its provision
of a unified version of various existing modal systems and applications.

�9 To show that it is possible to implement the tableaux method with good efficiency
for current examples. Inasmuch as complexity is indeed a handicap in the general
case, it also depends very much on the systems and on the formulas considered.

�9 Starting from the 'classical' tableaux method, to discover where problems arise in
an implementation, and to see whether new methods could be defined (with better
efficiency). In fact, we believe that such prototypes, written in a powerful language
such as Prolog, constitute necessary preliminaries before the realization of more
efficient theorem provers, based for example on low-level languages.

�9 One main motivation for developing TABLEAUX was also to study expressive
features of modal languages, and especially those of general multimodal systems, as
studied in [7, 8]. This topic is briefly presented in Section 2.7.

The modal operators and systems covered by TABLEAUX are described in
Section 2. This section does not contain new results about expressiveness or axio-
matisations (though it might suggest interesting extensions, such as the multimodal
languages we consider in Section 2.7), but it is necessary for us to give a complete and

A GENERAL THEOREM PROVER FOR MODAL LOGICS 491

unified presentation of the language covered by our system. As the reader will see,

TABLEAUX provides a general environment for using many of the modal, temporal,
dynamic, epistemic, etc. systems developed in the literature, and also for studying new

ones .

The proof method used in TABLEAUX, which is described in Section 3, actually
combines some features of the various proof methods developed for modal logics.
Basically, it is a tableaux method since it is based on an explicit construction o f a

counter-model: the tableaux method we use is inspired from both the classical one
[20, 30, 52] and the pref ixed tableaux systems described in [21]; but the formalism of
our tableaux rules is close to the system of (resolution) production rules developed in
[1]. Also, resolution [18] is used as much as possible (i.e. as a heuristic), in order to
reduce the size of the model and to shorten the proofs. Finally, the output result given
by TABLEAUX (i.e. the counter-model) can be interpreted as the automaton associated
with the input formula [16, 55]. In fact, we believe that such an approach, combining
several distinct proof methods, could lead to new, interesting (and efficient) decision
procedures.

The system TABLEAUX is implemented in VM/Prolog [47], and runs on IBM-370

machines. It has been successfully tested with many examples, taken from various
developments dealing with modal logics. Sample experimental results are given in
Section 4, and a complete list of tests for 31 formulas in 16 distinct modal systems is
given at the end of the paper. Our present version, though fast on the example we
tried, could be subsequently improved, especially by restricting the program to a
particular logical system.

We do not recall complexity results for the various modal system we consider and
we refer to, for example, References [15, 31, 36, 50 and 29] for more details on this
topic.

2. Modal Systems

We now describe the modal operators and the calculi that TABLEAUX can handle.

Note that all modal operators described in this section can be used with arbitrary
names within TABLEAUX. Only propositional languages are considered, but with
graded levels of expressiveness, depending on the modal operators which are used. All
these operators are traditional in modal, temporal and epistemic logics, so only a brief
survey will be given in this section; however, it provides a unified vision of
the developments in the domain and might be useful for the reader who is unfamiliar
with modal logic. We refer the reader to the general bibliography for axiomatic
characteristizations.

In the following, ~ denotes a set of propositions variables p, q, r . . . and
/x, v , ~ , 7 , = denote the boolean connectives. Arbitrary formulas will be
noted ~, / ~ . . . and the symbols -7 and 3_ denote the constants ~true" and "false'.
Two modal operators O and O' are dual if the axiom scheme ~-(0--q~ = ~0 '~)
holds.

492 LAURENT CATACH

2.1. BASIC MODAL LOGIC

Modal logic extends the language of classical logic by introducing two basic modal
operators, denoted [] ('necessarily') and �9 ('possibly'), which are unary. The smaller
system of propositional modal logic is K, the axiomatisation of which is:

�9 axioms and inference rules for the propositional calculus, including Modus Ponens,
�9 axiom K. [] (~ ~ /~) ~ (�9 ~ D/~)
�9 inference rule RN. if F ~ then ~- Dc~ (rule of Necessitation)

Models and semantics for K can be described in terms of possible worlds structures
[5, 11, 30]. A Kripke model for modal logic is a triple M = (W, R, V), where W is
a non-empty set (of 'possible worlds'), R is a binary relation over W (called the
'accessibility relation') and V: W • * ~ {0, 1} is an evaluation function which gives
in each world w ~ W the truth values V(w, p) of the propositional variables p e r A
(Kripke)frame is simply a pair <IV, R> as above. We write (M, w) r cz for '~ is true
at world w in the model M' , and this notion of truth is defined inductively on the
complexity of ~ (-q and v are taken as primitives):

�9 if p G * , (M, w) ~p iff V(w,p) = 1
�9 (M,w) ~ - l ~ iff (M,w) yct
�9 (M,w) ~ (~ v /~) iff (M,w) ~ c~ or (M,w) ~/~
�9 (M , w) r Dc~ iff (M , w ') ~ for a l l w ' s u c h t h a t R (w , w ')
�9 (M , w) r O~ iff (M , w ') ~ for s o m e w ' s u c h t h a t R (w , w ')

This definition of ~ gives the semantic interpretation of modal sentences built with

operators [] and O. A formula ~ is said to be satisfiable in a model M if there exists
a world w such that (M, w) ~ ~, and unsatisfiable otherwise. Also, ~ is said to be valid
with respect to a class of models C if -7 ~ is unsatisfiable in every model of C, which
means that (M, w) ~ a for every model M = < W, R, V) ~ C and for every world
w ~ W .

A logical system L is said to be determined by a class of models C if, for every
formula ~, '~ is a theorem of L" if and only if '7 is valid in C'. The system K is
determined by the class of all models [11, 30].

The system K can easily be extended in the following way: if M = (W, R, V> is
a Kripke model and R t denotes the converse relation of R (i.e.
R ~(w, w') = R(w', w)), two new dual operators D -j and O J can be introduced
with the following semantics:

�9 (M , w) ~ [] ~ iff (M , w ') ~ ct for a l l w ' s u c h t h a t R - ~ (w , w ')
�9 (M , w) r O - ~ iff (M,w ') ~ for some w' such that R -~(w,w')

The system K, denotes the extension of K obtained by adding the 'converse'
operators []-1 and O - : together with the following axioms:

A G E N E R A L T H E O R E M P R O V E R F O R M O D A L L O G I C S 4 9 3

The system K, is known as the basic system of temporal logic [49], where the modal
operators [3, ~ , [] ~, ~ ~ are usually denoted G, F, H a n d P, respectively. The system

K~ is (like K) determined by the class of all models.
Many K (or K,) systems can be obtained by adding new axioms. In the favourable

cases, the resulting systems are determined by classes of Kripke models where the
accessibility relation R possesses some particular properties. In this sense, some
axioms of modal logic are said to correspond to a property of R in the Kripke
semantics.

