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Abstract. The validity of imposing spatial homogeneity on the variations in the 
usual action principle for Einstein's equations is studied. It is proved that with this procedure 
the standard and ADM Lagrangians give correct Einstein equations if and only if the space 
belongs to Class A of Ellis and MacCallum [1], i.e., the structure constants of the simply 
transitive group satisfy Cf9 = 0. The possibility of overcoming this difficulty in the Class B 
spaces is examined. 

1. Introduction 

W h e n  the  s o u r c e  o f  the  g r a v i t a t i o n a l  field desc r ibed  by  the  m e t r i c  

t e n s o r  4g~v of  s p a c e - t i m e  is a pe r fec t  f lu id  wi th  s t r e s s -energy  t e n s o r  1 

T ~'~ = ( w  + p)  u~'u ~ + p 4gU~ (1.1) 

w h e r e  p is t he  p ressure ,  w the  e n e r g y  dens i ty  a n d  u u t he  f luid ve loc i ty  

(uUu~, = - 1) a n d  w h e n  t he r e  is a n  e q u a t i o n  o f  s t a te  o f  t he  f o r m  

w = w(p) (1.2) 

* This work was supported in part by the United States Atomic Energy Commission 
under Contract Number AT 104-37-39 Project Agreement No. 125. 

** Permanent address: Department of Applied Mathematics and Theoretical Physics, 
University of Cambridge, Silver Street, Cambridge, U. K. and King's College, Cambridge, 
U.K. 

1 We employ the following conventions. The signature of spacetime is + 2 and units 
are such that 8 ~ G = c =  1. The metric of space-time is denoted 4g~, the curvature and 
Einstein tensors by the usual Ru~, Guv etc., and covariant differentiation by a semi-colon 
separating indices. The corresponding quantities for an embedded three-space will be 
denoted by go; R' i  j, G*~j etc.; and a bar separating indices. Greek indices run from 1 to 4, 
Latin indices from 1 to 3, x 4 being a time coordinate. A comma separating indices denotes 
partial derivative. Any undefined notation may be assumed to have its standard meaning. 
The sign conventions for the Riemann and Ricci tensors follow [1], i.e., for an arbitrary 
vector b v 

b~;u~- b~;~u = - R" u~b ~ ' 

R ~  = R ~ ;  R = R"~ . 
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we may use co-moving coordinates to reduce the number of dependent 
variables occurring in the Einstein field equations. We define the function 
s(w) (or s(p)) by the equation 

ds dw  
- ( 1 . 3 )  

s w + p "  

Comoving coordinates may be chosen so that [2] 

u ~' = e - + 6  u (1.4) 

where se -~ = w + p = f ( x i ) / l f ~ .  (1.5) 

and u~ = e -~, 4gu4 = e ~ Vt,(x i) (1.6) 

where 1/4 = - 1, Vi = V~(x~), i, j = 1, 2, 3. 

The Einstein field equations 2 

then become partial differential equations for the functions V i which 
depend only on the x j, the space coordinates, for the functions 

4gij = gi j(x  4, xk) ,  k = 1, 2, 3 

and for the function 

4~ = ¢ (x  ~, xk)- 

These equations may be derived from the usual variational principle 
based on the action integral 

4I = S (R + 2p(0)) ] / ~ d 4 x  (1.7) 
v 

where R is the scalar curvature of space-time and 4g = det4g,~. 
When the space-time is spatially homogeneous, that is, admits a 

three-parameter simply-transitive group of motions, these Einstein field 
equations may be reduced to ordinary differential equations for functions 
¢(x 4) and yab(X4), simply related to the functions listed above. In this 
case the action integral reads 

4I = J' S ( x  4) d x "  {. L(x ')  d 3 x .  (1.8) 

It is the purpose of this paper to determine the conditions under 
which the Einstein equations for q5 and ?ab are the Euler equations 
derived from the action integral 

I = j" ~gZ'(x 4) dx  4 . (1.9) 

2 The cosmological constant, which does not  affect the issues under discussion here, 
is omitted for brevity's sake only. 
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In other words we wish to discover when the operation of deriving the 
Euler equations commutes with the imposition of a symmetry condition, 
namely spatial homogeneity. 

