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We consider the pressure of a plate on a half-space with a round cylindrical cavity. The surface of the 
cavity is reinforced by elastic elements that are modeled by very general operators. The problem is reduced 
to a Fredholm integral equation of second kind. A detailed study is made of the case of reinforcement 
described by the Winkler law. An approximate solution is obtained in the form of the asymptotics with 
respect to the radii of the plate and the cavity. 
One table. Bibliography: 3 titles. 

We study the pressure of a round convex plate on an elastic homogeneous and isotropic half-space 
z > 0 with the elastically reinforced cavity r = a, 0 _< z < ee. A plate with the equation z = f ( r )  is pressed 
on with axial force P .  We assume that  friction is absent in the region of contact. The displacements Ur and 
us of the surface of the cavity are certain operators on the stresses applied to this surface. For a large class 
of reinforcement models the connection of the displacements and strains r(z) = Trz(a,z), a(z)  = ar(a,z)  
has the form 

2 # a - l ~ ( a ,  ~) = -lll(~)~'c(~) -~- ll2(~)~s(~) -[- w*({), (1) 

2#a-lgCr(a, () --/21(()~c(~) - / 2 2 ( ( ) f s ( ( )  + u*(~), 

in the space of Fourier cosine- and sine-transforms, where the elements of the functional matrix lij(~) 
are determined by the model  of reinforcement, u*(() and w*(() are known functions connected with the 
boundary conditions in noncontact  reinforcement surfaces and with the mass forces. 

As a preliminary step, assuming for the time being that  the displacement of the entire surface z = 0 is 
known and neglecting friction, i.e., under the boundary conditions 

~ = ~ ( ~ ) ,  a _ < r < o o ,  ~ = 0 ,  ~ < r < ~ ,  (2) 

we shall find the tension-deformed state of the medium under the boundary conditions on the cavity given 
by the relations (1). 

We represent the functions occurring in the Pakovich-Neiber representation [1] as expansions 

r  = _2 A l (~) .~ l (~r )cos~zd~  ' 
7r  

~Pl(r, Z) : ~r2 A2({)Ko(@) cos {z d{ + a({)e - ~  ]H~)({a)l  2 d{, 

f0 c~ Xl,0 (~, 7" ) ~e(r,  z) -- {fl({)e -e~ ]H~I)(~a)[ e d{, 

Xl,O(~,r) = Yo(~r)Jl(~a) - Yl(~a)Jo(~a), (3) 

where Aj(~),  a(~), and fl(() are functions to be determined. 
Substi tuting the representations (3) into the condition (2) and then applying Weber t ransformat ions  

leads to a system of equations from which we find 

1 - 2 .  , e ( ( ) ,  

~(~) - ~ ---;  ' e ( ( ) '  ~( ( )  - 1 - .  
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where v is the Poisson coefficient. 
To determine AI(~) and A~(~) we subs t i tu te  the representat ions (3) into condit ions (1). 

we obtain a system of linear algebraic equations 

{ Al(~)dl~(~) q- ~A2(~)d21(~) = w*(~) - @~(~) c+,/ll(~)'~c(~) : Y(~), 
A~(~)dzl(~) + ~Az(~)d2z(~) = u*(~) - / z 1 ( ~ ) 7  (~) = U(~). 

Here 
d~(~) 
d12(~) 

d21(~) 
4~(r 
-~(~) 
-~(r 

~(r 

~(~) 

T((,t)  

= ~aKl(~a) - l l l (~)ml(~)  -- 112(~)m2(~)~a, 
= I(o(~a) -- / l l (~)m3(~)  Jc ll2(~)Kl(~a)~a, 
= ~aKo(~a) + 4(1 - u)K~((a) +/2~(~)ml(~) - 122(()rn2(~)(a, 
= Kl(~a)  +/21(~)m3(~) - 122(~)Kl(~a)~a, 
= (4(1 - u) q- ~2a2)Kl(~a) + (3 - 2L,)~aKo(~a), 

= 2(1 -- ~,)Kl(~a) + ~aKo(~a), rn3(~) = I(l(~a) + ~aI(o(~a), 

/? ~ t~(t)T(~, t) dr, 
= ( 1 - - y - ~ l ( ~ a )  

/? = # tw(t)(2(1 - ~) + T((,t)) dr, 
( 1  - ~)aI(l(~a) 

1 
- K l ( ~ a ) ( ~ a K 2 ( ~ a ) K o ( ~ t ) -  ~tKl(~a)Kl(~t)). 

