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ARSTRACT: A mathematical formalism
is presented in which changes in information
content of an evolving DNA (deoxyribonucleic
acid) molecule may be described. The basic
construct is a 65-dimensional differentiable
manifold (the informational space-time marifold)
in a coordinate structure such that the manifold
points represent (i) the number of each codon
type in a DNA molecule, and (ii) the
evaolutionary time of that DNA. It is shown that
this manifold cannot be Euclidean but must be
taken, at least conditionally, to be Riemannian.
Evolutionary motions in the informational
space-time manifold are initially postulated to
be geodesics, and evolutionary equations-of-
motion are elaborated. These equations are
governed by an evolutionary field which is
produced by the intrinsic structure of the
manifold. The concept of genetic cosmology is
introduced, and a manifold in which the
evolutionary field is weak and depends only upon
the evolutionary time is investigated. The
nature of empirical input into genetic cosmology
is discussed.

1, INTRODUCTION

A. Prefatory Comments

At the molecular level, the information content™
of a gene ig dictated by the linear arrangement
of the nucleic acid bases in a DNA
(deoxyribonucleic acid) molecule. Since the
inception of this tenet (Watson and Crick,
1953), extensive chemical and biological studies
have enhanced our knouledge of the fundamental
processes that comprise molecular genetics.t

As a discipline, molecular genetics
examines the physico-chemical basis for
heredity. At the cornerstone of this field is
the so-called "central dogma™: that is, that
DNA replication, DNA transcription into
mRNA (messenger ribonucleic acid), and mRNA
translation into protein serve as the
molecular basis for the hereditary process. A
vast amount of experimental work has gone into
the explication of the enzymic reactions that
constitute these processes and what has emerged
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18 an overall picture that appears to be
remarkably constant among all living systems.
Perhaps one of the most exciting prospects
in molecular genetics is the possibility of
investigating biological evolution through
changes in the linear base sequences of DNA
molecules. Such analyses have not been
practicable because of the lack of detailed DNa
sequence data. Analogous studies at the protein
levely on the other hand, have benefited from
the availability of protein sequence data
(Dayhoff, 1972) and are well established (Fitch
and Margoliash, 1967; Wu et al., 1974;
Margoliash, 1975)., However, with the advent of
rapid DNA sequencing techniques (Sanger et al.,
1977), it is certain that compendia of DNA
sequences, from various parts of the genome in
diverse organisms, will soon become available.

B. Desacription of Intent

We present a mathematical formalism in
which changes in information content of a DNA
molecule undergoing evolution may be described.
We eschew any discussior of the complex
molecular interactions that underlie the actual
physical nature of an evolutionary system.

Thus, our mathematical theory is predicated on
the biclogical concepts of information storage,
retrieval and processing systems and, in this
sense, is outside the scope of traditional
biophysics.

Our prime motivation is to formulate a
theory in which meaningful questions may be
posed concerning the relevance of symmetry
concepts in biological evolution. Questions
pertaining to biological symmetry are critically
important because the detection of such inherent
symmetries is comparable to the discernment of
biological laws (Findley and McGlymn, 14979a, 1980;
Findley et al., 1982a,h; Findlev and Findlev, 1982,
1984a, b). Thus, a realization of a part of
biology as a mathematics is, in essence, the
beginning of research which may ultimately lead
to the explication of biological laws (Findley
and McGlynn, 1979b, 1981); and this we take as
sufficient justification for our viewpoint,

Of course, we do not fulfill all of these
goals. What we do achieve, however, is a
demonstration of the utility and feasibility of
our approach to problems in evolution theory.
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C. Précis of Formalism

The genesis of our development resides in a
65-dimensional differentiable manifold in a
coordinate structure such that each manifold
point represents (i) the number of each DNA
codon type in a DNA molecule, whether such
molecule is physically realizable or not and
(ii) the evolutionary time of the molecule.

This manifold is termed the informational space-
time manifold, and its construction and a
biological interpretation are the topics of
Section 2. Specific considerations of the
general biological problem lead one to conclude
that this manifold cannot be Euclidean but must
be taken, at least conditicnally, to be
Riemannian.

In Section 3, curves in the informational
space-time manifold are interpreted as
representing the evolutionary progress of DNA
molecules. A provisional postulate is made that
evolutionary motions in the informational
space-time manifold are geodesics. It is shown,
then, that the intrinsic structure of the
manifold determines a biological evolutionary field,
and evolutionary equations-of-motion are
elaborated. The essential result is that the
solution to evolutionary questions formulated at
the DNA level resides, in principle, in the
intrinsic structure of the informational
space-time manifold: that is, in the knowledge
of the biologically correct genetic cosmology.

