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ARSTR~CT: A mathematical formalism 
is presented in which changes in information 
content of an evolving DNA (deoxyribonucleic 
acid) molecule may be described. The basic 
construct is a 65-dimensional differentiable 
manifold (the informational space-time manifold) 
in a c o o r d i n a t e  structure such that the manifold 
points represent (i) the number of each codon 
type in a DNA molecule, and (it) the 
evolutionary time of that DNA. It is shown that 
this manifold cannot be Euclidean but must be 
taken, at least conditionally, to be Riemannian. 
Evolutionary motions in the informational 
space-time manifold are initially postulated to 
be geodesics, and evolutionary equations-of- 
motion are elaborated. These equations are 
governed by an evolutionary field which is 
produced by the intrinsic structure of the 
manifold. The concept of genetic cosmology is 
introduced, and a manifold in which the 
evolutionary field is weak and depends only upon 
the evolutionary time is investigated. The 
nature of empirical input into genetic cosmology 
is discussed. 

I. IwrRODOCTION 

A. P r e f a t o r y  C~ments 

At the molecular level, the ins content" 
of a gene is dictated by the linear arrangement 
of the nucleic acid bases in a DNA 
(deoxyribonucleic acid) molecule. Since the 
inception of this tenet (Watson and Crick, 
1953), extensive chemical and biological studies 
have enhanced our knowledge of the fundamental 
processes that comprise molecular genetics.% 

As a d i s c i p l i n e ,  m o l e c u l a r  genetics 
examines the  phys i co - chemtca ]  b a s i s  f o r  
heredity. At the cornerstone of this field is 
the so-called "central dogma": that is, that 
DNA replication, DNA transcription into 
mRNA (messenger ribonueleic acid), and mRNA 
translation into protein serve as the 
molecular basis for the hereditary process. A 
vast amount of experimental work has gone into 
the explication of the enzymic reactions that 
constitute these processes and what has emerged 

is an overall picture that appears to be 
remarkably constant among all living systems. 

Perhaps one of the most exciting prospects 
in molecular genetics is the possibility of 
investigating biological evolution through 
changes in the linear base sequences of DNA 
molecules. Such analyses have not been 
practicable because of the lack of detailed DNA 
sequence data. Analogous studies at the protein 
level, on the other hand, have benefited from 
the availability of protein sequence data 
(Dayhoff, 1972) and are well established (Fitch 
and Margoliash, 1967; Wu et el., 1974; 
Margoliash, 1975). However, with the advent of 
rapid DNA sequencing techniques (Sanger et el., 
1977), it is certain that c~pendia of DNA 
sequences, from various parts of the genome in 
diverse organisms, will soon become available. 

B. Description of Intent 

We present a mathematical formalism in 
which changes in information content of a DNA 
molecule undergoing evolution may be described. 
We eschew any discussion of the complex 
molecular interactions that underlie the actual 
physical nature of an evolutionary system. 
Thus, our mathematical theory is T)]QOicated oi] 
the biological concepts of information storage, 
retrieval and processing systems and, in this 
sense, is outside the scope of traditional 
biophysics. 

Our prime motivation is to formulate a 
theory in which meaningful questions may be 
posed concerning the relevance of symmetry 
concepts in biological evolution. Questions 
pertaining to biological symmetry are critically 
important because the detection of such inherent 
symmetries is comparable to the discernment of 
biological lairs (Yindley ~d HcGh~m, 1~179a, 1980; 
Findley  e t  a l . ,  19S2a,b; Fii~dlev [md l : indlev,  13S_, 
198,1a, b). Thus, a realization of a part of 
biology as a mathematics is, in essence, the 
beginning of research which may ultimately lead 
to the explication of biological laws ( F i n d l e y  
and McGlynn, 1979b, 1981); and this we take as 
sufficient Justification for our viewpoint. 

Of course, we do not fulfill all of these 
goals. What we do achieve, however, is a 
de~nonstration of the utility and feasibility of 
our approach to proble1~s in evolution theory. 
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C. Precis of Formalism 

The genesis of our development resides in a 
65-dimensional differentiable manifold in a 
coordinate structure such that each manifold 
point represents (i) the number of each DNA 
codon type in a DNA molecule, whether such 
molecule is physically realizable or not and 
(ii) the evolutionary time of the molecule. 
This manifold is termed the informational space- 
time manifold, and its construction and a 
biological interpretation are  the topics of 
Section 2. Specific considerations of the 
general biological problem lead one to conclude 
that this manifold cannot be Euclidean but must 
be taken, at least conditionally, to be 
Riemannian. 

