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Abstract. It is assumed that the singularities which occur in gravitational collapse 
are not visible from outside but are hidden behind an event horizon. This means that one 
can still predict the future outside the event horizon. A black hole on a spacelike surface 
is defined to be a connected component of the region of the surface bounded by the event 
horizon. As time increase, black holes may merge together but can never bifurcate. A black 
hole would be expected to settle down to a stationary state. It is shown that a stationary 
black hole must have topologically spherical boundary and must be axisymmetric if it is 
rotating. These results together with those of Israel and Carter go most of the way towards 
establishing the conjecture that any stationary black hole is a Kerr solution. Using this 
conjecture and the result that the surface area of black holes can never decrease, one can 
place certain limits on the amount of energy that can be extracted from black holes. 

1. Introduction 

It has been k n o w n  for some t ime that  a non- ro t a t ing  star  of more  
than  abou t  two solar  masses has no  low t empera tu r e  equ i l ib r ium 
configurat ion.  This means  that  such a s tar  must  undergo  ca ta s t roph ic  
col lapse  when it has exhaus ted  its nuclear  fuel unless it has m a n a g e d  to 
eject sufficient ma t t e r  to reduce  its mass  to less than  twice that  of the  sun. 
If  the col lapse  is exact ly  spher ical ly  symmetr ic ,  the metr ic  is tha t  of the 
Schwarzschi ld  so lu t ion  outs ide  the s tar  and  has  the  fol lowing proper t ies  
(see Fig. 1): 

1. The  surface of  the star  will pass inside the Schwarzschi ld  rad ius  
r=2Gc-ZM. After  this has h a p p e n e d  there  will be closed t r a p p e d  
surfaces [1, 2] a r o u n d  the star. A closed t r apped  surface is a spacel ike  
2-surface such tha t  bo th  the future d i rec ted  families of  null  geodesics  
o r thogona l  to it are  converging.  In o ther  words,  it  is in such a s t rong  
grav i ta t iona l  field tha t  even the ou tgo ing  l ight f rom it is d ragged  inwards.  

2. There  is a space- t ime singular i ty .  
3. The  s ingular i ty  is not  visible to observers  who remain  outs ide  the  

Schwarzschi ld  radius.  This means  tha t  the b r e a k d o w n  of our  present  
physical  theory  which one expects  to  occur  at a s ingular i ty  canno t  affect 
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what happens outside the Schwarzschild radius and one can still predict 
the future in the exterior region from Cauchy data on a spacelike surface. 

One can ask whether these three properties of spherical collapse are 
stable, i.e. whether they would still hold if the initial data for the collapse 
were perturbed slightly. This is vital because no real collapse situation 
will ever be exactly spherical. From the stability of the Cauchy problem 
in general relativity [3] one can show that a sufficiently small perturba- 
tion of the initial data on a spacelike surface will produce a perturbation 
of the solution which will remain small on a compact region in the 
Cauchy development of the surface. This shows that property (1) is 
stable, since there is a compact region in the Cauchy development of the 
initial surface which contains closed trapped surfaces. It then follows that 
property (2) is stable provided one makes certain reasonable assumptions 
such as that the energy density of matter is always positive. This is 
because the existence of a closed trapped surface implies the occurrence 
of a singularity under these conditions [4]. There remains the problem 
of the stability of property (3). Since the question of whether singularities 
are visible from outside depends on the solution at arbitrarily large times, 
one cannot appeal to the result on the stability of the Cauchy problem 
referred to above. Nevertheless it seems a reasonable conjecture that 
property (3) is indeed stable. If this is the case, we can still predict what 
happens outside collapsed objects, and we need not worry that some- 
thing unexpected might occur every time a star in the galaxy collapsed. 
My belief in this conjecture is strengthened by the fact that Penrose [5] 
has tried and failed to obtain a contradiction to it, which would show that 
naked singularities must occur. Penrose's method has been generalised by 
Gibbons [6] who has shown that it cannot lead to a contradiction at 
least in some cases. This paper will be written therefore on the assumption 
that property (3) holds. 