Some well-known correspondences of this type are given in the chart below
(notation is from [1 I]:

ax iom scheme proper ty of R

1 D. O p ~ ~ p
2 T. n p = p
3 B p ~ rT~p

4 4 n p ~ Dr-lp

5 5. ~ p ~ n ~ p
6 U. rT inp ~ p)

7 F ~ p ~ ~ p

8 H. (O p A Qq) = ~ (p A q)

v ~ (~ p A q)

v G (p A Oq)

9 W. D (~ p ~ p) ~ EIp

senahty: (Vw)(3w'), R0*, ~*')

reflexivity: (Vw), R(w, w)

symmetry. ROt' I , w:) ~. R(w,., w~)

t ransi t ivi ty. R0t~, w z) & R(w: , w~) ~ R(w I , w~)

euchdeani ty ' R(w I , wz) & R(w I , w~) :=> R(w 2, ~,~)

quasi-reflexivity: R(w I, w:) ~ R(w,, ~t:)

quasi - funct ional i ty . R(w I , w2) & R(w I , w~)

(w 2 - w~)
forwards- l inear l ty . R(w~, w~_) & R(wt , w~)

R(w:, w~) or (w2 = ~*~) or R(w~, w 2)

no-infini te-chains, there Js no infimte sequence

(wl, % " " " w,, " ") such that R (w ~

all n ~> 0

Other properties can be defined in terms of the ones given above, such as R being
a pre-order relation ((2) and (4)), a similarity relation ((2) and (3)), an equivalence
relation ((2), (3) and (4)), a functional relation ((1) and (7)), a backwards-linear
relation (R ~ is forwards-linear), a linear relation (both backwards and forwards
linear), a backwards-serial (or infinite towards the past) relation (R ~ is serial). Note
that the class of frames (W, R) for which R as functional determines the extension
of K with characteristic axiom rT~ - ~ . In this case, [] (or ~) is usually noted as
o, the 'next' operator, and we get a system with another type oflinearity (see also 2.2).

Combining one or more properties of R, one can build many systems of modal
logics. For example, properties (1)-(5) above generate fifteen distinct normal K-systems,
among which the traditional systems T (axiom T), B (axioms T, B), $4 (axioms T, 4),
$5 (axioms T, B, 4), and their deontic versions KD, KDB, KD4 and KD5 (see [11]).
Other traditional K or Kt systems are indicated below:

�9 $4.3 = $4 + {H~
�9 Tr = K + { r i p - ~ p]

�9 K, = K, + {412

�9 K~ = Kt + [4, backwards-linearity} = the system of 'branching time'
�9 K~ = Kh + IHI = the system of ' l inear time' (Cochiarella system)

494 LAURENT CATACH

�9 K/~+ = K~ + {D} = the system of ' l inear time' with infinite future

�9 K~ = K? -+ = K~ + {seriality, infinite towards the past} = the system of ' l inear

time' with infinite future and past (D. Scott)
�9 G = K4 + {no-infinite-chains} = the G6del system G (see [21])

The above systems are determined by the classes of models in which the accessibility
relation R has the corresponding properties. For example, Tis determined by the class

of reflexive models, $5 is determined by the class of models where R is an equivalence

relation, etc. We refer to [5, 11, 21, 30 and 49] for more details about the construction

and determination of modal systems.
In T A B L E A U X any combination of the semantic properties of the accessibility

relation R described above is allowed; as mentioned before, this yields many possible

K or K, systems.

2.2. TEMPORAL LOGICS

Basic systems, such as K,, Kb, etc., have already been mentioned above.

Branching Time and Path Operators

I f M = (IV, R, V) is a model, an R-path is a sequence of worlds

c = (w0, w~ w,) which is a maximal linearly R-ordered subset of IV, i.e.

R(w,, w,+~) for all n >~ 0 and either c is infinite or its last element has no R-successor.
I f w ~ IV, a w/R-path is an R-path starting at w, i.e. with w0 = w.

TABLEAUX includes CTL (Computat ion Tree Logic), as defined in [9]. CTL is

obtained from basic modal logic by adding the path operators VD, 315, 3 0 , VO 3 and

'until ' operators VU and 3U, whose semantics are defined in Kripke models in terms

of quantification over R-paths as follows:

�9 if c = (w0, w l , . . . , w ) is a path, (M , c) ~ iff (M , w ,) ~ ~ for all

n > ~ 0
�9 (M , w) ~ (V O) ~ iff (M , c) ~ for all w/R-pa thsc

�9 (M, w) r (3D)~ iff there exists a w/R-path c such that (M, c) ~

�9 (M , w) ~ ~(VU)/3 iff for all w/R-pathsc = (w0, wl) t he r eex i s t sn >1 0

such that (M, w,) ~/3 and (M, w,) ~ �9 for all i < n
�9 (M, w) ~ ~ (3U)/3 iff there exists a w/R-path c = (w0, wl) as above

and where (3 � 9 are defined as the dual operators of (VD)(3n), respectively. Note
that as, in a world w, [] and ~ talk about the worlds which are accessible from w, the

above operators talk about the paths of worlds starting at w. For example, (V�9 is
true at w if, for every path c starting at w, p is true at least one world on c (p is

inevitable).
The weaker system UB of [~,] is obtained by omitting the 'until ' operators. Also, in

the language with V U and 3 U only, V[] and 3 [] (and therefore their dual 3 ~ and V �9

can actually be defined by (VD)~ --D~r (T (VU)ct) and (3�9 ~Def (-F(3U)o().

A GENERAL THEOREM PROVER FOR MODAL LOGICS 495

Path operators are now traditional in the temporal logic of branching time, and

many systems use them [4, 9, 10, 15, 17]. We also refer to the bibliography for a

description of complete axiomatizations.
Variants of CTL or UB can easily be obtained by imposing semantic properties on

the basic accessibility relation R. Generally, it is assumed that R is serial (so paths are
always infinte): in the case where R ~ is quasi-functional we obtain a branching time
logic dealing with trees [6, 26]. Also, many of these variants can be obtained by
defining new operators in terms of existing ones (see also 2.4). We omit the details
here.

A more general class of operators, which can arbitrarily combine quantification
over worlds, has been proposed in [17]. We do not present the corresponding system
CTL* here, since this 'full branching time logic' does not have a tableaux method
decision procedure.

Linear Time

In the case where R is taken to be functional in CTL, quantification over paths
collapses and so do path operators. Usual notations are then O for [] = 0 , [] for
V12 = 3rq, O for VO = 3 0 and U for VU = 3U. The resulting system, based on
L({O, [], 0 , U}) is linear-time temporal logic PTL [57, 58]. 4 As for CTL, there are
different kinds of linear time logics, depending on the properties of R. They are
covered by TABLEAUX.