It is not necessarily valid to impose the symmetry before taking 
the variations. To see this, consider varying a Lagrangian of the form 

I =  ~ L(q~A; c~A~)d4x (1.10) 

where 4~A(A = 1, ..., n) are some fields and A ~b ,,  their derivatives. One 
obtains 

I'= j" 8-~8L 8x"O 8L ~'Ad4x + j l O--~, c~ ), d4x (1.11) 

where the variation has been taken by introducing a one-parameter 
family q~A(x, e) and differentiating with respect to the parameter e 
(' denotes d/de). The last term in (1.11) is made zero by imposing certain 

conditions on the q~A,. (The alternative of taking the"natural" 
/ 

boundary 
\ 

) boundary conditions on -~-A-- is not very useful for local field theories. 

Thus one deduces the Euler-Lagrange equations 

~b A ~x" = 0 (1.12) 

from I ' =  0 by considering the set of all variations satisfying specified 
boundary conditions. However, when the variations are required to 
satisfy some symmetry condition, the boundary conditions may, by the 
symmetry, restrict the variations q~A, in the interior of the region of 
integration. Alternatively one can say that for an arbitrary variation 
obeying the symmetry restriction the last expression in (1.11) might not 
vanish, so that I ' =  0 no longer leads to (1.12). 

In Section 2 of this paper we give the Einstein equations and varia- 
tional principle for the general case of fluid obeying (1.1)-(1.2). In 
Section 3 we give the Einstein equations for the spatially homogeneous 
case and in Section 4 discuss the validity of a Lagrangian Such as (1.9). 
Section 5 discusses the form of the Lagrangian in those cases where it is 
valid, and contains some remarks on the effects of rotation. Finally there 
is a short summary. 

2. Fluid-filled Space-times 

We adopt the stress-energy (1.1) and (1.2). Although (1.2) rules out 
dust, we assume it only to be able to use a particular matter Lagrangian. 
Clearly one must obtain the correct dust equations as a limiting case. 
13" 
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In fact these can be obtained from the specialization to p = 0 ofa  Lagran- 
gian which differs from ours but is equivalent to it when (1.2) holds. As a 
general rule any two Lagrangians yielding the same Einstein equations 
are equivalent, see e.g. [3]. 

We now employ the coordinates specified by (1.3)-(1.6) 3 . The usual 
kinematic quantities, as defined by Ehlers [5], i.e., acceleration vector, 
rotation tensor, vorticity vector, expansion tensor, expansion and shear 
tensor, are respectively 

~.=~ ~+¢,~v~ 
(Dlt v = e ¢ Y[#,  v ] 

_ e 2 4  , 
,u _l It . . . .  094 V i (Di ;  o , ) i =  ~ i j k V j t k  

eo - ~ ~ u~ o~ o ~ , = 2 l / - S ~  

e - ( b  
0 u , -  2 (hu~'4) (2.1) 

0 = (e- '~]/Z 4g)'4 

e-g'(e4,l/~__~9)z/a ( h.~ ) 
al'~= 2 (e - 4' l/ -/~~) 2/3 ,4 

where • denotes (covariant) differentiation in the u u direction, hu~ = g,~ 
+ uuu~ is the operator projecting into the subspace orthogonal to u ~, 
t / ~  is the skew tensor whose components in our frame are given by 
t11234 = ( _  49) -1 /2 ,  and e ijk is the usual Levi-Civita symbol. 

The future-pointing unit normal to the surfaces t = constant is 

n ~  = - N ~ .  ~ . 

In these surfaces 91~ = 4g~. Ifg ij is the inverse ofg~;, the operator projecting 
into the subspace orthogonal to n" is 

_ i j  . ~ ( 2 . 2 )  kt,~ = 4ggV + n"W - g ~i ~j" 

Some other useful relations are 

n 4 = - N 4 g  44 = ~ ,  n k= __ e2eg k]V] = .  ~ P~ 
N " N 

U 2 = e 20 + 9iJVi Vje4¢; ]//-:-~ = N I l e .  (2.3) 

Here and in the sequel three-space quantities have indices raised and 
lowered by gi~, giJ. The second fundamental form (extrinsic curvature) 

3 The possible further specializations of the V~ [4] are not useful in the present context. 
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of the three-spaces is 

1 
Kii = n~;~6~ 6~ = ~ ( 9 0 , 4  - -  Pilj -- Pjli)" 

The acceleration of n" is 

N ~k°~ 
n";vnV = X 

The (3 + l) splitting into space and time we have now introduced is 
essentially the same as that of Arnowitt, Deser and Misner (ADM) [6]. 