In Section 2 a black hole is defined in terms of a event horizon and it 
is shown that the surface area of a black hole cannot decrease with time. 
In Section 3 it is shown that a rotating stationary black hole must be 
axisymmetric, and in Section 4 it is shown that any stationary black hole 
must have a topologically spherical boundary. Together with the results 
of Israel and Carter, this strongly supports the conjecture that a black 
hole settles down to a Kerr solution. This conjecture is used in Section 5 
to relate the surface area of a black hole to its mass, angular momentum 
and electric charge. Using the result that the surface area cannot decrease 
with time one can then place upper bounds on the amounts of energy 
that can be extracted from black holes. These limits suggest that there 
may be a spin dependent force between two black holes analogous to 
that between magnetic dipoles. 
11" 
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2. The Event Horizon 

In order to discuss the region outside a collapsed object one needs a 
precise notion of infinity in an asymptotically flat space-time. This is 
provided by Penrose's concept of a weakly asymptotically simple space 
[2]; the spacetime manifold Jg  of such a space can be imbedded in a 
larger manifold Je' on which there is a Lorentz metric g.b which is con- 
formal to the spacetime metric gab, i.e. O,b = ~'~2gab where f2 is a smooth 
function which is zero and has non-vanishing gradient on the boundary 
ofJ¢/in Jff. This boundary consists of two null hypersurfaces J +  and J -  
which each have topology S 2 x R 1 and which represent future and past 
null infinity respectively. One can then interpret property (3) as saying 
that it should be possible to predict events near J + .  I shall therefore say 
that a weakly asymptotically simple space is (future) asymptotically 
predictable if there is a partial Cauchy surface 0 ° such that 3"+ lies in the 
closure in Jff of D + (5~), the future Cauchy development of 5 e. (A partial 
Cauchy surface is a spacelike surface without edge which does not 
intersect any non-spacelike curve more than once. D+(5 a) is the set of 
all points p such that every past directed non-spacelike curve from p 
intersects 5 e if extended far enough.) 

Roughly speaking one would expect a space to be asymptotically 
predictable if there are no singularities in J+ (Se), the future of SP, which 
are naked, i.e. which lie in J - ( J + ) ,  the past of future null infinity. One 
can make this more precise. Consider an asymptotically predictable 
space in which there are no singularities to the past of 5 a. Suppose 
there is a closed trapped surface 3- in D+(5~). Then there will be a 
singularity to the future of g-, i.e. there will be a nonspacelike geodesic 
in J+(J-)  which is future incomplete. Can this geodesic be seen from 
3"+? The answer is no. For suppose ~-- intersected J - ( J + ) .  Then there 
would be a point p e J +  in J+(J ') .  The past directed null geodesic 
generator of J +  through p would eventually leave J+(g ' )  and so would 
contain a point q of the boundary J+(.Y--). Now the boundary of the 
future of any closed set ~ is generated by null geodesic segments which 
either have no past end-points or have past end-points on ~/K [2,4]. Since 
the generator 2 of J+ (Y) through q would enter D + (5 e) it would have 
to have an end point on Y since otherwise it would intersect 5 e and 
pass into the past of 5 e which would be impossible, as 3- is to the future 
of 6 °. The generator 2 would intersect g" orthogonally. However, as ~z- 
is a closed trapped surface, the null geodesics orthogonal to J -  are 
converging. Together with the weak energy condition: TabKaK b 2> 0 for 
any timelike vector K a, this implies that there will be a point conjugate 
to ~- within a finite affine length on any null geodesic orthogonal to 
J"  [4]. Points on such a geodesic beyond the conjugate point will tie in 
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the interior of J+(~--) and not on its boundary [2,4]. However the 
generator 2 of J+(Y-) would have infinite affine length from Y- to J +  
since J +  is at infinity. This establishes a contradiction which shows that 
Y- does not intersect J - ( J+) .  Thus the future incomplete geodesic in 
J+(Y') is not visible from J + .  

Since J -  (J+) does not contain Y, its boundary J -  (J+) must be non- 
empty. This is the event  horizon for J +  and is the boundary of the region 
from which particles or photons can escape to infinity. It is generated by 
null geodesic segments which have no future end-points. The conver- 
gence Q of these generators cannot be positive. For suppose it were 
positive on some open set og of J - ( J+ ) .  Let f f  be a spacelike 2-surface 
in all. Then the outgoing null geodesics orthogonal to ~- would be 
converging. One could deform a small part of ~" so that it intersected 
J - ( J  +) but so tha t  the outgoing null geodesics orthogonal to f f  were 
still converging. This again would lead to a contradiction since the null 
geodesics orthogonal to f f  could not remain in J + (if) all the way out 
to J + .  