In [57], PTL is extended to express any property dealing with linear paths
(using right-linear grammars) and a wide class of temporal operators is introduced.
Our present version of TABLEAUX does not cover this system ETL, but this
could be easily done, since ETL has a tableaux method decision procedure; how-
ever, we think the interest in such operators depends very much on the intended

applications.

Past Path Operators

Path operators corresponding to R ~ can be introduced, written Vrq J, 3rq ~, VO ~,

3 0 ~ (or equivalently VH, 3H, VP, 3P). U i is written S (for 'since'), so we have the

operators VS and 3S. The particular case of linear time can also be considered, with
operators o, rq 0 , U, o ~, [] ~, O 1 and S. In this case, the modal systems induced
by [] and O are closely related to the systems Kh or Kj (or their extensions) mentioned
in Section 2.1.

Modal Logic of Time Intervals

A modal logic of time intervals has been proposed in [32]. Basically, it is a multimodal
system (see 2.7 below), with six primitive modal operators (B) , (E) , (A~ and their

496 LAURENT CATACH

converses (B ') , (E ') and (A ') , from which many other operators can be defined.
Worlds are interpreted as intervals, so for example (B) e is true at an interval if cr is
true at some subinterval with the same beginning. This logic is also studied in [54],
where a complete axiomatization is given; but no tableaux decision procedure seems
to exist as yet. However, TABLEAUX provides a nice framework for studying these
logics (see 2.7).

2.3. EPISTEMIC LOGICS

Epistemic logics use families of modal operators of the same type, denoted as K~,
K2 , K,, where K,~ is intended to mean ~agent i knows that/believes that e holds'.
TABLEAUX handles epistemic systems K~m~, Tim, $4~,,~, $5~ I or KD45~,,~ proposed
in [31], which are just multi-dimensional versions of the normal K-systems K, T, $4,
$5 and KD45.

As described in [31], interesting extensions are obtained by introducing common
knowledge (or common belief) operators, denoted by E and C. Note that C is very
similar to yrq (see 2.2), since it is related to E exactly as u is related to [] (i.e. by a

transitive-closure correspondence), Also, these operators can be defined for arbitrary
subgroups of agents, as in [19]. TABLEAUX also covers epistemic systems incor-
porating both knowledge and belief operators [37], as well as their respective common
operators for groups or subgroups of agents (see 2.7 below).

2.4. DEFINITIONS

In TABLEAUX, any operator definition is available, and introducing new operators
(not necessarily unary) in terms of the existing ones is often very useful. For exam-

ple, in Kt, we can define a n e w operator A by Ae --D~f(D ~e a e a De), which
reads 'e is, has always been and will always be true' (see also example (3) in Sec-
tion 4). Similarly, the E epistemic operator can simply be defined as E~ - ~ r

(K~e /x K2e /x �9 �9 - ^ K,e). Also, many semantic or axiomatic variants of modal
systems can be handled using definitions, i.e. by translating one system into the other
(this method is systematically used in [42]).

2.5. DYNAMIC LOGIC

Dynamic logic [22, 29], which has been introduced as a symbolic language to reason,
state and prove properties about programs, also introduces a family of modal
operators, as in epistemic logic; these operators are written [a] instead of []~, where
a denotes a program. The main feature of dynamic logic is the introduction of
program operations ';' (composition), ' u ' (union) ' . ' (iteration) and '?' (tests), so that
if a. b are programs, so are (a;b), (a w b) and a*, and if ~ is a formula then ?~ is a
program.

A GENERAL THEOREM PROVER FOR MODAL LOGICS 497

TABLEAUX covers the dynamic systems PDL, DPDL and CPDL ([29]),

Handling the ';' "w" and '?' operations is easily done, using the following
definitions:

[a; b]~ - D~r [a][b]oc

[a ~ h]~ --o~ ([a]~ ^ [bb)

For iteration, we observe that [a*] is related to [a] exactly as (V�9 is related to []
in branching-time logic, i.e. again by a transitive-closure correspondence; therefore,
handling the '," operation is similar to the VD operator case (and to the C operator
case too). Finally, the converse operation of CPDL is treated as in Section 2.1 for the
[] ~ operator. To obtain DPDL, we simply add the restriction that the binary
relations associated with atomic programs are serial.

2,6 OTHER LOGICS

Though the philosophical motivations are different, deontic logic (see [28] II.l 1) is
syntactically very close to basic modal logic, and many deontic systems (e.g. [11] Ch.6)
can therefore be studied within TABLEAUX. Also, conditional logic shares
many features with modal logic. As an example, TABLEAUX covers the normal
conditional logics studied in [25], since the binary modal operator of conditional
implication ~ used in [25] seems to be definable in terms of the standard [] and O
by

= > / ~ - - 7 0 ~ v 0 (~ ^ /~ A a (~ / ~))

Many other interpretations of modal logics have been proposed. The reader is
referred to [28] for more information.

2.7 MULTIMODAL LOGICS

The language of multimodal logics [7, 8] is that of dynamic logic, but with the
additional feature that [a], [b], etc. are used to denote arbitrary modal operators (with
possibly completely different meanings), that these operators are allowed to belong to
modal systems of different type (see below) and may also induce interactions between
each other. Such systems are motivated by the simultaneous study of several modal
aspects, e.g. knowledge and time, knowledge and belief etc., and also by systems like
interval modal logic (see 2.2). We refer to [8] for more information about these topics.

TABLEAUX handles all multimodal systems which are simple, in the terminology
of [7], i.e. without interactions between distinct operators [a], [b] and in the case
where all these operators fall within the scope of the systems described in Section 2. i.
For example, we can simultaneously use an S4-operator rT~, a KD45-operator
D_~, n K-operators n ~ . . . r~, etc. Dynamic logics, and also epistemic logics, are

498 LAURENT CATACH

multimodal systems which are simple and also homogeneous, i.e. such that the
subsystems associated with [a], [b] . . . are all identical (KD, T, $4, etc).

In [7], a class of interaction axioms (axioms involving distinct modal operators) is
proposed and clearly this ability to specify interrelations is one main feature of
multimodal logics. This study is also developed in [8]. The ability to handle such

interaction axioms has not yet been incorporated in TABLEAUX, since theoretical
investigations about the semantic tableaux method for multimodal logics are not fully
examined. However, TABLEAUX appears to be a valuable tool for studying these
systems, and the ability to use arbitrary simple multimodal systems already makes it
very general, compared to other deductive systems for modal logics.

3. The Tableaux Method

3.1. OVERVIEW OF THE METHOD

Let L be a modal system characterized by a class C of Kripke models and let ~ be a
formula in L. If ~ is not a theorem of L, then -~ ~ must be satisfiable in some C-model
(called a counter-model for ~); conversely, if ~ is a theorem of L, then - ~ must
be C-unsatisfiable, so that any attempt to build a C-model for -7 ~ should necessarily
lead to a contradictory model. Therefore, the decision procedure for L consists in
systematically trying to construct C-models satisfying a given formula, or, more
generally, a set Z of formulas.