As a result 

(4) 

The  first and thi rd  of the  relations just  wr i t ten  are satisfied if we set w(r)  = wo(r) in the expressions 
for a(~),/3(~),  AI(~),  and  A2(~) for a < r < b and leave w(r) to be de te rmined  on the interval r > b. 

We now write out  the expression for the normal  tensions r O) 

f0 f0 # ~ gl(~)g2(~) d~ q- 2 ~[Ko(@)(~A2(~) -- 2t/Al(~))  q- ~rKI(~r)AI(~)] d~. 
a, (r ,O)-  1 - u  [H}~)((a)l 2 -~ 

Here gl(~) and .q2(~) are defined in [2]. If we express w(r) in terms of the auxiliary funct ion w(t) using 
the results of [2], we obta in  

~ { ~ [ ( I -  K ) ~ -  K*(t) + I~], t > b } 
~(1 - ~) ~(b) + r O(b - r) - f~ dt 

2.  ~z(~,0) : ~ -  ~ ~ [ P ~ -  K~ K*(t ) -  0(~)], ~ < b ~ ,  (6) 

where Kw, K*(t), and ~b(t) are de te rmined  by the  formulas in [21 and 

/0 { R w -  1 - y  [ ~ A 2 ( ~ ) + ( 1 - 2 v + ~ t ) A l ( ~ ) ] e  -~t d~, O(x) = 1, x > O, 
# 0, x < 0 .  

To represent the  opera tor  Rw in explicit form, we express AI(~) and A2(~) in terms of w(t) 

ni(~)_ #~1-i [ ~b ~ ~a b ~a t w~O(S) d3 ] 1 - ~ - co(t)Ri(t, ~) dt+ wo(a)R*(~) + tRi(t, ~) dt ~ + A*(~) , i = 1, 2. 
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U z = C - f ( r ) = w o ( r ) ,  for a < r < b ,  a ~ = 0 ,  for r > b ,  ~-rz=0,  for a < r < o o .  (5) 

We now take up the solution of the problem of the pressure of the plate on the base when the boundary  
conditions differ f rom (1) and (2) in tha t  for z = 0 



Here 

. ( - 1 )  { 
A i ( ( ) -  A ( ( ) [ u * ( ~ ) d l m ( ~ ) - w * ( ( ) d 2 m ( ~ ) ] '  m : 0 . 5 1 3 - ( - 1 ) i ] ,  

~2aA(()R~(~) = -D*(~)Fi(~)  + 2(1 - , ) I (11  (~a)[e -~b - ~aKl(~a)]d2m(~), 
D(~, t) = [~aK2(~a) - (1 + ~t)IQ(~a)]K;[~(~a)e -~t, 

D* (()  : [~aKo (~a) - (bKl((a)] fs  ((a)e -(b, 
F I ( ( )  = ( a / l l ( ( )  - / 2 1 ( ( )  -~ ( a / 2 2 ( ( )  - ( a .~ ( ( )  - 1, 

F:(()  = ( a K o ( ( a ) I ( f l ( ( a ) [ ( a l n ( ( )  - (3 - 2- ) / :1( ( )  + (al~:(() - A(()(2a:  - 1] 

+ 2(1 - , ) [2~a/~(~)  - 2 /~(~)  + ~aIee(~) - ~a2A(~)  - 2], 

a(~) = h l ( O ~ ( ~ )  - ~ ( ~ ) ~ ( ~ ) ,  

and A(~) is the  de te rminan t  of the sys tem (4). We can now write out  the  expressions f o r / ~  

Rw = - I w  + L*(t), 

L~ : ~(x)  (R~(x, ~) + (1 - 2 .  + ~t)R~(~, ~))~ - ~  d~ ~ ,  

F L*(t) = wo(a) [R~(~) + (1 - 2 .  + ~t)R~(~)]e -~t d~ 

+ x [R~(x,~) + (1 - 2. + ~t)R~(x,~)]~-~' d~ a~ v ~  - ~ 

+ [A~(~) + (1 - 2 ,  + ~t)A;(~)]r -~t d~. 