If there were a point on the event horizon which was not in D+(5~), 
the future Cauchy development of 5 ~, a small perturbation could result 
in there being points near J +  which were not in D+(Y). Since I am 
assuming that asymptotic predictability is stable, I shall slightly extend 
the definition to exclude this kind of situation. In an asymptotically 
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predictable space J+(50)c~J-(J  +) is in D+(50). I shall say that such a 
space is strongly asymptotically predictable if in addition J+ (50)c~ J ( J  +) 
is in D + (50). 

In such a space one can construct a family 5Qt) ( t>0)  of partial 
Cauchy surfaces in D ÷ (5 °) such that 

(a) for t2 > tl, Y(t2)C J+(50(tx)); 
(b) each 50(t) intersects S + in a 2-sphere sJ(t); 
(c) for each t >  0, 50( t )w[J  + c~J-(~(t))]  is a Cauchy surface for 

D+(50). 
The construction is as follows. Choose a suitable family ~'(t) of 

2-spheres on J + .  Put a volume measure on ~ so that the total volume 
of J / / in  this measure is finite [7]. Define the functions f(p) and h(p,t), p 
eD+(50) as the volumes of J+(p)r~D+(50) and [ J - ( p ) - J - ( d ( t ) ) ] n D + ( 5  ~) 
respectively. They will be continuous in p and t. The surface 50(0 is then 
defined to be the set of points p such that h(p, t) = tf(p). 

For sufficiently large t, the surfaces 50(t) will intersect the event 
horizon and so ~(t) defined as Y ( t ) - J ( J + )  will be nonempty. I shall 
define a black hole on the surface 50(t) to be a connected component of 
M(t). In other words, it is a region of 50(0 from which there is no escape 
to ~+ .  As time increases, black holes may merge together and new black 
holes may be created by further bodies collapsing but a black hole can 
never bifurcate. For suppose the black hole Nl(t~) on the surface 50(tl) 
divided into two black holes ~2(t2) and ~3(tz) by a later surface 50(t2). 
Then N2(t2) and N3(t2) would each have to contain points of J+ (N1 (t0). 
However every nonspacelike curve which intersected ¢)~(ta) would 
intersect 50(t2). Therefore J + (~ 1 (t 1)) c~ 5 °(t2) would be connected and 
would be contained in N2(t2)w~3(tz). 

Suppose that ~ is initially nonsingular in the sense that J-(50), the 
region to the past of 50, is isometric to a region to the past of a Cauchy 
surface in an asymptotically simple space [2]. Then for small values of t, 
the surfaces S(t) will be compact. However the surfaces 50(t) are homeo- 
morphic to each other for all t > 0 and so they will all be compact. This 
implies that the boundary ~M ~ (t) of a black hole N l(t) will be compact. 

Since the generators of J - ( J + )  have no future end points and have 
convergence 0 <0,  the surface area of ~ ( t )  cannot decrease with t. 
If two black holes ~ t ( t t )  and ~2(t~) on the surface 50(t~) merge to form 
a single black hole ~3(tz) on a later surface 50(tz), then the area of ~ a ( t l )  
must be at least the sum of the areas of 00~(tl) and ~)2(tl). In fact it 
must be strictly greater than this sum because (?Y)s(tz) contains two 
disjoint closed sets which correspond to the generators of J ( J + )  which 
intersect ~ l ( t l )  and ?~z(tl). Since ON3(tz) is connected, it must also 
contain an open set of points which correspond to generators which 
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have past end points between t2 and t 1. These results wilt be used in the 
next section to place certain limits on the possible behaviour of black 
holes. 