Thus, the tableaux method works by necessary conditions: starting with a world w0
in which it is assumed that all formulas of E hold, a model is progressively constructed
'around' w0 using tableau rules, which reflect the semantic laws of the satisfaction

relation '~" that must be fulfilled. Proofs are written in tree form, because alternative
tablaux may be introduced by disjunctive formulas. A simple example of tableaux
construction is given below, corresponding to the test for validity for the formula 4.

[] p = � 9 p (4 is the axiom scheme expressing transitivity in Kripke models, see 2.1)
in the system K, for which no special condition holds for R:

The above tableau represents a counter-model for the formula 4, which is therefore
not valid in K. If we now consider the same construction with R being transitive (i.e.
in the K4 system), then R(wo, wz) must hold; hence, []p true at w0 implies p true at
wz, which gives wz inconsistent and therefore yields a contradictory model. Since this
contradiction appears necessarily during the construction, -74 is unsatisfiable in
transitive Kripke models and 4 itself is a valid formula (and therefore a theorem) of
K4.

As we can see, the tableaux method is constructive (i.e. it always gives a result), it
works both for testing validity or satisfiability of formulas (since ~ is satisfiable i f f ~
is not valid) and modular (i.e. the construction adapts to different modal systems with

A GENERAL THEOREM PROVER FOR MODAL LOGICS 499

slight modifications). Also, we remark that a modal formula c~ determines implicitly
(via the semantics of the modal operators appearing in it) a class of models (the class
of models making ~ satisfiable) and that the tableau construction makes explicit the
general form of these models [16].

This aspect is of particular interest for some applications: for example in dynamic
logic, modal operators are intended to represent programs, so that the models are
actually interpreted as possible executions of these programs [40]. The tableau con-
struction can therefore provide some kind of simulation process: see [2, 23, 40] for
further details.

3 2 INTERNAL REPRESENTATION IN TABLEAUX

In the traditional approach, a tableau is a directed graph, whose nodes are labeled
by sets of formulas [25, 30, 42, 51], so that the internal representation has the
form (wor ld) : (list of formulas). Another method is the prefixed tableaux system,
described in [21], which uses the converse representation (prefix of worlds) : (formula),
where the prefx indicates the path in the graph leading to the world where the formula
is considered. Note that this latter representation has also been (independently)
developed in [13] and [33] (see also Section 5).

In TABLEAUX, an intermediate representation is used: we manipulate labeled
formulas, which are items of the f o r m f = (w:~ :a>, where c~ is an ordinary formula,
w denotes the world in which ~ holds and a e {0, 11 is a label indicating whether fhas
been already examined or not. Labels ensure that tableau rules are applied only once
to a formula. A tableau T is a pair (F, R>, where F is a set of labeled formulas and
R is a set of relations R(w, w') between worlds. Note that R may contain several
distinct relations R, so the tableau may represent a graph with different types of edges:
therefore, this representation is suitable for arbitrary multimodal systems (see 2.7). If
w ~ W, we denote by F,, the subset o f F containing the labeled formulas (w: ~ : a> and
we define the cut of R by w to be R(w) = lw'~ W/R(w, w')}, i.e. the set of R-successors
of W. When testing satisfiability for a set Z of ordinary formulas we initialize a tableau

T with F = [(w0: :~:0>/c~ e Yl and R = [I, and we successively apply rules" to
transform T.

In the following, the full modal language described in Part 2 is taken into account.
Note that no special form is required for input formulas, but (internally) we retain
and v as Boolean connectives only, and we identify ~ [] with ~ and -7 ~ with
rn~. Since (simple) multimodal languages are allowed (see 2.7), we may have distinct
modal operators with possibly different properties, so we write rnR~ R (VoR) (3mR)

(V~R) (~OR) (VUR) (3Ue) for the modal operators whose semantics are determined
by the relation R. With the notations of dynamic logic, nROR(VrnR) and (3Oe)
correspond to the operators [a], <a>, [a*] and (a*), respectively.

A tableau T is said to be closed if F contains an unsatisfiahle labeled formula:
inconsistent labeled formulas (w: I : a> are of course unsatisfiable, but other cases of
unsatisfiability (for path formulas) will be examined in Section 3.5 below.

500 LAURENT CATACH

3.3. TABLEAU RULES

Tableau rules are product ion rules which apply to labeled formulas and which

preserve satisfiability of tableaux, so that if a rule applies to a tableau T to give a new

tableau T ' then T is closed iff T ' is. For most tableau rules, T ' is obtained from T by

changing the set F into a new set F ' , i.e. by a rule o f the formf~ �9 �9 �9 f~ --* gl " " " g~,

but some rules also modify R (when new worlds are introduced), and other create

alternative tableaux.

A first class o f tableau rules are pure rewriting rules, which consist only in replacing
a set of ordinary formulas c~ l �9 �9 �9 ek by another set o f ordinary formulas/31 ' ' " /3t in

labeled formulas; this means that the labeled f o r m u l a s f containing the c~, are discarded

from F. Since this t ransformat ion is world-independent and does not change the value

o f the label a, such a rule will be written e ~ . . . c ~ ~ / 3 1 ' ' ' / 3 1 instead of

(w : ~ l : a) " " ' (w : ~ : a) ~ (w: /31:a) ' ' ' (w: /31:a) . In these rewriting rules, we

do not keep track o f the left-side labeled formulas f where the ~, occur.

A list o f rewriting rules, which are simplification rules, is given below:

~, ~ ---~ • (in which case T is closed)

O~, O ' ~ ~ ~ _1_ if O and O' are dual operators,

~l V " " ' V ~k - ' ~ T if one o f the ~, is T or is a conjunct ion containing T

~, (a v /3) ~ a (this discards the formula a v /3)

~, (f l v fl') ~ a, fl' if/3 is -7 ~ or if/3 is a conjunct ion containing -7

These last two rules are the classical resolution rules, but applied within a world only

(as in [1] or [35]). As explained below, the v - fo rmulas introduce alternatives in the

construct ion (and consequently duplications o f tableaux), so it is impor tant to reduce

these disjunctions as much as possible when they appear. These resolution rules are

consequently very useful for shortening the proofs.

The simplification rules given above are not systematically applied by a per-

manent exhaustive exploration o f F, but each time a new (labeled) formula (w : ~ : a)

is to be added to F, i.e. during the computa t ion o f {(w: ~ : a)] w F. This guaran-

tees that the set F is maintained saturated (by the rewriting rules) and improves

efficiency.
A second class o f tableau rules are transformation rules, which have exactly the

same format as rewriting rules except that labels change from 0 to 1, so that we keep

track of the formulas ~, used. More precisely, we write ~ �9 �9 �9 ~k ~-~ fl~ " " " fit a trans-
format ion rule, which is equivalent to a rewriting rule: (w : ~ : 0) �9 �9 - (w : ~k : 0)

(w : c q : l) ' ' ' (W : ~ k : l) , (W : f l l : O) ' - ' (w: f l / :O) . In most cases we will have
k = l .