In Section 3, curves in the informational 
space-time manifold are interpreted as 
representing the evolutionary progress of DNA 
molecules. A provisional postulate is made that 
evolutionary motions in the informational 
space-time manifold are geodesics. It is shown, 
then, that the intrinsic structure of the 
manifold determines a bioloKical evolutionary []eld, 
and evolutionary equations-of-motion are 
elaborated. The essential result is that the 
solution to evolutionary questions formulated at 
the DNA level resides, in principle, in the 
intrinsic structure of the informational 
space-time manifold: that is, in the knowledge 
of the biologically correct ~enetic cosmologF. 

The intrinsic structure of the manifold is, 
of course, determined by the fundamental tensor 
( c f .  Section 3) and, in Section 4, we 
investigate a Kenetic cosmology in which the 
fundamental tensor is diagonal and a function 
only of the evolutionary time. In addition, the 
evolutionary equations-of-motion for a weak 
evolutionary field, which is solely evolutionary 
time-dependent, are given and the nature of 
future empirical input into genetic cosmology is 
discussed. 

f .  THE INFOI~IATIOMAL SPACE-TIME MANIFOLD 

A. N a t u r e  of the Mani fo ld  

Consider the set of DNA bases 8~ 
E (T,C,A,G), where T ~ thymine, C ~ cytosine, A 

adenine and G ~ guanine. ]n terms of 
Bd, the set of 64 DNA codons Cd 
is prescribed by 

Cd ~ 8d x Bd x B.  ( 1 )  
where  " x "  deno tes  t h e  C a r t e s i a n  p r o d u c t .  ] f  we 
( i )  c o n s i d e r  each e lemen t  o f  Cd t o  be an 
abstract vector; and (ii) consider the set of 
vectors C~ to be linearly independent 
over the real field, then Ca may be 
taken to be a basis for R ~*, where R is the 
set of real numbers. We term the differentlable 
manifold for which C, provides a class 
of C ~ -equivalent coordinate structures, 
the informational space manifold D~ 
Thus, a particular coordinate structure o f  
D, the X structure, say, is specified by the 
set of 64-tuples of the 64 independent variables 
X ~ (x~,...,x 64} over the real 
field. In terms of the tensor calculus, the 

components x*, i = I,...,6d, form a 
contravariant vector in the X structure. 

In a particular coordinate structure of 
D, each point for which all of the x L 
are non-negative integers is interpreted as 
representing the codon population of a 
single-stranded DNA (or DNA segment) II : That 
is, at the point D, the coordinate x ~ 
of D is the number of codons of type c~ e Cd 
of the single-stranded DNA represented by D. 
Three amplifications of this interpretation are 
required. 

--- For a given single-stranded DNA 
molecule (hereafter referred to as simply a 
DNA), the representative point of this DNA in 
D[X] (a particular coordinate structure of 
D) does not contain information specifying 
the actual linear arrangement of codons in the 
DNA. II Indeed, this consideration motivates our 
development of the informational space-time 
manifold (vide infra). 

--- There exist points in DEX3 that do 
not represent physically realizable DNAs, 
namely, those points having at least one 
x ~ which is not a non-negative integer. 
Two cases must be discussed: (i) those points 
of O[X3 having at least one x ~ which is 
non-negative but non-integer; and (ii) those 

points of D[X3 having at least one x* 
which is negative. 

Case (i) points represent nonphysically 
realizable (virtual) DNAs. However, such points 
have an i,~,ediate biological interpretation: 
They are considered to represent an average of 
the coordinates of biologically related DNA 
molecules. Thus, case (i) points extend the 
possibility of providing a statistical 
interpretation of D[X]. In fact, we have 
two alternate biological interpretations of 
OCX3. If we take D[X] to represent 
individual molecules, then the case (i) points 
are interpreted as virtual DNAs. On the other 
hand, if we take D[X] to represent average 
DNAs (an average of the coordinates of 
biologically related DNAs over an entire 
species, say), then each non-negative point is 
physically realizable in a statistical sense. 
The dynamical formalism which we present below 
is the same regardless of which biological 
interpretation we choose and, hence, we will 
expand the term "DNA" to include either a 
specific single-stranded DNA molecule, or some 
appropriate average of single-stranded DNA 
molecules. 