The Gauss and Codazzi-Mainardi equations of the embedded three- 
spaces [7] help us to express the Einstein equations in terms of the three- 
space quantities. We have 

R = R* + f2 + 22~;~ (2.4) 

where f2ij = KikKkj -- KKij;  K = Kii; (2 = (2ii; )~'~ = (Kn* -- n";~n~). The 
Einstein equations read as follows. The G 44 equation gives 

½ ( - R *  + O) =p - (w +p) N2e -2~ ; (2.5) 

t h e  G4j equations are 

(Kkj -- Kakj)lk = -- N(w + p) Vj = 

(using (1.5) and (2.3)), and the G~j equations are 

f(x') vj 
(2.6) 

1 1 1 

1 (2.7) 
N ~ (K i j -  Kg~j) = (w + p) e 24, Vi Vj + PO,j 

where ~o denotes the (three-space) Lie derivative. 
One can also write the equation R44= T4.4.-½T4g 44., which is the 

trace of (2.7) combined with (2.5), as 

K, o n ~ + K / K / -  Nik  k _ W - - p  ( w ÷ p ) N 2 e _ 2 4  , (2.8) 
N 2 

which is Raychaudhuri 's equation for the normal congruence. Subtracting 
(2.8) and (2.5) from (2.7) and raising an index, gives 

1 i • Nlij p IzKj (]// g Kij) 4. 1 ffl K i  J 
R*i~+ l / g N  N p~ N N 

(2.9) 
= (w + p) e2e' V' Vj + ( - - ~ )  6~j. 
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Defining M / =  G, ~ -  T / ,  and given Mij=O and Mu~;v=0, the 
remaining equations in M, ~ = 0 appear as first integrals, in that if satisfied 
initially they are satisfied at all times. For as is welt-known M,~;~ = 0 
leads to 

0 = nu(MUe); e = (n~MU°); o - nu;oMUe 

= _ ((MUVnun~) nO);Q + (nuMU igij);j (2.10) 

+ nl;.,Y~(n~.Msg u) - KuMk,gikgj  t 
and to 

(-(n.m~,) n']fZ-"g),~ + ( l /Z'gm.g'9, .  + l/Z~g(M"'n.n,,) n~n~, 
+ [ / _  4g(n,m,k)  gkt n ~ 49~k, i (2.11) 

2 kt~ ~ ~j,.,~=O. 

The field equations arise from varying the action (1.7), i.e., 

I~ = S (R* + ~ + 2~% + 2p) ] / -  ~g d ~  (2.12) 
v 

in the compact region V bounded by a closed surface S. The R term in 
(1.7) gives rise to the left sides of (2.5)-(2.7) and the p term gives the right 
sides. Variations are made by considering one-parameter families of 
space-times differing only in V, and not 4 on S. The variation of p is [-2] 

(w + p) ~g~4 
p ' =  - ( w + p ) ¢ ' .  

24944 

The calculation of the field equations proceeds by varying N, pJ and 
gu in (2.12), and setting 1 '=  0 for arbitrary variations 5 vanishing on S. 

Since our general procedure involves the vanishing of the  variation 
at the boundaries, any Lagrangian differing from (2.12) by a divergence 
will give rise to the same Euler-Lagrange equations, even though the 
new Lagrangian may not be invariantly defined. Two important amended 
Lagrangians are 

12 ------- f (R* + ~ + 2p) ] / / -  4g d 4 x  (2.13) 
v 

4 One could vary over the whole space-time if appropriate asymptotic boundary 
conditions were imposed on the varied quantities and if the action (2.12) remained finite 
(ef. [6]). However, in spatially homogeneous universes either the space sections are compact 
or (2.12) is infinite. 