A GENERAL THEOREM PROVER FOR MODAL LOGICS 501

A list o f t ransformat ion rules, derived from the axiomatizat ion of the path operators

o f C T L (see [9]). is given below:

�9 (Vt~R)~ ~ ~, t~R(VuR)~

�9 (3rqR)~ ~ ~, OR(~EIR)~

�9 (~ O R) ~ ~ ~ v ~ R (~ O ~) ~

�9 ~(VUR)fl ~ fl v (~ A nR(~(VUR)fl))

�9 ~(3UR)/~ ~ fl v (~ A ~R(~(3LIR)/~))

T rans fo rma t ion rules are systematically used to handle de)qnitions (cf. 2.4);

for example, we have a t rans format ion rule I:,~ ~- K~ ~ K,,~ for the c o m m o n

epistemic opera to r E(cf . 2.3 and 2.4). ~ Rewrit ing or t rans format ion rules are also used
to introduce heuristics, in order to shorten the proofs: for example, we have the

simplification rule E]R~, I::] R ~ ~ ~ 3_ if R is taken to be functional.

Note that classical literals do not produce any formulas, so their labels can be

systematical ly set to 1. Also, the above tableau rules make the set F contain only

labeled formulas (w : ~ : a) for which 7 has ~ , v , rq R or OR as its main connective.
This cor responds to the usual "present state ' + 'rest o f the sequence' decomposi t ion
used in l inear-t ime logic [23. 58].

We now examine the three fundamenta l rules of T A B L E A U X : they differ f rom

rewriting and t rans format ion rules since they deal with formulas belonging to dif-

ferent worlds, and since they may introduce modifications in the set R o f relations.

However , they are close to t rans format ion rules because labels change from 0 to 1,

new formulas get a label 0, and we keep track of the examined formulas. We take

W = lw, . w~ w, I to be the set o f possible worlds.

(r l) (w,,: rlR:~:0) ~ (w,,:rqR:~: 1), [(%: :~ :O) /wp ~ R(w,,) I

(r2) (w,,: � 9 ~ (w,,: ~ R ~ : 1). (w , . : ~ : 0) . [(w , , , : f l :O) / (w . : ~ R f l : a) e FJ

where m is a new index for worlds (m = I + max [p/(wp : f l ' :]9) ~ F I), and the

relation R(w,,. w,,,) has been added to R.

(r3) if/" = (~; , : (:q v ~. v - ' - v ~ a) : 0) i s a labeled formula in F (k ~> 2). then split
the tableau T = (F . R) into two tableaux T~ = (F~. R) and T. = (F_~. R)
with

r~ = r ' w {(w, , :~ . :0)~.

Y~ = F ' ~ [(w,,:(~_~ v " " ~) : 0)] ,

where F ' is a copy of F with the label o f f changed from 0 to 1.

Rule (r l) is a p ropaga t ion rule for [:::1~, rule (r2) is a rule for creating new worlds
and rule (r3), which is recursive, is the rule for alternatives, creating or-branches in the
p r o o f construct ion. In (r3), the tableau T is closed iff both TI and T, are closed, so
if T~ is chosen first and turns out to be not closed, it is not necessary to develop T~
(since T is a l ready not closed). Note that (r3) applies to "real' v - f o r m u l a s only,

502 LAURENT CATACH

i.e. those which cannot be reduced by a simplification/resolution rule. Note also that
it is of some importance, for efficiency considerations, to control the order of application
of these rules.

Some of the semantic properties of R are completely taken into account during the

computation of cuts (i.e. of the sets R(wn)), namely quasi-reflexivity, reflexivity,
transitivity and euclideanity. For the remaining cases, further rules are needed:

�9 if R is symmetric and a new relation R(w. w') is added to R, then R(w', w) is added

too.
�9 if R is serial, the following additional rule (r ' l) is needed:

If we encounter a formula (w. : []RC~ : 0) and if (i) R(w.) is empty and (ii) F contains
no O-formula of the form (w. : ~Rfl:0>, then add a new world wm (as defined in
(r2)) to R(w.) before applying rule (rl).

�9 I fR is quasi-functional, then R(w.) has at most one element, so rule (r2) must apply
only if R(w.) is empty: otherwise, if R(w.) already contains an element win, then rule
(r2) is weakened into a simple propagation of e into world win:

<w.:~Rc~:0> ~ < w . : ~ R ~ : l > . <wm::~:0>

�9 If R is forwards-linear, rule (r2) must again be applied only if R(w.) is empty;

otherwise, we must proceed as follows: suppose we have a ~-formula (w. : ~ R e : 0)
in F, and let w. be a world which is minimal for R in R(w.), i.e.w, e R(w.) is such
that for all worlds Wp 4 = w. in R(w.) we have R(w., wp). 6 Since rule (r2) usually
introduces a new world w~ in R(w.), and since R is forwards-linear, three cases must

be considered: (i) wm is to be inserted between w. and w., (ii) wm= w. and (iii) Wm
is to be inserted beyond w.. In case (i) Wm is indeed created and becomes a world
closer to w. than w. and we impose R(w.) c_ R(w,.)'. in case (ii) the formula e is
propagated into w,, as in the quasi-functionality case above; in case (iii) world w~

remains a 'minimal' world in R(w.), and OR~ is propagated into w. (so that its
treatment is postponed: this rule is recursive). No world Wm is created in cases (ii)
and (iii).

Thus. when R is forwards-linear, we have a new rule (r'2) for O-formulas in case
where R(w.) is not empty. This rule creates three alternatives, corresponding to

cases (i) (ii) and (iii) described above; therefore, it requires some computation.
�9 In case of the GSdel system G, R is transitive and has the property of having no

infinite R-chains. To handle this latter property, a slight modification of rule (r2)
is needed ([21]): if w~ is the new world introduced by (w. : ~Rc~ : 0>. then also add
(w., : [3 R ~ e: 0> in the right-side of rule (r2). This simple rule guarantees that ~Rcr
will not start (at w D an infinite R-chain of worlds containing c~.

�9 All dual properties for the converse relation R-J are treated as described above.
changing R into R -~. This includes the case of R being backwards-linear.

As can be seen, one (or possibly several) tableaux rule(s) correspond(s) to a given
semantical property of R. These rules are encoded in TABLEAUX as procedures, and
if we were to extend the system with new semantic properties (and new modal

A GE NE RA L THEOREM PROVER FOR MODAL LOGICS 503

systems), we would have to exhibit and incorporate the corresponding procedures in

the system. This is certainly one limit to the modularity of the tableaux method

approach, though the problem is the same for other proof methods. Fortunately, the
semantic properties considered above, which are covered by TABLEAUX, seem to be
the most useful ones.