Case (ii) points require additional 
consideration, however. In physical spaces, the 
actual values of the coordinates have no 
absolute meaning since it is to changes in 
coordinates that physical laws apply. ]n 
D[X3, on the other hand, each point appears 
to have absolute meanin~ as the mathematical 
representation o{ a DNA. Thus, it would seem 
that we must reserve biological meaning for only 
the non-negative part of D[X]. We do so 
only in the sense that such points (those with 
no negative coordinates x ~) have immediate 
biological interpretation. We do not exclude 
the possibility, however, of the existence of 
biological laws which might eventually indicate 
that only coordinate differences have absolute 
meaning. 

--- Since the points of D[X3 represent 

88 Journal of Biological Physics, Volume 13, 1985 



information that ultimately derives from 

molecular configurations, then that subset of 
D[X] which has biological meaning must be 
bounded. In an absolute sense, such boundedness 

is directly related to the finite amount of 
matter available to an evolving system. 

Clearly, our [I]i[ta] interpretation of  a 
point of P[X] as representing the 

information content of a DNA is inappropriate 
since such a point in D[X] identifies two 

DNAs that differ only in the linear arrangement 

of codons. In what follows, we remove this 
information loss with respect to evolution. 

Our initial step is to modify the manifold 
D to produce a manifold that is appropriate 
for dynamical (evolutionary) questions. This is 

accomplished by increasing the dimension of 
D by one to account for evolutionary time. 

The resulting differentiable manifold is termed 
the informational space-time manifold M. 
Thus, in a particular coordinate structure, say X, 
M[ X ] is specified by the set of 65-tuples 
of the 65 independent variables i ~ {x ~ , 

x~,...~x 64) over the real field, x ~ ~ t 

is the evolutionary time coordinate and, as 
before, x i, i = I,...,64, are the codon 

coordinates of P[X]. Again, in terms of the 
tensor calculus, the components x ~, 

u = 0,I,...,6~, form a contravariant vector 
o f  ME X 3 . ' *  

B. Evolutionary Motions 

Consider two DNA molecules DNA, and 

DNA:, which are connected by evolution: 

That is, let DNA~ result from the evolution 

of DNA,. DNA~ and DNA2 are represented by 

the points MI and M2, respectively, in 

M[ X]. Let the coordinates of M~ be 

x u and those of M2 by x "u, where x a 
< x "0 The points MI and M2 may be 

connected by infinitely many curves in M[ k ], 
and each of these curves will be termed an 
evolutionary motion. 

If we take M to  be Euclidean, then 
the distance between M~ and M~ is well 

defined as the length of the Euclidean strai[ht 

line connecting M~ and M2. An ambiguity 

arises at this point, however. If DNA, and 
DNA2 differ only in the linear order of 
their codons, then x x = x "~. Hence, the 

distance between M~ and M2 is 

2 x l oxo = - = (x -." z ' t  (2) 

I f ,  on the o ther  hand, DNA~ and DNA2 do 
not  d i f f e r  a t  a l l  ( t h a t  i s ,  i f  no b i o l o g i c a l  
e v o l u t i o n  has occurred and DNA~ has s imply  
propagated linearly in time), then we still have 

x ~ = x "~. Furthermore, the distance 

between M~ and Ma is exactly the same as 
that specified by Eq. 2. We conclude that we 

cannot distinguish, metrically, between (i) the 

case in which evolution proceeds only through a 
permutation of the linear order of codons in a 

DNA (permutational evolution) "~, and (if) 

the case in which no biological evolution has 

occurred. Thus, the choice of a Euclidean 

structure for M is unsatisfactory and we 

now consider more general manifold structures. 

~.EVOLOTIOI4AR~/ MOTIONS TREATED AS GEODESICS 

A. Geodesics 

In terms of local differential geometry 

(E i senha r t ,  1926), the d i f f e r e n t i a l  element o f  
length ds in H[ i ] is given by *@ 

FOOTNOTES IN TEXT 

*Our use of the term "information 

content" is consonant with the terminology o~ 
molecular genetics in which DNA, RNA, and 

protein are referred to as "informational 
macromolecules". However, by this usage we 
intend no reference to information theory. 