3. Stationary Black Holes 

In a collapse that was strongly asymptotically predictable one would 
expect the solution outside the event horizon to become stationary 
eventually. This suggests that one should study exactly stationary solu- 
tions containing black holes in the hope that one of these will represent 
the final state of a collapsed system. In this section I shall therefore 
consider spaces which satisfy the following conditions: 

(i) They are weakly asymptotically simple. 
(ii) There exists a one parameter isometry group ~b~: J¢--. Jg  whose 

Killing vector K a is timelike near J +  and J -  
(iii) There exist both a past event horizon J + ( J - )  and a future event 

horizon J -  (J+).  
(iv) There exists a partial Cauchy surface 5O from which the exterior 

region Y+(J-)c~3"-(J  +) can be determined, i.e. the exterior region is 
contained in D + (5O)w D-(5°), the Cauchy development of 5O. 

(v) The two event horizons J + ( J - )  and J - ( J + )  intersect in a 
compact surface .~-. 

In a real situation where an initially nonsingular body collapses there 
will not of course be any past event horizon, since that part of the space 
will be inside the body and so will be different and will be nonstationary. 
The statement that a past horizon exists is therefore to be understood as a 
condition on the analytic continuation of the stationary solution to 
which the real solution tends. Except in certain limiting cases, one can 
prove that provided there are no singularities in the exterior region, there 
will indeed be a past horizon which will intersect the future horizon. 
Penrose however has questioned whether it is reasonable to assume the 
nonexistence of naked singularities in the unphysical past region of the 
analytic extension. In fact the results that will be given in this paper can 
be obtained without assuming anything about the behaviour of the 
solution in the past though the proofs are then considerably more 
complicated. They will be given in [3]. 

Israel [8] has shown that a space which satisfies conditions (i)-(v) 
must be the Schwarzschitd solution if it also satisfies the following 
conditions: 

(vi) It is empty, i.e. Tab = 0. 
(vii) It is static and not merely stationary, i.e. the Killing vector K" 

is hypersurface orthogonal so rlabCdKbKc;e = O. 
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(viii) The gradient of KaK, is not zero anywhere outside the horizon. 
This means that there is no neutral point at which a particle can remain 
at rest outside the black hole. 

Carter [9] has considered spaces which satisfy conditions (i)-(vi) and 
(ix) are axisymmetric. 
(x) The surface ~" which is the intersection of the two horizons has 

the topology S 2. 

He shows that such spaces fall into disjoint families, each depending 
on at most two parameters m and a. The parameter m represents the 
mass of the black hole as measured from infinity and the parameter a is 
hc/Gm where h is the angular momentum as measured from infinity. 
One such family is known, namely the Kerr solutions with a 2 < m 2 [10]. 
It seems unlikely that there are any others. It has therefore been conjec- 
tured that, at least in a collapse that does not deviate too much from 
spherical symmetry, the solution outside the horizon tends to one of the 
Kerr  solutions with a2<  m 2. I shall here give further support to this 
conjecture by justifying condition (ix), that is, I shall show that a rotating 
black hole must be axisymmetric if it satisfies conditions (i)-(v). Condi- 
tion (x) will be justified in the next section. 

I shall assume that the matter in the space satisfies the weak energy 
condition and obeys well behaved hyperbolic equations such as Maxwell's 
equations or those for a scalar field. It then follows that the solution must 
be analytic near infinity where the Killing vector is timelike [11]. I shall 
take the solution elsewhere to be the analytic continuation of this region 
near infinity. The idea is now to consider the solution immediately to the 
future of the surface F of intersection of the two horizons (Fig. 2). This is 
determined by Cauchy data on the two horizons. By analyticity the 
solution in this region determines the local nature of the solution every- 
where else. I shall show that the Cauchy data on the intersecting horizons 
is invariant under a continuous group which leaves the intersection 
surface f f  invariant but moves points on one horizon along the null 
generators of the horizon towards ~- and moves points on the other 
horizon along the generators away from f f  (Fig. 3). From the uniqueness 
of the Cauchy problem it then follows that the solution must admit a 
Killing vector field which on the horizon is directed along the null 
generators. However, in general, the Killing vector field K a which is 
timelike near infinity will be spacelike on the horizon. There must thus 
be two independent Killing vector fields and a two parameter isometry 
group. Near infinity the extra symmetry will have the character of a 
Poincar6 transformation. Since a black hole in asymptotically flat space 
is not invariant under a space translation or a Lorentz boost, the extra 
symmetry must correspond to a spatial rotation and so the solution will 
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Fig. 3. The transformation 0. 

be axisymmetric. Carter [12] has shown that in a stationary axisymmetric 
asymptotically flat space, the two Killing vectors must commute. 