3 4. UNWINDING

Transitive-closure operators may generate infinite tableaux, by repeated applications
of rule (r2). For example, the tableau construction for testing the (non-valid) formula
(V~R)p yields the infinite sequence shown in Figure a:

. . . . R

Fig. a Fig. b.

Thus, the following rule is needed: each time we are about to create a new world
w, labeled by a set of formula F,, we check if there is an existing world w' such that
F,, ~_ F,,, (this inclusion does not take labels into account). If such a w' exists, then we
identify w with w', i.e. we do not create w and we attach to w' all the edges that would
have been attached to w instead. Since the total number of distinct sub-formulas
which may appear in the tableau construction must be finite (because they are
sub-formulas of the input formula(s)), the unwinding test guarantees that tableaux are
always finite]

In the previous example, the unwinding test succeeds and yields the finite tableau

shown in Figure b above, which is a counter-model (representing an infinite sequence
of '-~p') for the input formula (V�9 Note that the unwinding test is needed
whenever transitivity is considered (which is the case for path operators), and is also
known as the rule of repeating chains [30]. In fact, further complications appear for
this unwinding test when using converse operators (dealing with the past), we omit
details here.

3.5. SATISFIABILITY OF PATH FORMULAS

For modal systems without path operators, an unsatisfiable (labeled) formula is
simply an inconsistent one (see 3.2), and this definition, along with the unwinding test
described above, guarantees the completeness of the tableaux method. In case where
path operators are considered, additional rules must be given to check unsatisfiability:
we give the (VDR) and (3[]R) cases below:

�9 a labeled formula (w,,:(VD~)~:a) is unsatisfiable iff there exists an R-path c
starting at w,, and a world wr, on c such that (wp : -7~ :h) is in F.

504 LAURENT CATACH

�9 a labeled formula (w, : (3DR)~ : a) is unsatisfiable iff for every R-path c starting at

w, there exist a world wp on c such that (Wp:~ ~ :b) is in I ~.

These rules are direct consequences of the semantic definitions of the operators
(VDR) and (~fflR) mentioned in Section 2.2. Similar rules for 'until' operators must also
be considered. We refer the reader to [4] or [58] for more detail. Note that these rules,
which require some computation, are to be applied only when the construction of the
tableau has been finished and when no basic inconsistency (i,e. opposite formulas) has

been found.

3.6 FINAL REMARKS

�9 The system of tableaux rules we have described avoids the problem of exploring a
graph, as in the classical tableaux method, i.e. manipulating nodes (labeled by sets
of formulas), finding non-cyclic paths in a graph, jumping from node to node, etc.
[51]. Our tableau rules are only production rules: existing formulas create new

formulas, and the process halts when an inconsistency is encountered.
�9 The generality of the system is certainly a handicap, because multiple tests concern-

ing the semantic properties of R are involved at every step of the tableau construc-
tion. Restricting the method to particular modal systems would lead to more

efficient computations.
�9 As far as efficiency is concerned, the difficult points are alternatives (or-branches),

unwinding tests and detection of unsatisfiable formulas. In TABLEAUX, as men-
tioned before, alternatives are reduced by using reductions of disjunctions (i.e.
resolution), especially during computations of unions {f} u F when a new labeled

formula f is to be added to F.

4. Examples and Experimental Results

TABLEAUX is implemented in VM/Prolog [47] and runs on IBM-370 machines. Its
many full-screen facilities make it easy to use. The system has been tried on most of
the axioms or theorems one can find in the various areas involving modal logics, and
appears to be of reasonable complexity for current examples. Some of them, express-

ing valid formulas, are indicated in the chart opposite.
'Or-B' means 'Or-Branches', so the last column indicates the number of alternative

tableaux created. Times are given in milliseconds. ~
Example (1) shows that the G6del axiom D(D~ = ~) ~ D~ implies transitivity

([21] p. 248). Example (2) is axiom D2 of ([30] p. 261), which holds in $4.3. Example
(3) shows that, in the system K of branching time logic, the Aristotelian/Megarian
modality [] (already mentioned in Section 2.4. as A) belongs to an extension of the
Brouwersche system B (reflexitivity and symmetry) containing the axiom
DD~ ~ DDD~ ([49] p. 129). Example (4) is McCarthy's famous three-wise-men
puzzle of epistemic logic, where p, means 'The ith wise man has a white hat', K~, K2,

A GENERAL THEOREM PROVER FOR MODAL LOGICS 505

Formula

(D(Dq ~ q) ~ UIq) ~ (Up ~ rnDp)

where q = (p A D p)

~ (D p ~ Dq) v n (D q ~ E]p)

r l n p D DDDp
where mp (Hp A p A Gp)

(Pl A P2 A PZ
A C(p~ v P2 v p~)
A C(p, ~ (K~p, A K~p,)) t 4 : / , l # k

A C ~ K I p I

/x (_~K2P2) ~ K~p~

5 D(p ~ OOp) = (Op m mOP)

6 L U A (p , q) A L U A (q , r) = L U A (p v q , r)

System

K

$4.3

Kt,

Time Or-B

110 2

230 5

630 8

K 900 0

PTL

PTL

1730 10

22 100 66

K~ are the knowledge (or belief) operators and C is the common knowledge (or belief)
operator. Note that system K is sufficient to solve the problem. Example (5) is a valid
formula in PTL (see 2.2), where [] is the transitive (but not reflexive) closure operator
of O. Example (6) is taken from [44], where LUA is defined by LUA(~, fl) -D~
LU(~, ~ /x fl) and LU is defined by LU(~, fi) -i~cf U (~ , U(~ /x 7/3, [3)) in
PTL.

To illustrate the output result of TABLEAUX, example (1) yields the following
tableau construction (where q is still an abbreviation for p /x []p):

13(Dq ~ q) ~ Dql
l Dp

DDp

(1) m([]q ~ q) "~ -n(rqq~ q) l " ' ~ D P m D p e ~ -lq_l[]pPrnq= (~P v ~[3p) R > P-npq=P A U p [] p l":

(2) ~rnDpDpDq "" n> -qopPq = p A Dp "1

where (1) and (2) indicates the or-branches generated by the v-formula
D(Dq ~ q) = Elq in world w0. Note that the tableau is closed because both branches
are closed: branch (1) is closed because vv2 is and branch (2) is closed because w~ is.

A complete list of test examples is also given in the chart on the next page. In the
language of basic modal logic (operators [] and O), 31 formulas have been considered,

506 LAURENT CATACH

A GENERAL THEOREM PROVER FOR MODAL LOGICS 507

most of them being very classical (see 2. l). Each formula has been tested for validity
in 16 distinct normal K-systems of modal logic (note that KH denotes the system
K + axiom H, K4H is KH + axiom 4, and KDQ is K + axioms D and F; other
systems use standard notations (see [l 1])). A cross at the intersection of the formula
and the modal system indicates that the formula is valid in this system.