+It is beyond the scope of this article to 

synopsize molecular genetics. The interested 
reader should see larger reviews (Watson, 1976: 
5tent and Calendar, 1978; BJrge, Ig@l). 

~Ws assume a familiarity with local 

differential geometry at the level of l!iscHh:~vt 
(1926). 

9For the sake of completeness, we note that 
C~ is chosen as the basis because ot %is 

convenience in defining transcription and 
translation operators. This topic is not 
covered in this work but the interested reader 

is referred to Findley (1978). 
HA generalization of the theory to 

double-stranded DNAs will be found in Findley 
(1978). For our purposes, however, it is 

sufficient to consider only single-stranded DNAs 

since, from a given strand, it is always 

possible to generate the complementary strand. 
l~It is possible to remove this 

difficulty via a formulation of a discrete space 
over a finite field (Findley, 1978). This 

formulation, however, does not permit 

generalization to a dynamical space in a 
consistent fashion. 

**Greek indices run over the index set 

(0, I,...,6~), while Latin indices run over the 
index set (I,...,64}. 

*+ The concept of permutational 
evolution is also discussed by Findley and 
McGlynn ([[)7[)h,1981). 

*#We adopt the summation convention: 

that is, if an index is repeated in one term, 

once in a contravariant position and once in a 

covariant position, then that index is summed 
over. 

"% The reader should note that when 

guy = 0 for u @ y, it follows that 
gu, = (guu)-1. 

*~ A likely candidate would be DNA 
sequences coding for various cytochromes c since 

extensive correlations exist f o r  these moieties 

(Fitch and Margoliash, 1967; Wu et al., 1974; 
Mar[oliash, 1975). 

*l'A compact set of real numbers is 

both closed and bounded. 
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, ~ - U \, ,u~ = gl,.aa: i : "  (3) 

where K~v = guy (X~ 
and where ~uv is a sy~,etric, covariant, 
order-two tensor having non-zero determinant. 
The invariant dse is termed the 
metr ic,  and a differentiable manifold 
having a positive-definite metric is said to be 
Riemannian. The t e n s o r  g~ is 
referred to as the {undamental tensor 
and is totally determinative of the intrinsic 
structure of M (vide i n f r a ) .  

Consider two points MI and M~ in 
M[% ] and a curve ~ connecting these two 
points. I f  the coordinates of  the points of C 
are Kiven as functions of a general parameter 
~, such that x~(~,)  and 
x ~ ( ~ )  a r e  the coordinates of 
M~ and M~ respectively, then we may 
define the integral 

T 

:' = [ ~:,', "~ :  ,Lr"  dT (4) J; 

where s is  the arc length of the curve C 
between the points M, and M~. If s 
is stationary (that is, if, upon holding the 
endpoints of C constant, the first-order 
variation of s vanishes), then C is a 
geodesic, which is simply the generalization 
of the Euclidean straight line to curved spaces. 
By the techniques of the calculus of variations 
( l ! i s O ] l h a y t ,  1926), t h e  s t a t i o n a r i t v  o f  C b ~ l i c s  

where the parameter ~ has been taken to be 
the arc length s, and where the 
Chrietoffel symbols !'" are 
defined as u.~ 

r ~ = g ~  r (o~ 
v~ yvq 

and 

1 
F-<v~ = Y (g~r~,o + gyo ,~  + gvo,~, ) (7) 

In Eq. 7 we have used the notation 

_ ~gyv 
(8) 

The extremals of Eq. ~, where the parameter 
is again taken to be the arc length s, 

are the integral curves of the 65 ordinary 
differential equations given in Eq. 5. These 
are the geodesic curves, and they satisfy the 
condition that, anywhere along the curve 
(Eisenhart, 1926), 

dm~ /v 

g~v ds ds 1 (9) 

B. E v o l u t i o n a r y  Equations-of-Motion 

In a manifold that does not possess a 
positive-definite metric, there exist curves of 
zero length. Since such a curve in M[X] 
appears, at present, to have no biological 
meaning, we take M[ X ] to be Riemannian. 
In addition, we make the following postulate: 
Evol~ionarv motions in the i~[or~ational 
space-time manifold are geodesics. 