The intrinsic structure of the manifold is,
of course, determined by the fundamental tensor
(cf. Section 3) and, in Section 4, we
investigate a genetic cosmology in which the
fundamental tensor is diagonal and a function
only of the evolutionary time. In addition, the
evolutionary equations-of-motion for a weak
evolutionary field, which is solely evolutionary
time-dependent, are given and the nature of
future empirical input into genetic cosmology is
discussed.

2. THE INFORMATIONAL SPACE-TIME MANIFOLD

A. Nature of the Manifold

Consider the set of DNA bases B«
= (T,C,A,G), where T = thymine, C = cytosine, A
= adenine and G = guanine. In terms of
Bs, the set of 64 DNA codons (o
is prescribed by

Ca = Ba x Ba X Bo 1)
where "x" denotes the Cartesian product. If we
(i) consider each element of Cu to be an
abgtract vector; and <(ii) consider the set of
vectors C« to be linearly independent
over the real field, then Ca may be
taken to be a basis for X%+, where R is the
set of real numbers. We term the differentiable
manifold for which Ca provides a class
of C7 -equivalent coordinate structures,
the informational space manifold pi
Thus, a particular coordinate structure of
D, the X structure, say, is specified by the
set of 64-tuples of the 64 independent variables
X = (x'y...,%x%*) over the real
field. In terms of the tensor calculus, the
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components x*, i = 1,...,64, form a
contravariant vector in the X structure.

In a particular coordinate structure of
D, each point for which all of the xt
are non-negative integers is interpreted as
representing the codon population of a
single-stranded DNA (or DNA segment) : That
is, at the point D, the coordinate x*
of D is the number of codans of type c: € Cqg
of the single-stranded DNA represented by D.
Three amplifications of this interpretation are
required.

--- For a given single-stranded DNA
molecule (hereafter referred to as simply a
DNA), the representative point of this DNA& in
DLX] (a particular coordinate structure of
D) does not contain information specifying
the actual linear arrangement of codons in the
DNa .1 Indeed, this consideration motivates our
development of the informational sgpace-time
manifold (vide infra).

-~- There exist points in PLX3J that do
not represent physically realizable DNAs,
namely, those points having at least one
xt which is not a non-negative integer.

Two cases must be discussed: (i) those points
of OCX] having at least one x* which is
non-negative but non-~integer; and (ii) those
points of DLXJ having at least one x?

which is negative.

Case (i) peints represent nonphysically
realizahle (virtual) DNAs. Houever, such points
have an immediate biological interpretation:
They are considered to represent an average of
the coordinates of biologically related DNA
molecules. Thus, case (i) points extend the
possibility of providing a statistical
interpretation of DPLX]1. 1In fact, we have
two alternate blological interpretations of
DLX]J. If we take DLX] to represent
individual molecules, then the case (i) points
are interpreted as virtual DNAs. On the other
hand, if we take DCX] to represent average
DNAs (an average of the coordinates of
biologically related DNAs over an entire
species, sayl), then each non-negative point is
physically realizable in a statigtical sense.
The dynamical formalism which we present below
1s the same regardless of which biological
interpretation we choose and, hence, we will
expand the term "DNA" to include either a
gspecific single-stranded DNA molecule, or some
appropriate average of single-stranded DNA
molecules.

Case (ii) points require additional
consideration, however. In physical spaces, the
actual values of the coordinates have no
absolute meaning since it is to changes in
coordinates that physical laws apply. In
DLX]1, on the other hand, each point appears
to have absolute meaning as the mathematical
repregentation of a DNA. Thus, it would seem
that we must reserve biological meaning for only
the non-negative part of NLX]J. We do so
only in the sense that such points (those with
no negative coordinates x*) have immediate
biological interpretation. We do not exclude
the possibility, however, of the existence of
biological laws which might eventually indicate
that only coordinate differences have absolute
meaning.

-=-~ Since the points of D[X] represent
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information that ultimately derives from
molecular configurations, then that subset of
DLXJ which has biological meaning must be
bounded. In an absolute sense, such boundedness
is directly related to the finite amount of
matter available to an evolving system.