5 As an aid to any reader who wishes to reconstruct this tedious calculation, we note 
that if {/k}* is a (three dimensional) Christoffel symbol of the second kind, then 

{ } k } * , - ~  ~ r ,  + , --2g Lg jmlk gk~lj--g'kj lm] 

gi J( R q ,  ), = (glk gfl -- gLi gkl) g'i Jlkt 

and similarly for four-space quantities. 
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and 13 = S((R* + f2 + 2p) [ f2  4 g + (]//C- g g 24),4 
v 

_ 2((KkJ _ KgkJ) ]/-_ 4g ej),k)d4x 
(2.14) 

the latter being the ADM form [61. The actions themselves agree with 
each other when the divergences by which they differ have vanishing 
integral over V. 

When we come to consider imposition of symmetry conditions we 
need to know the form of the divergences appearing in the course of the 
general derivation, in order to know whether the boundary terms still 
vanish. Using 12 above, the R* term gives rise to the spatial derivative 
terms 

( g / g ( g i l  g jk  _ g i j  gkl) g t i j l l ) , kd4X , (2.15) 

(N,t(fk gjl gii gk~) g,ij]//~),kd4X (2.16) 

while the O term gives rise to the spatial divergences 

- 2 (l/g(Kk~ - K6k~) p'J),kd4x, 

and j" - ([/~(K ij - K f  )) pkg'ij),kd4x. 

(2.17) 
(2.18) 

The additional divergences arising if (2.12) or (2.14) are used are 
easy to compute as the actions differ only by a divergence, and taking 
the divergence of a quantity and taking its variation are commuting 
operations. 

3. Spatially-Homogeneous Universes 

We restrict ourselves to spatially-homogeneous universes admitting 
a three-parameter simply-transitive group of motions acting on space- 
like surfaces of homogeneity (thus omitting only the Case I of Kantowski 
and Sachs [81). Let a basis of Killing vectors of the simply-transitive 
group be denoted by ~ (A = 1, 2, 3) 6. Then 

[CA, ~B1 = CCAn~C (3.1) 

where [ ,  1 is the usual commutation operation [71 and the structure 
constants cCAB satisfy the usual Jacobi identities 

cABtc CBo Ej = 0. (3.2) 

6 A, B, C. . .  ; a, b, c. . .  ; i,j, k . . .  will be used for components in (respectively) the Killing 
vector, reciprocal vector and coordinate bases. 
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Since the scalars TU"u.u~ = w and Tu. = 3 p - w ,  and the vector u u, 
must be group invariants, we have 

~AP = ~A w = 0  
for all A.  (3.3) 

ECA, u3 = 0 

The comoving coordinates in which (t.4)-(1.6) hold are specified [2] 
in such a way that t is an invariantly-defined scalar (up to transformations 
t ~ A t  + B; A,  B constants). Thus the (t = constant) surfaces are surfaces 
of homogeneity, ¢4 A = 0, and the cosmic time z defined by n u = - z .  is a 
function of t alone. (3.3) leads to 

~ 4 = 0  

and so we need only give the ~ in an initial surface. This has been done 
taking canonical forms of the structure constants [9]. 

Reciprocal group generators B, tangent to the group orbits which 
satisfy 

lB., ~A] = 0 ,  all a ,  all A (3.4) 

in each surface of transitivity, can be chosen to satisfy the initial value 
condition ~A = - B a ~  at one point. In the initial surface the vectors 
then obey 

[Ba, Bb] = CCabBc (3.5) 

where the CCab are the same as the CCn. If we propagate the B. by the 
choice 7 

[Ba, u] = 0 

all the conditions above, including (3.5), are conserved, and the B. i are 
independent of t. Explicit forms for the Ba ~ can be given [9]. Using the 
matrix Bak inverse to Ba i we can define Ricci rotation coefficients (cf. [-1]) 

ACba = BCjBaJti Bb i 

satisfying A~ab -- ACba = CC.b (3.6) 

AC _ !o,corr, a b -  2 /  ~"oab "~ C b o a -  Cab O) 

where ~.b = B.~Bhi is the metric in the invariant vector basis, and indices 
in this basis are raised and lowered by ?ab and its inverse matrix y.b. 
We may write (cf. [1, 10]) 

Cabc = rfbct n at -}- (~aca b - -  5ab ac = e, bct mat  + 5~ a b -- 6~, a~ (3.7) 

where ~/b~t = ]/@ eb. ,  )~ = detT.b, n a t  = n (at) and m a t - -  m (at).  Then 