To show that the Cauchy data on the horizons is invariant under a 
group, I shall first show that the null generators of the horizons have zero 
convergence 0 and shear ~r (see [13] for definitions). For  this purpose 
consider a spacelike 2-sphere cg on J - .  The family of surfaces off(t) - ~bt(Cg) 
obtained by moving E along the Killing vector K a will cover J - .  Let 2 
be a null geodesic generator of the future horizon J - ( J + )  which inter- 
sects ~,~. The strong causality condition [14] will hold on the compact 
set Y since it is in the Cauchy development of 5 e. This means that 2 must 
leave o~ and so must leave J + ( J - )  and enter J + ( J - ) .  Suppose there 
were some t' such that 2 did not intersect J+ (cg(t')). Then for any t, the 
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generator ~b~(2) would not intersect J + ( ( g ( t ' +  t)). Since ~ is compact  
there would be a point q s ~ which was a limit point of ~ c~ 4~(2) as 
t ~ - oe and there would be a null direction at q which was a limit of the 
direction of the ~b~(2). The future directed null geodesic from q in this 
direction would lie in J-(~¢+) because J - ( J + )  is a closed set and its 
generators have no future end-points. Thus it would enter J+(J - - ) .  
However it could not intersect J+  (cg(t)) for any t since it was a limit of 
the q5~(2) as t ~  - oe. This establishes a contradiction which shows that 2 
must intersect J+ (~g(t))for every t. 

The generators of J - ( J + )  which intersect N form a compact  set 
invariant under 4~t. Let 50(0 be the 2-surface which is the intersection of 
these generators with J+(cg(t)). As t increases, ~ ( t )  will move to the 
future along the generators of J - ( J + ) .  The convergence Q of these 
generators is less than or equal to zero. If it were less than zero anywhere 
the area of ~ ( t )  would increase. However  the area of 2 ' ( t )  must remain 
the same since it is moving under the isometry ~bt. Thus q =  Ia;bnaaN b = 0 
where I" is the null tangent vector to the generators of J - ( J + )  and na a 
a n d / ~  are complex conjugate null vectors orthogonal to 1 a with m~r~ 
= - 1 .  It then follows from the weak energy condition that the shear 
~r=la;bnaana b, Ricci tensor component  ( b o o = - ½ R a b l " l  b and Weyl 
tensor component  ~Po = - ~f, bcd P nab IC nad are zero on J -  (~¢ +) [13]. Simi- 
larly the corresponding quantities # = --n,;bNana b, 2 = - - n , , b N a ~  b, ~b22 
= -- ) R a b n " n  b and ~P4 = - C~bcd naNbncNd must  be zero on J + ( J - )  where 
n" is the null vector tangent to the generators of J + ( J - )  and naa and n5 ~ 
are orthogonal to n,. For  the empty space Einstein equations the Cauchy 
data is determined by ho o on J - ( J + ) ,  tp4 on J + ( J - )  and Q, # and ~P2 
= - - ½ C ,  bcd(pnbl~nd+ l~nbna~N d) on the intersection surface ~ [19, 16]. 
Apart  from tP2, these quantities are all zero in the present case. At ~- one 
can normalise/" and n ~ by/"n~ = 1 and one can then parallelty propagate  
them and na" and N" up the horizons. There remains the freedom P-+ e"l ", 
n " - ~ e - ~ n "  where u is a function on ~ .  If u is not constant on ~,~ the 
rotation coefficient e + f i=  l ,;bn"N b will be changed by this transforma- 
tion. However if u is constant all the rotation coefficients and Riemann 
tensor components  will be unchanged under this transformation if one 
moves from a point on J - ( J + )  an affine distance v from ~ to a point on 
the same generator an affine distance e - "v  from ~,~. Similarly everything 
is unchanged on J + ( J - )  if one moves from an affine distance of w to 
one of e"w. This means that the Cauchy data on the horizon is invariant 
the one parameter  transformation 0, which leaves .~- invariant and is 
generated by the vector fields - v P  and w n  ~ on J - ( ,~+ )  and J + ( J - )  
respectively. The solution determined by the Cauchy data will therefore 
admit  an isometry group 0, whose Killing vector K" will coincide with 
- v P  or wn" on the horizons. 