Clearly, our initial interpretation of a
point of PLX] as representing the
information content of a DNA is inappropriate
since such a point in DPCXJ] identifies tuo
DNAs that differ only in the linear arrangement
of codons. In what follows, we remove thisg
information loss with respect to evolution.

Our initial step is to modify the manifold
D to produce a manifold that is appropriate
for dynamical (evolutionary) questions. This is
accomplished by increasing the dimension of
D by one to account for evolutionary time.
The resulting differentiable manifold is termed
the informational space-time manifold M.
Thus, in a particular coordinate structure, say X,
ML X1 is specified by the set of 65-tuples
of the 65 independent variables x = (x°,

X', ...,%**} over the real field. x° = t
is the evolutionary time coordinate and, as
before, x*, i = 1,...,64, are the codon

coordinates of DLX]. Again, in terms of the
tensor calculus, the components x*.

u = 0,1,...,64, form a contravariant vector
of MC X J.""

B. Evolutionary Motions

Consider two DNA molecules DNA: and
DNA=, which are connected by evolution:
That is, let DNA2 result from the evolution
of DNA«. DNA+ and DNAz are represented by
the points M+ and Ma, respectively, in
ML XJ. Let the coordinates of M+ be
x¥ and those of Mz by x°“, where %°
< 0 The points M+ and Mz may be
connected by infinitely many curves in M[ x 1,
and each of these curves will be termed an
evolutionary motion.

If we take M to be Euclidean, then
the distance between M1 and Me is well
defined as the length of the Euclidean straight
line connecting M1 and M=2. An ambiguity
arises at this point, however. If DNA+ and
DNAz differ only in the linear order of
their codons, then x* = x'*. Hence, the
distance between M+ and Mz is

If, on the other hand, DNA:+ and DNA= do

not differ at all (that is, if no biological
evolution has occurred and DNA+ has simply
propagated linearly in time), then we still have
Xx* = x°*, Furthermore, the distance

between M+ and Ma is exactly the same as

that specified by Eq. 2. We conclude that we
cannot distinguish, metrically, between (i) the
case in which evolution proceeds only through a
permutation of the linear order of codons in a
DNA (permutational evolutionl)**, and (ii)

the case in which no biological evolution has
occurred. Thus, the choice of a Euclidean
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structure for M is unsatisfactory and we
now consider more general manifold structures.

5. EVOLUTIONARY MOTIONS TREATED AS GEODESICS

A. Geodesics

In terms of local differential geometry
(Eisenhart, 1926), the differential element of
length ds in ML % 1 is given by =¥

' —

FOOTNOTES IN TEXT

“0ur use of the term "intormation
content™ is consonant with the terminology ot
molecular genetics in which DNA, KNA, and
protein are referred to as “informaticnal
macromalecules”. However, by this usage we
intend no reference to information theory.

It is beyond the scope of this article to
synopsize molecular genetics. The interested
1 reader should see larger reviews (Watson., 1976:
Stent and Calendar, 1978; Birge, 1981).

We aszume a familiarity with local
ditferential geometry at the level of I iscnhart
(19263,

9For the sake of completeness, we note that
Co is chosen as tha basis because ot its
| convenience in defining transcriptinon and
translation operators. This topic is not
covered in this work but the interested reader
is referred to Findley (1978).

"A generalization of the theary to
double-stranded DNAs will be found in Findley
(1978). For our purposes, however, it is
sufficient to consider only single-stranded DNAs
since, from a given strand, it is always
possible to generate the complementary strand.

"It is possible to remove this
difficulty via a formulation of a discrete space
over a finite field (Findley, 1978>. This
formulation, however, does not permit
generalization to a dynamical space in a
consistent fashion.

**Greek indices run over the index set
(0s1y...,642, while Latin indices run over the
index aet (1,...,64),

**+ The concept of permutational
evolution is also discussed by Findley and
McGlynn (1979h, 1981).

*tWe adopt the summation convention:
that is, if an index is repeated in one term,
once in a contravariant position and once in a
covariant position, then that index is8 summed
over.

-8 The reader should note that when
Buy = 0 for u # vy, it follows that
guu = (guu)-1-

*% A likely candidate would be DNA
sequences coding for various cytochromes c¢ since
extensive correlations exist for these moisties
(Fitch and Margoliash, 1967; Wu et al., 1974;
Margecliash, 1976).