For each formula, the total computational time (in milliseconds) required by TAB-
LEAUX to test validity in all the 16 systems is indicated in the last column of the
chart. Also, for each system, the total computational time required to test the 31
formulas is indicated at the bottom of the chart. Finally, the total time required for
testing the 31 formulas in the 16 systems (496 tests) is about 42 seconds. Of course,
most formulas are very simple, so the above chart gives a more precise idea of the real
complexity of the system.

5. Related Work

An implementation of the tableaux method is presented in [48] and [51], but only for
few modal systems and without experimental results. A decision procedure for
discrete linear time propositional temporal logic is presented in [44]; a tableaux
method is used and an implementation is described, with good experimental results.
A theorem prover based on tableaux for normal conditional logics is presented in [25],
but it seems that TABLEAUX covers these systems (see 2.6).

The system HLM described in [42] is certainly the most closely related to ours: the
general framework is almost identical, though some non-modal systems are also
covered by HLM. Furthermore, HLM uses an elegant method for translating various
modal systems into the framework of dynamic logic. However, HLM still uses the
traditional graph representation for tableaux and only pre-defined modal systems
(and notations) are permitted. Thus, in allowing arbitrary (simple) multimodal
systems (see 2,7), TABLEAUX appears to be more general.

Other semantic proof methods are automata techniques [17, 39, 55], which are well
suited to complex temporal systems, or the ~Model checker' approach [10, 12]. Note
that the latter can easily be derived from our tableaux method, as done in [42]. We
also mention the KRIPKE system [53], which is based on Gentzen-style proof
procedures and oriented towards relevant logics.

Other methods for automated deduction have been proposed for modal logics, but
generally with syntactical features only (i.e. with no kind of models construction, as in
TABLEAUX); furthermore, few implementations seem to have been achieved. Exten-
sion of classical clausal-form resolution techniques [14, 18], or non-clausal resolution
[l] have been defined: both are purely syntactic methods and are also associated with
important complexity and control problems. A sequent-based proof method for
first-order modal logics is proposed in [33] and [34] using indexed formulas; a similar
idea is proposed in [13], though the latter method seems to be more general. The
extension of Bibel's connection method to modal logic is presented in [56], and the
technique seems very powerful (though only a few traditional modal systems are

508 LAURENT CATACH

considered); furthermore, it has been implemented. Attempts to define modal and
temporal executable languages, in a logic programming perspective, can be found in
[2], [23] and [34].

6. Conclusion

In our opinion, the most interesting features of modal logics are the expressivity and
modularity of their languages and also their possible-worlds semantics, which is both
general and intuitive. From this point of view, TABLEAUX provides a unified
environment for studying and using these formalisms, since various types of modal
languages and systems are allowed, and since automated deduction is achieved using
the tableaux method, which is precisely oriented towards models construction. Fur-
thermore, the method appears to be of reasonable efficiency for practical use on
current examples.

Working with TABLEAUX suggests many possible topics for further research
dealing with modal logics, such as expressiveness features, semantic characterizations
of axioms or other automated proof methods for modal logics. For us, it has been a
valuable tool for studying multimodal logics [8]. More generally, as mentioned in the
introduction, we believe that prototypes like TABLEAUX are always very helpful for
experimenting with new ideas.

Notes

A preliminary version of this paper appeared in the Proceedings of the International Computer Science
Conference (ICSC'88), Hong-Kong, December 19-21, 1988.
2Note that R and R-~ are simultaneously reflexive, symmetric or transitive.
3Alternative notations are VX and 3X (or Vo and 30) for [] and ~ and VG, 3G, 3F, VF for VQ, 30, 3~
and V�9
4This system is called DUX in [42], with operators X, F, G, U.
STransformation rules may also be used to handle rational operators (i.e. temporal operators defined by
a right-linear grammar) as defined in [57]. These rules are similar to the decomposition rules introduced
by the author for these operators.
6World w u is to be seen as a "closer' world to w,. Note that w u exists because R being forwards-hnear implies
that R induces a linear relation on cuts; but w, may not be unique.
71n this test, the set F w has to be saturated by the slmphfication rules first; for example, disjuncnons must
be reduced as much as possible. This augments the chances of finding a candidate w' such that F, _~ F,,.
8Note that, using a Prolog compiler, these times should be divided by at least a factor 2.

References

1. Abadi, M. and Manna, Z., "Modal theorem p'rovlng', Lecture Notes in Computer Sctence Vol. 230
(1986).

2. Abadl, M. and Manna, Z., ~Temporal logic programming', Proc. 1EEE Symposium on Logic Program-
ming (Sept. 1987), San Francisco, Califorma, pp. 4-16.

3. Van Benthem, J., The Logic of Time, D. Reidel, Dordrecht (1980).
4. Ben-An, M., Manna, Z. and Pnueli, A., "The temporal logic of branching time', Proc. 8th Annual

A C M Symposium on Principles of Programmmg Languages (1981), pp 164-176.
5. Bull, R. and Segerberg, K., "Basic modal logic" m [28], pp. 1-88.

A GENERAL THEOREM PROVER FOR MODAL LOGICS 509

6. Burgess, J P, "Decidability for branching time', Studta Logwa 39 (2/3), (19801.
7. Catach, L., 'Normal multimodal logJcs', Proc. AAAF88, pp. 491-495.
8 Catach, L., "Les loglques multimodales' ('Multimodal logics'), Doctoral Thesis, IBM Paris Scientific

Center and L ET.P., PaNs 6 University (1989),
9. Clarke, E M and Emerson, E. A., "Design and synthesis of synchronization skeletons using branch-

ing hme temporal logic', Lecture Note.s in Compnter Science Vol. 131 (1982), pp. 52-71.
10. Clarke, E M., Emerson, E. A., and SJstla, A. P., 'Automatic verification of finite-state concurrent

systems usmg temporal logic specifications', ACM Transaetwnv on Programming Language~ and
Sv.~tems, 8(2) (1986)

I I. Chellas, B F.. Modal Logw An hTtroductton, Cambridge University Press (1980).
12 Cavalli, A. and Horn, F , "Evaluation des sp6clficatlons formelles fi l'alde des automates finis et de la

loglque temporelle', Report L.I.T.P. No. 86-74, Paris VI/Paris VII University, France (1986)
13. Enjalbert, P and Auffray, Y., "D6monstrahon de th~ordmes en loglque modale: un point de vue

6quahonneI', European Workshop on Logwal Metkod~ in Artificial Imelhgence (JELIA'88), Roscoff,
France (1988).