This postulate selects certain curves, the 
geodesics, and distinguishes these as being 
entirely descriptive of evolution. Hence, the 
evolutionary motions satisfy Eq. 5. The 
components F~ are determinative of the 
nature of an evolutionary motion and, therefore, 
may bethought of as comprising an evolutionary 
{ield on the informational space-time 
manifold. In this sense, then, Eq. 5 represents 
evolutionary equations-of-motion. Since the 
F~.~ determine the curvature of the 
manifold <Eisenhart, 1926), it follows that 
evolution may be viewed as resulting from the 
curvature of the informational space-time 
manifold. 

The identification of geodesics with 
evolutionary motions is provisional. In fact, 
this postulate may be generalized to include the 
case in which not all of evolution is governed 
by the curvature of the informational space-time 
manifold <Findley, 1978). Such a generalization 
requires, in a straightforward manner, the 
introduction of the concept of an extrinsic 
evolutionary field; this extension is addressed 
elsewhere (Findley et al., ]O~h). 

J .  GENETIC COSMOLOGY 

The fundamental result of the previous 
section is that the solution to evolutionary 
questions formulated at the DNA level resides, 
in principle, in the intrinsic structure of the 
informational space-time manifold: that is, in 
the blologically correct genetic cosmology. 

In examining the manifold structure, we 
discuss three cases: (i) the absence of an 
evolutionary field; (ii) the presence of a 
permutational evolutionary field; and (iii) an 
<incomplete) model genetic cosmology in which 
the evolutionary field is a function only of the 
evolutionary time. A comparison of the results 
of <i) and (ii) resolves the information loss 
discussed in Section 2.A. Finally, we co~ent 
briefly on empirical input into genetic 
cosmo]ogy. 

A .  A b s e n c e  o f  an E v o l u t i o n a r y  F i e l d  

The rectilinear propagation, in 
evolutionary time, of a DNA which is not 
evolviug is specified by the following two 
conditions: 

C-1 .  The g - v  a r e  c o n s t a n t  f o r  a l l  u , v  . 
C -2 ,  v ~ E dz~/ds : 0 f o r  a l l  i .  

C-I ensures that the manifold be rectilinear 
< f l a t )  and ,  s i n c e  we a r e  c o n s i d e r i n g  o n l y  
Riemannian metrics, the manifold must be 
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Euclidean. The second condition ensures that 
all of the informational space coordinates be 
constant a l o n g  an evolutionary motion. 

For an evolutionary motion, application of 
C-2 to Eq. 9 yields 

O 2 
gO0 v = 1 (i0) 

or, 

0 -1/2 
v = gO0 (ii) 

Thus, the evolutionary equation-of-motion is 

(]UO ~ , -1/2, 
,~8 - do tgo0 ) = 0 (12) 

where the second equality follows from C-1. 
Now, f rom Eq. 10, we have 

1/2 gl<2dt (13) 
~fs = gO0 uv 

Because of  C-I, however~ we may choose gee 

= I. The arc length of the evolutionary motion 
from point M~ to point M~ is then given 
by 

t 
2 

[" At = At (14) 

t 
1 

which is, of course, the same result as that of 
Section 2.B. Thus, a DNA which is not evolving 
is characterized by 64 coordinates x x which 
are constant and coordinate x ~ E t which is 
propagating in a linear manner. 

B. P r e s e n c e  of a Pemmutational E v o l u t i o n a r y  
F i e l d  

We next consider a DNA which is evolving so 
that only the linear order of its codon changes: 
that is, the informational space coordinates are 
constant along an evolutionary motion. Such 
evolution is specified by the following two 

conditions: 

C'-l. 

I gut (t) for ;J ..... 

gpv = 

0 for U # v 

i 
C'-2. v = 0 for all i. 

For an evolutionary motion, application of  C ' - 2  
to Eq. 9 yields 

2 
0 i. (15) 

go0 v = 

C l e a r l y ,  t h e  d i f f e r e n c e  between Eqs, 15 and 10 
is that gnu is a function of evolutionary 
time in Eq. 15, but constant in Eq. 10. 