“1 14 compact set of real numbers is
both closed and bounded.
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where guw = Buu (X%,Xx%,...,%X%*),
and where guy is a symmetric, covariant,
order-two tensor having non-zero determinant.
The invariant ds® is termed the
metric. and a differentiable manifold
having a positive-definite metric is =said to be
Riemannian. The tensor Ruw, i3
referred to as the fundamental tensor
and is totally determinative of the intrinsic
structure of M (vide infrad.

Consider two points M1 and Me in
MCy 1 and a curve C connecting these two
points. If the coordinates of the points of C
are given as functions of a general parameter
T, such that x%(x.) and
%“(Te) are the coordinates of
M+ and Me respectively, then we may
define the intsgral

where s ia the arc length of the curve C
between the points M+ and Me. If &

is stationary (that is, if, upon holding the
endpoints of C constant, the first-order
variation of & vanishes), then C is a
gecdesicy which is simply the generalizatiaon

of the Euclidean straight line to curved spaces.

By the techniques of the calculus of variations
(Iisenhart, 19267, the stationarity of C implies

| CRY n
fe

de de

where the parameter t has been taken to be
the arc length &, and where the
Chrigtoffel symbols '  ars

defined as A

~ M uy
= s}
l\)t.‘ g FYVU ( )
and
roo=3 (s + 8 e o) (N
Yo 2 YV,0 YO,V Vo, Y -

in Eq. 7 we have used the notation

ag
YV
g =— . (8)
YV,0 350

The extremals of Eq. 4, where the parameter

T is again taken to be the arc length &,

are the integral curves of the 65 ordinary
differential equations given in Eq. 5. These
ars the geodesic curves, and they satisfy the
condition that, anywhere along the curve
(Eisenhart, 1926),

dz” g

S ds ds 1 )
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B. Evolutionary Equationms-of-Hotion

In a manifold that does not possess a
positive-definite metric, there exist curves of
zero length. Since such a curve in MLy 1
appears, at present, to have no biclogical
meaning, we take ML X ] to be Riemannian.

In addition, we make the following postulate:
Evolutiopary motions in the infermational
gpace-time manifold are gecdesics.

This postulate selects certain curves., the
geodesics, and distinguishes these as being
entirely descriptive of evolution. Hence, the
evolutionary motions satisfy Eq. 5. The
components [~ are determinative of the
nature of an evolutionary motion and, therefore.
mav bothought of as comprising an evelutionary
field on the informational space-time
manifold. In this sense, then, Eq. 5 represents
evolutionary equations-of-motion. Since the
I~ determine the curvature of the
manifold (Eisenhart, 1926), it follaws that
evolution may be viewed as resulting from the
curvature of the informational space~time
manifold.

The identification of geodesics with
evolutionary motions is provisional. In fact,
this postulate may be generalized to include the
case in which not all of evolution is governed
by the curvature of the informational space-time
manifold (Findley, 1978), Such a generalization
requires, in a straightforward manner, the
introduction of the concept of an extrinsic
evolutionary field; this extension is addressed
olsewhere (Findley at al.. 1980).

4. GENETIC COSMOLOGY

The fundamental result of the previous
section is that ths solution to evolutionary
questions formulated at the DNA level resides,
in principle, in the intrinsic structure of the
informational space-time manifold: that is, in
the biologically carrect genetic cosmology.

In examining the manifold structure, we
discuss three cases: (i) the absence of an
avolutionary field; (ii) the presence of a
permutational evolutionary field: and (iii> an
({incomplete) model genetic cosmology in which
the evolutionary field is a functicn only of the
evolutionary time. A comparison of the results
of (i) and (ii) resolves the information loss
discussed in Section 2.A. Finally, we comment
briefly on empirical input into genetic
cosmology.

A. Absence of an Evolutionary Field

The rectilinear propagation, in
avolutionary time, of a DNA which is not
avolving is specified by the following two
conditiong:

C-1. The guy are constant for all u,v .

C-2, v* = dxi/de = 0 for all i.

C-1 ensures that the manifold be rectilinear
(flat) and, since we are considering only
Riemannian metrics, the manifold must be
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Euclidean. The second condition enaures that
all of the informational space coordinates be
constant along an evolutionary motion.