(7) 

We require tha t  the  second of condit ions (5) hold. Formula  (6), as in [2], makes it possible to obtain 
an integral equa t ion  of second kind on the half-line 

~(~) = ( K  + z ) ~  + K*( t )  - ~*(t) ,  ~ > b, (8) 

and an expression for the  contact  tension 

~'(1 - . )  
2 ;  ~ z ( ~ , 0 ) =  

~ ( b ) + r  f b d[(K + L)~ + K*(t)- Z*(t)  + r 
+ ~ : - ~  dt. 

Using the asympto t i c  expansions of the Laplace integrals [3] one can show tha t  K * ( t ) - L * ( t )  C Ll(b, oo) 
for physically realizable problems and the kernel of the opera tor  L is square-integrable on (b, oo) x (b, oo). 
Consequent ly the  expression (8) is a Fredholm integral equat ion of second kind. 

We now consider the  case when the reinforcement of the cavity is mode led  by a Winkler  medium.  We 
shall neglect the  friction between the  reinforcement and the half-space. Wi th in  the  limits of this model  
we have u , (a , z )  = ka~(a,z) ,  Tr~(a,z) = 0, and we arrive at the condit ions (1) for 111(~) = 122(~) = 0, 
u*(()  = w*(()  = 0,/12(~) = oo, 121(~) = 2 # a - l k  > O. 

After a passage to the  limit as 112 ~ oc the kernel of Eq. (8) becomes symmetr ic .  The  corresponding 
integral opera tor  tu rns  out  to be completely continuous on Lj(b, ~ ) .  Since the  free t e rm belongs to Ll(b, cx~), 
it follows tha t  ~( t )  e Ll(b,  cxD) also. 

The  connect ion between the initial displacement  of the plate  and the  impressive force is given by the 
relation 

4# P = b c -  f ( r ) d r  w( t )dt ,  (9) 
V ~ _  ?.2 
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and by the preceding remark this last integral converges. 
If fl = b/a >> 1, then, as can easily be shown by an asymptotic estimate of the free term and the 

kernel of Eq. (8), we have w(t) ~ O(1/f12). Then up to quantities of order fl-4 one can neglect the terms 
containing w(t) in the expressions for ~rr(z, a) and do(a, z). As a result the radial and tangential tensions 
can be expressed by certain integrals which in turn can be replaced by their asymptotic expansions. 

In the case of a flat plate we obtain (z)  
2#c z ln2 ( f l + i a )  

ar(a,r) = - ~ ( 1 -  u)(1 + 121)aX( fl' a) + 0 (fl "~-i5)4 , 
a /  

z 1 z I 
ao(a , z ) - -7r ( f :_u)a  2uy(fl,  a [ 1+121X(fl, a ) + O -  - ( f l q - i z ) 4  , 

x( f i ,  t) = Re + it)2 + + it)3 + U ' 

1 ~ r 2 / 3 - 2 - ( 7 - 2 7 ) V - ( 6 - 4 7 ) l n 2 ( f l + i t )  1 - 7 - 1 n 2 ( f l + i t  ) 
Y(fl, t) = Re ~ + (fl + it)3 + (fl + it)2 

2(3 --_ 27_) ln2 2(flit)] 
+ (9+it)3 j '  (10) 

where 7 = 0.57721... is Euler's constant. 
The asymptotics of relation (9) have the form 

1 - U p =  1 1 ( ~ )  
4#bc - 2fl ~ + 0 . 

For comparison we give a table of values of the quantity Q - 1 - Up found for the case of the free 
4#bc 

surface of the cavity (k = cxD) by numerical solution of Eq. (8). It can be seen from the table that even for 
fl = 2 the error in the asymptotic formula is already less than 3%. 

Analysis of formulas (10) shows that in the neighborhood of the opening of the cavity (i.e., as z -~ 0) 
the radial tensions are compressive, while the tangential tensions may happen to be dilating. This last 
circumstance may lead to the appearance of radial cracks and damage to the base in a neighborhood of the 
opening. 

fl 1.2 1.3 1.4 

Q 0.56857 0.68682 0.75137 

1.5 1.7 2.0 

0.79447 0.85005 0.89758 

In conclusion we remark that the suggested method makes it possible to carry out computations for 
other kinds of reinforcement, in particular for reinforcement modeled by a multilayered pipe. 
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