14 Enjalbert, P. and Farlfias, L., 'Modal Resolution in clausal form', Report No. RG 14-86, Greco de
Programmatlon, Umversit6 de Bordeaux I, France (1986)

15 Emerson, E. A and Halpern, J. Y. "Decision procedures and expressiveness m the temporal logic of
branching time', Journal o! Computer and System Scwnces 30, 1-24 (1985)

16. Emerson, E. A., 'Automata, tableaux and temporal logics', Lecture Notes m Computer Sewnee
Vol 193 (1985), pp. 79-87.

17 Emerson, E A. and Sistla, A. P., "Deciding full branching time logic', hl/ormatwn and Control 61,
I75-20l (1984).

18. FaNfias Del Cerro, L.. "Resolution modal logic', Loglque et Analyse 110 111 (1985)
19 Fischer, M J and lmmerman, N , 'Interpreting logics of knowledge in propositional dynamic logic

with converse', lnflormatwn Processing Letters 25 175 181 (1987)
20. Fitting, M, "Tableaux methods of proof for modal logics', Notre-Dame Journal o! Formal Logw 13

237-247 (1972)
21 F~ttlng, M., 'Proof methods for modal and intuitmnistic logics', ReJdel, Synthes'e Library Vol. 169

(1983)
22. Fischer, M. J. and Ladner, R E., ~Proposltlonal dynamic logic of regular programs, Journal of

('omputer and System Scwnees 18 194-21 [([979).
23. Fujlta, M. et al. 'Tokyo: logic programming language based on temporal logic', Proc. 3th btternational

Conlerence on Logic Programming, London pp. 695-709 (1986)
24. Gabbay, D. M., "Modal and temporal logic programming', in Temporal Logw,~, A. Galton (ed.),

Academic Press (1988).
25. Groeneboer, C and Delgande, J. P, "Tableau-based theorem proving m normal conditional logics',

Proe. A,4 A 1'88, pp. 17 I- 176.
26. Gurevlch, Y. and Shelah, S., 'The decision problem for Branching Time Logic', Journal o/Symhohc

Lo,~'w 50(3) (1985).
27. Halpern, J Y, "Reasoning about knowledge, an o~ervlew', Proc. Con/erenee ml Tkeoretieal A,wects o/

Reasoning about Knowledge (J, Y Halpern (ed.), Morgan Kauffmann (1986)
28. "Extensions of classical logic', Handbook ofPtulosophu,al Lo~w Vol II, D Gabbay and F Guenthner

(eds), D. Reidel Publishing Company (1984).
29 Harel, D, ~DynamJc logic', in [28], pp. 497-604.
30. Hughes, G E and Cresswell, M. J., An Introduction to Modal Logic, Methuen, London (1968).
31 Halpern, J. Y and Moses, Y., 'A guide to the modal logics of knowledge and belief', Ptoe IJCAI pp.

480-490 (1985).
32. Halpern, J Y and Shoham, Y, 'A propositional modal logic of hme intervals', Proc IEEE ~vm-

po.~tum on Logw in Computer Sewnce Vo[. [pp. 279-292 (1986).
33. Jackson, P and Relchgelt, H , "A general proof method for first-order modal logic', Pro(IJCAI pp

942-944 (1987).
34. Jackson, P. and Relchgelt, H. "A general proof method for modal predicate logic without the Barcan

formula', Proc. AAAF88, pp. 177 181 (1988).
35. Konohge, K., "Resolution and quantified eplstemic logics', Lectures Note~ m Computer Scwnce Vol

230 pp 199 208 11986).

510 LAU RENT CATACH

36. Ladner, R. E., 'The computational complexity ofprovabdlty in systems of modal propositional logic',
S lAM J. Computmg 6(3) 467-480 (1977).

37. Lehmann, D. and Kraus, S., "Knowledge, behef and time', Lecture Notes zn Computer Science, Vol.
226 pp. 186-195 (1986).

38. Lafon, E. and Schwind, C. B, 'A theorem prover for action performance', Proc. ECAI'88 (1988).
39. Michel, M., 'Computatton of temporal operators', Logtque et Analyse 110/111 (1985).
40. Moszkowskl, B., Executing temporal logic of programs, Cambrtdge Umversity Press (1986).
41. Manna, Z. and Wolper, P , 'Synthesls of communicating processes from temporal logic specifications',

Report No. STAN-CS-81-872, Stanford University, Dept. of Computer Science (1981)
42. Nlemela, I. and Tuomlnen, H., 'Helsinki logic machine' a system for logical expertise', Technical

report Series B (No 1), Heismki Umversity of Technology, Digital Systems Laboratory (1987).
43 Parikh, R., 'Propositional dynamic logics of programs' a survey', Lecture Notes m Computer Science

Vol 125 pp. 102-144 (1981).
44. Plaisted, D. A., "A decision procedure for combinations of propositional temporal logic and other

speciahzed theories', J. Automated Reasoning 2, 171-190 (1986).
45. Pnueli, A., ~The temporal logic of programs', Proc. 18th IEEE Symposium on Foundattons of Computer

Science pp. 46-57 (1977).
46. Pratt, V. R., 'Models of program logics', Proc. 20th IEEE Symposium on Foundattons o/ Computer

Sctence (1978).
47. IBM, VM/Programmmg in Logic (VM/Prolog), Program Offering 5785-ABH.
48. Roche, Y., qmpl6mentation d'un d6monstrateur de th6or6mes pour les logiques modales et tem-

porelles en Prolog', ReporI GIA-GRTC, Lummy Umverslty, Marseille, France (1985).
49. Rescher, N. and Urquhart, A., Temporal Logtc, Sprmger-Verlag (1971).
50. Sistla, A. P and Clarke, E. M., "The complexity of Propositional linear temporal logics', J. ACM

32(3) (1985).
51. Schwind, C., "Un d6monstrateur de th6or6mes pour des logiques modales et temporelles en Prolog',

Proc. 5th. Congrks Reconnaissance des Formes et hltelhgence Artzficielle (RFIA), France pp. 897-914
(1985).

52. Smullyan, R. M., First-Order Logtc, Springer-Verlag (1968).
53. Thlstlewaite, P. B., McRobbte, M. A., and Meyer, R. K., 'The KRIPKE automated theorem proving

system', Lecture Notes in Computer Science Vol. 230 pp. 705-706 (1986).
54. Venema, Y., 'Expressiveness and completeness of an mterval tense logic', Report, Institute for Lan-

guage, Logic and Information, Umversity of Amsterdam (1988)_
55. Yard1, M. Y. and Wolper, P., "Automata theoretic techniques for modal logics of programs', Proc

ACM Sympostum on Theory of Computing (1984).
56. Wallen, L. A., Matrix proof methods for modal logics', Proc. IJCA1 pp. 917-923 (1987).
57. Wolper, P., 'Temporal logtc can be more expressive', lnJbrmatton and Control 56 (1983).
58. Wolper, P., ~The tableaux method for temporal logic: an overwew', Log~que et Analyse 110-1 i I (1985)