A~ uoub (3.8) BCitj = - -  ~'- ab'~'i ~ j  , 

B~il~ = _ A~ab ~ab = _ 7~0 Caga = _ 2 d .  (3.9) 

7 A more common choice is lB., n] = 0. 
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For  reference we list the forms of the quantities used earlier, 

glj = Tab(t) Bia Bib 

V~ = VaB~ (Va constants) 

1 (Vg(Cag b + Cbga) e 2.  + Pab)/~B~ K ~ =  2N 

1 
K = ~ -  (4Vgage 2~ + ¢'bpab) 

N = ee(1 + 7 ab 1.1. Vbe24') 1/2 

0 = Kab Kca(Tac~; b'~ -- 7 ab 7 cd) 

I~lj=~o,4 VaB~, a 4 = O  

~b c a b. (Dij= - - e  C ab VcBi B j ,  O)4v=0  

O) i e 2rk (Fta d =--~-- + .dba ab) Van~ ; 09 4 = VaCO ° 

N1/3 e-4~/3 ( 7ab + eZ~ Va Vb ~ ~ b 
aiJ-- 2 . ( - N ~  i75 J,4 B~ Bj 

R*  k = (2n,flnab -- ned nab -- 2r]ca( a nb)C a a 

- -Tab(2adaa+nfSn f s  --~---(naa)2)) abBiB k 

R* = - 6aa ad -- n°tnot + ½(nda) 2 

where ~b = dTab/dr" 
The field Eqs. (2.5), (2.6), (2.8), (2.9) become 

½(-R*  + f 2 ) = p - ( w + p )  N2e - 2 .  

ga b Cbad -- K'~ Caoa = (w + p) N Va = So Va 
v3 

K,4  w - - p  ( w + p ) N Z e _ 2  O N + K"bK~b = 2 " 

R, ,b  + (l/~ K'~). 4 2(pd ad) K'~ 
N]/@ + N (KafCJ'bdpd + KfbCadfpd) 

= ( w +  p)e2~Va Vb + ( - ~ - ) 6 ;  

where so = sN]/~ e -~ = N(w + p) 1/~ is a constant.  
F rom (2.11) we find that  

(1~ (K°~ c %  - Ko~ c%))" = o 

(3.1o) 

(3.11) 

(3.12) 

(3.13) 

(3.14) 

(3.15) 
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as (3.12) also shows. If (3.12) holds then (2.10) implies 

(Mn°).,o = 0 (3.16) 

where M = N z M 4¢ = (½(~2 - R*) - p  + (w + p) N 2 e - 2  ~) N 2 and since the 
initial value is M = 0 we have M = 0 at all times, so that (3.11) is conserved, 
i.e., is a first integral. 

4. Lagrangian Principles in Spatially-Homogeneous Universes 

If we apply the process leading from (1.7) to (1.9), the action (2.13) gives 

I = S(R* + f2 + 2 p ) N ] / ~ d t ;  (4.1) 

the L(x  i) that appears in (1.8) being derby. One can derive ten equations 
from the time integrand by varying 7,b, pa and N. Varying pa is equivalent 
to varying the velocity of the fluid relative to observers moving along the 
hypersurface-normal congruence, while varying N is equivalent to 
varying the energy density of the fluid. (Note that if one uses the normal 
congruence, pY = 0 and N = e ~ then one can vary only the ?,b, getting 
only six equations [ t l ] , )  Misner has followed essentially this same 
procedure, giving Lagrangian and Hamiltonian forms for the field 
equations of universes of Bianchi types I and IX, but using 13 of (2.14) 
[12-14]. This procedure was generalized by Hawking [11] to all models 
of Class A of [1], i.e., all those in which a b = 0. Further generalizations 
and applications are in Refs. [15-19], etc. 