Rewriting Eq. 15 as 

0 -1/2 !](~ 
v = gO0 

we find that the evolutionary equation-of-motion 
is 

c-{~/] J -1/2 

However, Eq. 15 implies 

1/2 (]20 E 1/2 cZt ( 1 8  
d,5" = go0 go0 
and, hence, we find 

du o -i/2 d~-' 0 ; 

,i~ : goo d~ 
d__ ( - i / 2 ,  - 1 / 2  -1 /2  

go0 ) = go0 (go0 '0 (19) 
ds 

By substituting Eq. 19 into Eq. 17, the 
evolutionary equation-of-motion becomes 

~) -1/2 
7 ~ - (2rip 

- go0 ' 0 
ft 

Finally, f rom Eq. 18, the arc length of the 
evolutionary motion from the point MI to the 
point Me is given by 

t 

F 2 i/2 't" ,Jr ,21, 
'? = goo ~ ~ J 

t 1 
where we have explicitly indicated the 
evolutionary time dependence o f  

<goo)  ' - ~  . 
The c o n t e n t  of  Eq. 21 i s  e l u c i d a t e d  by 

comparison with Eq. 14: for the case in which 
evolution is manifested through codon 
permutations only, the arc length of the 
evolutionary motion betwees two points in the 
informational space-time manifold is a 
r ~ o n l i n e a r  function o f  the evolutionary time 
coordinates of the points; in the absence of an 
evolutionary field, however, the arc length of 
an evolutionary motion between two points in the 
informational space-time manifold is a 
linear function of the evolutionary time 
coordinates of the points. 

The choice o f  a Euclidean manifold 
structure inherently results in an information 
loss that identifies the distance between two 
points i n  M[>  ] regardless o f  whether 
they represent the same DNA at different 
evolutionary times or two distinct DNAs, varying 
only in codon order, at different evolutionary 
times (cf. Section 2.B). From the above 
derivation, we conclude that a curved 
informational space-time manifold restores the 
information loss, with respect to evolution, 
inherent in the original Euclidean formulation. 

C.  An ( I n c o m p l e t e )  M o d e l  Genetic C o s m o l o ~ t  

We shall now consider a model genetic 
cosmology that incorporates the results of 
Sections 4.A-B as special cases. In addition, 
we make the assumption that the evolutionary 
field is weak (i.e., that biological evolution 
occurs slowly). Thus, the conditions are 
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c"-l. 

C"-2 . 

i (t) for :~ = ". u v 

qL! ~-- 

for i! ~ "2 

lira = ~l]~J" , where the c 
q-~,~ qblJ UIJ 

for all ~. 

are constants 

i 
C"-3. v is a small quantity' of the first order 

wlth ~espect to v for all i. 

The model is incomplete in the sense t h a t  we 
never specify an exact Functional form for the 

In view of C"-I, we find that the only 
non-zero F lJ are 

= O0 (~)) i ii . 0  -1 g =. 
'iS : 1 g gii,O ; ii -- gii,O 

2 2 

n O0 
i00 = i 9 go0,o 

2 

Substitution of  Eq. 22 into Eq. 5 yields the 
evolutionary equations-of-motion 

.~' ii i 0 (23a) 
~]~---~" = - g gii,oV v 

and 

' @ O0 (23b) '::~ - i g q v - g v i 
= 00,0 ii,O 

Imposing the  condition C"-2, we see t h a t  t h e  

equations-of-motion become 

~' (24) 

in the limit of t + �9 thus regenerating the 
results of Section 4.A. For those evolutionary 
motions for which v ~ = 0, the 
equations-of-motion become -w 

=H -i/2) (25) 
J-}-- = (g00 , o  

thus regenerating the results of Section 4.B. 
Eqs. 25Cl,b may be simplified by applying 

C"-3. For an evolutionary motion, then, we Find 

(el. C"-I and Eq. 9> 
O 2 

go0 v = 1 (26) 
where in Eq. 26 we have neglected terms which 
are of the second order in smallness. Applying 

C"-3 to Eqs.  23a,b and making use o f  Eq. 26, we 
find 

du i i i i 
d--~- : - g gii,O v (27a) 

m~d 

,~t '0 -i/2) (27b) 
~Z~--~ = go0 ,0 

where all second-order terms have been 

neglected. 
Eqs. 27a,b are t h e  evolutionary 

equations-of-motion for a weak evolutionary 
field which is a Function only of the 

evolutionary time. 
We may rewrite Eq. 27a as 

, ~ •  gii i 
(in ) '0 v ( . ~  

Remembering that v �9 - dx~/ds 
and integrating Eq. 28 twice over the interval 
[O,t], we find 

} i 1/2 -i/2 (in gll) :Jr L /'" .. ' 
x (t) = go{) go0 ,(] ,~ ', 

0 

F -i/2 dxi~ + [xi] 

+ L gO0 d~--J t:O "t "t:(] (' ' 

Eq. 29 is a Formal solution to the question o* 
how the codon population of a DNA chanRes with 
evolutionary time, in the Presence o f  a weak 
evolutionary Field which is a function only o f  
t h e  evolutionary time. 