For an evolutionary motion, application of
C-2 to Eq. 9 yields

6]
apov =1 (10)
OTy
0 -1/2
V. =9 - (11)

Thus, the evolutionary equation-of-motion is

@’ 4 e

s dz Gpp 1 =0 (12)

where the second equality follows from C-1,
Now, from Eq. 10, we have

ds = g% &0 = ¢ 2at

O 2 13
Y00 900 (13)

Because of C-1, however, we may choose goo
= 1. The arc length of the evolutionary motion
from point M1 to point Me is then given

by

s = jﬁ at = it (14}

which is, of course, the same result as that of
Section 2.B. Thus, a DNA which is not evolving
is characterized by 64 coordinates x* which

are constant and coordinate x° Z t which is
propagating in a linear manner.

B. Presence of a Permutational Evolutionary
Field

We next consider a DNA which is evolving so
that only the linear order of its codon changes:
that is, the informational space coordinates are
constant along an evolutionary motion. Such
evolution is specified by the following two
conditions:?

g (t) for u = v

0 for u # v

¢c'-2. v’ =0 for all i.

For an evolutionary motion, application of C'-2
to Eq. 9 yields

g,V = 1. (15)

Clearly, the difference between Eqs. 15 and 10

is that goo is a function of evolutionary

time in Eq. 15, but constant in Eq. 10.
Remriting Eq. 15 as
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IO V2 o
00

we find that the evolutionary equation-of-motion
is
L ISV

ds ~ ds (goo ). (17

However, Eq. 15 implies
1/2 0 1/2

s = ool 1&
d 950 = 950 dt (14
and, hence, we find
égp 1 éﬁo .
ds " %0 dt

-1/2 -1/2 -1/2
‘ = 19
'5 Yoo ' = Fnp g0 ro (19
a3

By substituting Eq. 19 into Eq. 17, the
evolutionary equation-of-motion becomes

RIS )

) =
= 9p
T

Vg . (200

Finally, from Eq. 18, the arc length of the
evolutionary motion from the point M. to the
point Me is given by

t

2
s o= ( q;gz(t) 1547 (21,
"
1

where we have explicitly indicated the
evolutionary time dependence of
(goo)'7 %,

The content of Eq. 21 is elucidated by
comparison with Eq. 14: for the case in which
evolution is manifeated through codon
permutations only, the arc length of the
evolutionary motion between two points in the
informational space-time manifold is a
nonlinear function of the evolutionary time
coordinates of the points; in the absence of an
evolutionary field, however, the arc length of
an evolutionary motion between two points in the
informational space-time manifold is a
linear function of the evolutionary time
coordinates of the points.

The choice of a Euclidean manifold
structure inherently results in an information
loss that identifies the distance between two
points in ML > ] regardless of whether
they represent the same DNA at different
evolutionary times or two distinct DNAs, varying
only in codon order, at different evolutionary
times (cf. Section 2.B). From the above
derivation, we conclude that a curved
informational space-time manifold restores the
information loss, with respect to evolution,
inherent in the original Euclidean formulation.

C. An (Incomplete) Model Genetic Cosmology

We shall now consider a model kenetic
cosmology that incorporates the results of
Sections 4.A-B as special cases. In addition,
we make the assumption that the evolutionary
field is weak (i.e., that biological evolution
occurs slowly). Thus, the conditions are
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ql {(t) for u =
(e
c"=1 =
: L
0 for ot # 9
ch=2, lim g = ¢ , where the ¢ are constants
BRIt i
for all u.
v i - :
cr-3, v 1s a small quaptity of the first order

with respect to v for all i.
The model is incomplete in the sense that we
never specify an exact functional form for the

Buv .
In view of C"-1, we find that the only

1
non-zero I are
v

i ii 0 _ ., 00 9)
0719 95,0 7 i T 79 94400
O 00
o0~ =9 90,0
2

Substitution of Eq. 22 into Egq. 5 yields the
evolutionary equations-of-motion

ii 1.0 (23a)

0 o2 .2
2 00 (23b)
= = v - .. v
7 % 9 {qoo,o 9ii,0 }

Imposing the condition €"-2, we see that the
equations-of-motion become

dv’ (24)
&)

de

in the limit of t + =, thus regenerating the
results of Section 4.A. For those evolutionary
motions for which v* = 0, the
equations-of-motion become "%
4" -1/2

= )y
dt Y0 0

thus regenerating the results of Section 4.B.
Egs. 23a,h may be simplified by applying
C"-3. For an evolutionary motion, then, we find
(cf. ¢"-1 and Eq. 9
2

(29)

Iy =1 (26)

no .
where in Eq. 26 we have neglected terms uhlc@
are of the second order in smallness. Applying
C"-3 to Eqs. 23a,b and making use of Eq. 26, we
find

b g ot (27a)
. 779 93,0
and

(9]
v -1/2
= 27b
dt 990 0 (27b)

where all second-order terms have been
neglected.