However, the ten equations we get are not always the correct Einstein 
field equations for perfect fluid, as was first realized by Hawking [11]. 
The reason is that the unwanted terms arising from (2.15~(2.18) are in 
general non-vanishing. From (3.9) any spatial divergence of an invariantly 
defined quantity has the form 

i - -  a i ( ~ / g F ) , i -  (F B~ )fl ~/g = - 2F°ag~/g . (4.2) 

Explicitly when variations are taken the terms (2.15)-(2.18) give rise 
to the unwanted extra time integrals 

N ]/~ CIgy( Cb,b ?""? °b -- cb,  r T~r ? ~") ?'~b dt (4.3) 

= S N (6a°a h - ")' - 7 "h)  'o dt 

0 

f 4 ]//y a s (K°y _ K 6gfl (pl), d t ,  (4.4) 
~ 2 ]//T pe aa( K °-f - K y°1")?'osdt . (4.5) 
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The first result  is that the Lagrangian given by (4.1) gives the correct 
equations if and only if 

a g = 0 (4.6) 

that is, if and only if the space is of Class A of [ lJ  8. 
Clearly, the terms all vanish if a g = 0, by (4.2). Suppose the terms do 

vanish. The coefficient of (pl), must vanish, so that 

ag(K° I - Kc~°i)= 0. (4.7) 

If we now take the coefficient of 7'~b and contract it on ab%, this, which 
would vanish if the coefficient vanished, is 4(aaae) 2. Thus we see that (4.6) 
must hold. 

Next we prove that the same is true for any Lagrangian differing 
from (4.1) by addition or subtraction of time integrals - in particular 
for the specialization of 11 or I 3 in the same manner already described 
for 12. That  is to say, the sum of the terms (4.2)-(4.5) are not the variation 
of some integral. 

We prove this by considering the integrand of (4.1) formally as a 
differential form co in the space of(N, pC, 7,b) SO we replace pf' by dp f etc. 

The integrability conditions can then be determined by calculating dco. 
From the d N  A dp c terms we find the conditions (4.7). The d N / x  dTab 
term then gives (4.6) by contraction with aaa b. 

It should be noted that these conclusions are in fact independent of 
the matter content of the space. All the unwanted terms we have been 
discussing arise from the geometrical part of the Lagrangian and for 
these terms the congruence of fluid worldlines has no particular physical 
significance. That is, we could always choose to refer the equations to a 
timelike congruence obeying the perfect fluid equations of motion and 
(3.3), regardless of whether the actual matter content was a perfect fluid 
flowing along that congruence. 

One can now embark on an extensive investigation of when one 
can obtain some, though not all, of the Einstein equations for Class B 
spaces correctly from a variational principle, the remaining equations 
being imposed as extra conditions. Few of the many possibilities make 
practical sense, but one, which we consider next, does. This is to try to 
obtain the "evolution equations" (3.14) (or rather the corresponding 
equations in Gab ), since it is known that (3.11) and (3.12), the "Hamiltonian 
constraint" and "dynamical constraints" are first integrals of (3.14). 
We may attempt this for the case pe= 0, since it appears the natural 
simple choice. We can show, by a method similar to the above proofs for 
the general case, that this will not in general yield correct equations for 

8 One could say that the natural boundary conditions for (4. l) are that the space-time 
is of Class A. 
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Class B spaces. When the variations are taken we get 

I' = S(E "b + U "b) 7',bdt (4.8) 

where the Einstein equations are E "b = 0 and the unwanted term uabT'ab 
is given by (4.3). Again U ab aa ab = 4N~/~(adad) 2 SO U ~b 7'ab is non-vanishing 
in general. Moreover if d(UabdTab) is taken (in the 7~b space) we find we 
get UabCd(dy,bAdTcd) and UabCdaaabT~d=~/~(aaad)2, which is non- 
vanishing in Class B spaces. Thus neither (4.1) nor any Lagrangian 
differing from it by addition or subtraction of terms gives the evolution 
equations correctly. 

We may investigate a little further. U "b is a traceless symmetric 
tensor and so has only two independent eigenvalues. Thus, at each time 
the variation (4.8) gives four correct Einstein equations. We can sort 

these out by introducing a basis of orthonormal eigenvectors of nab, {~e), 

of which ~ is parallel to a b. (These are just the basis used in [1].) We find 
1 1 2 3~ 

that the eigenvectors of U ab are e, X -- ½(~ + ~) and Y = ~(e - e) and these 
have differing eigenvalues in general. Thus the variations ~"~b--e(t) Yah 

1 1 
+ fl(t) %Xb~ + 7(t) etaYb~ + ~(t) X(aYv~ give correct field equations and 

- - a b  1 1 we need to find the two equations /~ e~eb=O and EabX~Xb=O (or 
equivalently E"bY~ Yb = 0) by some other means. 