Further investigations of Eq. 29 require a 
choice of the time functionality of the 
fundamental tensor components gu~. Only 
then does the theory presented here become a 
complete model genetic cosmology. 

D. Empirical Genetic Cosmolo~-j 

The raw data for generating empirical 
gentic cosmologies, and For testing model 
genetic cosmoloKies, are collections of DNA 
sequences from a large number of different 

species. From such compilations one proceeds as 
follows: 

--- Order the species, evolutionarily, 
using classical phylogenetic methods or 
Presently available phylogenetic methods 
(DayhofF, 1972; Fitch and Hargoliash, 1967; Wu 
et al., 1974; Margoliash, 1975). 

--- From each  species, select a DNA 
sequence which codes For a protein having 
essentially the s~une function in all species. 

The result of this process is the 
construction of a series of  ho~ologically 
ordered DNA sequences with an associated 
approximate evolutionary time scale. Such a 
series can be used to suggest, in a rough 
manner, the Functional form o f  the fundamental 
tensor. Clearly, this will require much 
trial-and-error model building. However, the 
difficulty with this ansatz is the paucity of 
DNA sequences presently available. Detailed 
empirical research in genetic cosmology, 
therefore, must wait until such data become 
available. 

3. DISCUSSION 

This work, Formal though it may be, 
represents a significant simplification: 
namely, attention is redirected From the complex 
physicochemical processes involved in evolution 
(as mediated through natural selection) to the 
totally geometric concept of an evolutionary 
field generated by the curvature of the 
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informational space-time manifold. Such a 
treatment is crucial to any construction of a 
theory in which the concept of biological 
symmetry is stripped of its imprecision. In 
view of our ability to represent the change in 
information content of an evolving DNA, we 
expect that this development will facilitate 
future analyses of the nature of symmetry in 
biological evolution formulated at the level of 
molecular genetics. Our intention in this paper 
was to show that these concepts are sufficient 
to account for evolution; the demonstration of 
their necessity is under study (Findley etal., 

Although quanti tat ive r esea rch  into the 
nature of the b io logical ly  correct genetic 
cosmology is currently impracticable, there 
still exists a wealth of classical evolutionary 
ideas which may lead to qualitative statements 
concerning the manifold structure. For example, 
biological evolution is generally thought to be 
divergent (Beye r  etal., 1974).  At the 
molecular level, this means that, starting fro~ 
a single DNA, two lines of evolutionary descent 
never terminate, at the same evolutionary time, 
in a DNA which is the same for both lines of 
descent. ]n terms of the theory presented here, 
divergent evolution merely signifies that two 
evolutionary motions emanating from the same 
point never cross. In turn, this implies that 
the biologically meaningful subset of the 
informational space-time manifold cannot be 
compact.'~l However, in terms of the 
discussion of Section 2.A, we conclude that the 
subset of the manifold which has biological 
meaning cannot be closed. 

Suppose, on the other hand, that these same 
two lines of descent terminate, at the identical 
evolutionary time, in DNAs which differ only in 
codes order. Such an event represents a 
crossing of two evolutionary motions emanating 
form the same point. However, from an 
evolutionary point of view, divergence has not 
been violated. Thus, if the manifold structure 
i8 such that evolution is divergent, then the 
above termination of the two lines of descent is 
not possible. This, o f  course, is a prediction 
which must be tested by experiment. 

As another example, we cite the dependence 
of a gene's mutation rate upon the nature of the 
particular gone in question (Dobzhansky etal., 
1977). Such a dependence intimates that the 
model presented in Section 4.C is, perhaps, too 
5i I : lp ]O- l ] l i l ldeds ince it precludes any dependence 
of the fundamental tensor upon the codes 
coordinates. 

These brief remarks should indicate the 
necessity of continued, qualitative research in 
genetic cosmology. In the end~ however, the 
fundamental test of our viewpoint must await 
detailed empirical analyses. 
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