Black Holes in General Relativity t61 

In the case of the Einstein equations with a scalar field, the additional 
Cauchy data needed is the value of the field on the two horizons. As cb o 0 
and ~22 are zero, the field must be constant along each generator. The 
Cauchy data is thus invariant under the transformation 0, in this case 
also. For  the Einstein-Maxwell equations the additional data is Fablam b 
on J - ( J + ) ,  Fabn~ b on J + ( J - )  and F~b(lanb+mam b) on ~-. However 
the first two are zero as ~boo and ~b22 are zero and the third is invariant 
under 0,. Similar results will hold for other well behaved fields. 

The Killing vector K ~ will be tangent to the horizons since they are 
invafiants under the isometry ~t. Thus on the horizons it will either be 
directed along the null generators or it will be spacelike. The former will 
be the situation if the solution is not only stationary but static [-17]. In 
this case the Killing vectors K" and / ( a  will coincide. However one can 
appeal to Israel's results [8, 18] to show that the solution must be 
spherically symmetric if it is either empty or contains only a Maxwell 
field. 

If the solution is not static but only stationary and is empty, one can 
generalise a result of Lichnerowitz [19] to show that there wilt be a 
region where K a is spacelike. (Details will be given in [3].) Part, at least, 
of this region will be outside the horizon. If the horizon is contained in 
this region, the Killing vectors K a and /~a will be distinct and so the 
solution will be axisymmetric. A particle travelling along a null geodesic 
generator of the horizon would be moving with respect to the stationary 
frame, i.e. the integral curves of K ~. Thus, in a sense, the horizon would be 
rotating with respect to infinity. One can therefore say that any rotating 
black hole which satisfies conditions (i)-(v) must be axisymmetric. 

There remains the possibility that there could be stationary, nonstatic 
solutions in which the horizon was not rotating but in which K a was 
spacelike in a region outside and disjoint from the horizon. In such a 
situation there would have to be neutral points outside the horizon 
where K" was timelike and the gradient of K"K~ was zero. I have not 
been able to rule out this possibility but it seems to be unstable in that 
one could extract an indefinitely large amount of energy by a method 
proposed by Penrose [20]: consider a small particle with momentum 
p] = m l ~  where rnl is the mass and v{ is the future directed unit tangent 
vector to the world-line. If the particle moves on a geodesic its energy 
E 1 = p{ K~ will be constant. Suppose that the particle were to fall from 
infinity into the region where K" was spacelike and there divided into 
two particles momenta p~ and p~. By local conservation, p{ = p~ + p~. 
Since K" was spacelike, one could arrange that E 2 = p"zK~ was negative. 
Then E 3 > E 1 and particle 3 could escape to infinity, where its total 
energy (rest-mass plus kinetic) would be greater than that of the original 
particle. Particle 2 on the other hand would have to remain in the region 
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where K" was spacelike and so could neither escape to infinity nor fall 
through the horizon. By repeating this process many times one could 
gradually extract energy from the solution. As one did this the solution 
would presumably change gradually. However the region where K" is 
spacelike could not disappear since there would have to be somewhere 
for the negative energy particles to go. If it remained disjoint from the 
horizon, one would apparently extract an indefinite amount of energy. 
If, on the other hand, the region moved so that it included the horizon, 
K" and/~"  would be distinct and so, suddenly, the solution would be 
axisymmetric. I therefore feel that such a situation will not occur and 
that any stationary, nonstatic, black hole will be axisymmetric. 

It is worth noting that the field equations did not play a very impor- 
tant part in the above argument. Thus one can apply it also to the case 
of a rotating black hole surrounded by a ring of matter. The solution 
will not be analytic at the ring but it will be elsewhere, and so the above 
result will still hold. At first sight this seems to lead to a paradox. Consider 
a rotating star surrounded by a non-rotating square frame of rods. 
Suppose that the star collapsed to produce a rotating black hole. From 
the above it appears that the solution ought to become axisymmetric. 
However the presence of the square frame will prevent this. 