One linear combination of these equations may be obtained by 
requiring that all three of Eqs. (3.12) hold. That is by imposing Eqs. (3.12) 
as a constraint. It is a consequence of the fact that Eqs. (3.12) are equiv- 
alent to 

(Chad -- ~ Cgg,) Eab = 0 

and the fact that 

( cb d _ jb Cgga) U~ = 2a~(12asa j~ + 2nI~ns~ - (n~) 2) 

that this requirement gives us only one additional correct combination 
of the Einstein field equations in a Class B space in addition to the four 
obtained by restricted variations of the type given above. 

The problem is to find any neat way of regaining the sixth evolution 
equation. One can of course derive it from Eq. (3.11) by differentiation, 
but apart from this there appears to be no more elegant and practical 
way, in the general case, than simply imposing it as a constraint. In two 
special cases we can get over this problem. The first is when the two 
eigenvalues of nab, n 2 and n 3 [1], are equal, for then U "b has only one 
independent eigenvalue. However we already know that in the case 
pd= 0, n 2 = n a implies the space is Robertson-Walker. The second case 
is when n"a = 0. The derivatives of this constraint give us (among other 
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things) the missing Einstein equation. If we substitute n"a = 0 and its 
consequences into the Lagrangian and vary only within the restricted 
set remaining, we get the field equations for the remaining undetermined 
quantities (at least, when pf = 0) 1-16] and this can be extended to fluids 
with anisotropic stress 1-15]. 

Rather than pursue similar investigations for other special variational 
principles we turn now to the cases where the general form holds good, 
the Class A models. 

5. The Variational Principle for Space-Times with Class A Groups 

In this section we shall evaluate the Lagrangian function when the 
isometry group is of Class A, that is when 

a a = 0 .  

In this case the constants of structure of the group may be written as 

Cabc : l~bctn at = ~bct mat 

where the m at are the coefficients of a constant symmetric matrix and 

m at ~ m ta ~ ] / ~ n  at . 

Hence Eq. (3.10) may be written as 

or ]/~R* ~--- ?acYbd (macmbd_ 2mabmcd). (5.1) 

The Eqs. (3.10) defining Kab become 

1 
Kab = "~(Yab  + PO(rlob,nta + rloa~ntb)) • 

1 1 (V-7) 
Hence K --~ •abKab-= ~ - ~  7ab~a b -  N ]/4 (5.2) 

and  Kab  K a b -  4 N  2 ~ab~:cayacyba + 4po~ab)~bCeoct mat 

(5.3) 
-- 4pgpgR * -~ 4~',,bPcPt~ ( mabmc~ _ ~mcbmU')}. 

Since the spatial components of the vorticity vector are given by 

COd= e 2¢ Var tad= pana~_ d = P,~ma~_ ~ 
N N N] /~  
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we may write 

where 

Thus 

p!t 
P°P° R* [2 =~c2 0 + ~f~-~ab~bCSoc t  mat  
N 2 

(5.4) 
~ab Fnab 

+ N ] f ¢  PcO)C--3~;abO)a£ob 

1 ab cd ac bd Oo=-5,Wr(~ ~, -~, ~ )~2o~. (5.5) 

I =  ~(R* + f2 + 2 p ) N [ / T d t  

may be written as 

I = S(Oo - V + 2p + 2T~)]/~dz (5,6) 

where z is defined by the equation 

dz = N d t  (5.7) 

and measures the cosmic time, we have written 

Oo = ¼(?ab~cd _ 7  ac 7 bd,) ~acTbd + ~ (5.8) 

e 24 ),ab mab 

- V = - - ~ - R * +  N~/77 PcOS--~TabCo%)b (5.9) 

Pg .+ .bc ~ .. at 9 P _ + .cbC a (5.10) 

and we have used the notation 

1 dyab 

When Pa = e2q~ ga = 0, Eq. (5.6) reduces to 

I = I(R* + f2 o + 2p) ] /~dz (5.11) 

and determines a variational principle from which one may derive the 
Einstein equations in case the world lines of the fluid are orthogonat to the 
invariant varieties. When this is not the case the Lagrangian is modified 
by the introduction of the term 5¢~ and by the replacement of R* by - V 
(cf. [18]). Thus when the world lines of the fluid are not orthogonal to the 
invariant varieties, the dependence of the Lagrangian on Y~b changes by 
the modification of R* by the factor (1 +papby,  b)-2, and the addition 
of terms linear and quadratic in the vorticity vector &.  In addition the 
term ~a i which is linear in 7~, appears. 