Eqs. 27a,b are the evolutionary
equations-of-motion for a weak evolutionary
field which is a function only of the
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evalutionary time.

We may rewrite Eq. 27a as

= (1ln gll)’ovl R
Remembering that vt = dxt/ds

and integrating Eq. 28 twice over the interwval
C0.t]), we find

Qo
i +

i PEEVZE ANV is FULIRTT S
x(e) = fgqg fa (o gty =
00 00 L0 dEn
0 0
i
-1/2 dx i
* ryan to+ b S
Jo0 ac LR {

t=0

Eq. 29 is a formal solution to the question o+
how the codon population of a DN& changes with
evolutionary time, in the pressnce of a wsak
evolutionary field which is a function only of
the evoluticnary time.

Further investigations of Egq., 29 require a
choice of the time functionality of the
fundamental tensor components guu. Only
then does the theory presented here become a
complete model genetic cosmology.

D. Empirical Genetic Cosmology

The raw data for generating empirical
gentic coamologies, and for testing model
genetic cosmologies, are collections of DNA
sequences from a large numbar of different
species., From such compilations one proceeds as
followus:

--- Order the =pecies, evolutionarily,
using classical phylogenetic methods or
presently available phylogenetic methods
(Dayhoff, 19727 Fitch and Margoliash, 1967; Wu
et al., 1974; Margoliash, 1975).

--~ From each species, select a DNA
sequence which codes for a protein having
essentially thse same function in all species.

The result of this process is the
conatruction of a series of homologically
ordered DNA sequences with an associated
approximate evolutionary time scale. Such a
series can be used to suggest, in a rough
manner, the functional form of the fundamental
tensor. Clearly, this will require much
trial-and-error model building. However, the
difficulty with this ansatz is the paucity of
DNA segquences presently available. Detailed
empirical research in genetic cosmology,
therefore, must wait until such data become
available.

5. DISCUSSIOR

This work, formal though it may be,
representa a significant aimplification:
namely; attention is redirected from the complsx
physicochemical processes involved in evolution
¢as mediated through natural selection) to the
totally geometric concept of an evolutionary
field generated by the curvature of the
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infermational space-time manifold. Such a
treatment is crucial to any construction of a
theory in which the concept of biological
gymmetry is stripped of its imprecision. In
view of our ability to represent the change in
information content of an evolving DNA, we
expect that this development will facilitate
future analyses of the nature of symmetry in
biological svelution formulated at the level of
molecular genetics. OQur intention in this paper
wag to show that these concepts are sufficient
to account for evolution; the demonstration of
their necessity is under study (Findley et al.,
1030).

Although quantitative research into the
nature of the biologically correct genetic
cosmology is currently impracticable, there
still exists a wealth of classical evolutionary
ideas which may lead to qualitative statements
concerning the manifold structure. For example,
biological evolution is generally thought to be
divergent (Beyer et al., 1974). At the
molecular level, this means that, starting from
a single DNA, two lines of evolutionary descent
never terminate, at the same evolutionary time,
in a DNA which is the same for both lines of
descent. In terms of the theory presented here,
divergent evolution merely signifies that two
evolutionary motions emanating from the samse
peint never cross. In turn, this impliass that
the biologically meaningful subset af the
informational space-time manifold cannot be
compact.”t! However, in terms of the
discussion of Section 2.4, we conclude that the
subset of the manifold which has biological
meaning cannot be closed.

Suppose, on the other hand, that these samse
two lines of descent terminate, at the identical
evolutionary time, in DNAs which differ only in
codon order. Such an event represents a
crossing of two evolutionary motions emanating
form the same point. However, from an
evolutionary point of view, divergence has not
been violated. Thus, if the manifold structure
is such that evolution is divergent, then the
above termination of the two lines of descent is
not possible. This, of course, is a prediction
which must be tested by experiment.

As another example., we cite the dependence
of a gene's mutation rate upon the nature of the
particular gene in question (Dobzhansky et al.,
1977). Such a dependence intimates that the
model presented in Section 4.C is, perhaps, too
simple-mindedsince it precludes any dependence
of the fundamental tensor upon the codon
coordinates.

These brief remarks should indicate the
necessity of continued, qualitative ressarch in
genetic cosmology. In the end, however, the
fundamental test of our viewpoint must await
detailed empirical analyses.
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