The Einstein field equations are obtained from Eq. (5.6) by varying 
°lab, N and W independently. Under such a variation we have 

~ , = e -  2~(N,N ,~ i ,  ~b~ -- PaP -- -2"YabP I-" ~'. 
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The six equations obtained by varying the 7,b keeping N and p" fixed 
have as first integrals the four equations obtained by varying N and p~ 
keeping 7,b fixed. Hence we may regard Eq. (5.6) as determining a varia- 
tional principle in which the 7,b alone are varied and N and p" are kept 
fixed. 

The equations obtained by varying pa are Eqs. (3.12) and may be 
written as 

,, m ab 1 P°R* 2 Z,,b CO COa mta 

(5.12) 
- 2  soV. 

Hence Eq. (5.10) may be written as 

p o _ Yah  m a 2 @ R *  2" rn"b 
N N]//~ coop + 3co, co" 

2 s°e-24'P°P° 
N/i 

and may be used to rewrite Eq. (5.6). 
The variation of the integral given by Eq. (5.6) may be performed by 

replacing the varied functions N, p" and Tab by another equivalent set 
such as ~b, p, and ~/,b- The result of this replacement is to replace Eqs. (3.11) 
to (3.14) by an equivalent set of equations. We may choose the quantities 
to be varied so as to take advantage of any information available in a 
given problem; for example we may fix the initial conditions of the 
problem and hence keep the V, as fixed constants and not vary them 
while determining the q5 and 7.b which extremalize the integral given by 
Eq. (5.6). Eqs. (3.12) (that is, (5.12)) and (3.11) may then be regarded as 
equations determining some of the unknown functions, 7,b and ~b (cf. [I7]). 

6. Conclusions 

We have shown above that the general action principles for Einstein's 
equations are not valid for Class B spatially-homogeneous models if the 
spatial-homogeneity is imposed before the variations are made. The 
reason is that the allowed variations in the general principle are variations 
which vanish at the boundary of a compact region, while spatially- 
homogeneous variations which vanish at such a boundary would vanish 
everywhere, and so are not of the allowed kind. This means that partial 
integral terms which normally vanish due to the vanishing of the variation 
at the boundary, may be non-zero in the spatially homogeneous case. 
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The same difficulty could recur in other situations where it was 
desired to impose symmetry of the solution on a Lagrangian action 
before taking the variations of that action. In particular one would need 
to check that any proposed Lagrangian for plane or cylindrically sym- 
metric space-times did not suffer from this defect. 

The invalidity of Lagrangian principles is equally an invalidity of 
Hamil tonian principles, since one can always construct the one from 
the other. Nor  does the compactification of the space sections, which 
might be thought to help because one need no longer have a spatial 
boundary, make any difference. The reason for this last is that the 
principle appealed to is supposed to be valid for any compact  region, and 
this is false. The invalidity becomes manifest, of course, when incorrect 
Einstein equations are derived, but if one is unware of the trap one may 
fail to check this. 

The virtue of the action principle when it does exist is that one can 
easily change one's choice of variables by simply substituting the new 
variables in the action. This is often simpler than directly substituting 
into the Euler-Lagrange equations. Similarly, one can study restricted 
subsets of the solutions by substituting the constraint into the Lagrangian 
and calculating the relevant equations for the constrained subset. In 
addition it is often easier to understand qualitative features of the solu- 
tions by considering the action principle. As we have shown, these 
advantages are not necessarily available to us in spatially-homogeneous 
models. 

The derivation of the matter  terms in the field equations from a 
matter  Lagrangian could, in principle, meet with difficulty in the spatially- 
homogeneous case even when the geometric terms do not. This has not, 
however, been found to happen in the various cases that have been 
investigated [11, 16-19]. Indeed rather general positive results about  the 
existence of such Lagrangians can be deduced from the spatial-homo- 
geneity assumptions when n~T~k~ = 0 [-15]. 
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