The answer seems to be that the field of the frame will distort the 
rotating black hole slightly. The reaction of the rotating black hole 
back on the frame will cause it to start rotating and so to radiate gravi- 
tational waves. Eventually the rotation of both the black hole and the 
frame will be damped out and the solution will approach a static state 
in which K" and K" coincide and which therefore does not have to be 
axisymmetric. I am grateful to James B. Hartle and Brandon Carter for 
suggesting this solution to the paradox. 

4. The Topology of the Event Horizon 

In this section I shall prove that each connected component of the 
2-surface 5°(0 in the event horizon has the topology S 2. This is done by 
showing that, if it had any other topology, one could deform it outwards 
into the exterior region in such a way that the future directed outgoing 
null geodesics orthogonal to it would be converging. As in Section 2, 
this would lead to a contradiction. 

Let I a be the future directed null vector tangent to the future event 
horizon and let n" be the other future directed null vector orthogonal to 
5~(t) normalized so that l~na = 1 but with the freedom l "~eap,  na-~e-~n" 
not restricted for the moment. Now move each point of 5o(t) an affine 
distance - w along the null geodesics with tangent vector n °. This moves 
5o(t) to the past into J - ( J + ) .  To keep P orthogonal to the 2-surface, it 
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has to be propagated so that 

~=~+/~ 

where z = t~;bm"n b. The change of the convergence 0 produced by this 
movement is given by one of the Newman-Penrose equations [13]: 

d 
dw 0 = S~ + (]~- ~) "c - ~ - ~P2 - 2A (1) 

where A=R/24 ,  O~--~=Na;bm'~N b and 6"c=N"r;,. The combination 
S - ( e - i f )  acting on the spin weight + 1 quantity • is the covariant 
Newman-Penrose operator r6 [21]. 

Under a rescaling transformation l ' "= e"l ", n 'a= e -an  n, the quantity r 
d 

changes to ~' = r + 6a and so ~-w Q changes to 

d 
dw' Q' = - 'c '~ '  + ~'c + ~ 6 a -  ~p2 - 2A" (2) 

The term ~6 ~a is the Laplacian of a in the 2-surface. One can choose a 
so that the sum of the last four terms on the right of Eq. (2) is constant on 
~(t) .  The sign of this constant value will be determined by that of the 
integral of -0Pz + 2A) over L~°(t) (76 r, being a gradient, has zero integral). 
This integral can be evaluated from another Newman-Penrose equation 
which can be written as 

~ (c~ + ff)-r6(-~ + ~) + ~6(o~- ~) +36(-~- f l)= - 2~z  + 2A  + 2(b, a (3) 

where ~ ,  x = ---}R,b( Pub + mamb) • When integrated over the 2-surface the 
terms in ~ +/~ disappear but there is in general a contribution from the 
~ - ~  terms because the vector field m" will have singularities on the 
2-surface. The contribution from these singularities is determined by the 
Euler number )~ of the 2-surface. Thus 

~ ( -g '2  + # i l  + A )  d S = r c Z .  (4) 

(The real part of this equation is, in fact, the Gauss-Bonnet theorem.) 
Therefore 

- ~ 0Pz + 2A) dS = 7r Z - ~ (q>il + 3A) dS.  (5) 

For the electromagnetic and other reasonable matter fields, obeying the 
Dominant Energy condition [25] ~ l l  + 3A _>_ 0. The Euler number )~ is 
+ 2 for the sphere, 0 for the torus and negative for other compact orien- 
table 2-surfaces. (Sf(t) has to be orientable as it is a boundary.) 

Suppose that the right hand side of Eq. (5) was negative. Then one 
d 

could choose a so that ~ Q' was negative everywhere on &°(t). For a 
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small negative value of w' one would obtain a 2-surface in J - (3"+)  such 
that the outgoing null geodesics orthogonal to the surface were converg- 
ing. This would lead to a contradiction. 

Suppose now that 5~ was zero and that g ' t ~ + 3 A  was zero on the 
horizon. Then one could choose a so that the sum of the last four terms 
in Eq. (2) was zero everywhere on £f(t). If 1,o 2 was nonzero somewhere 
on 5¢(t), the term - z'g' in Eq. (2) would be nonzero and one could change 

d , 
a slightly so as to make dwTw, Q negative everywhere on 5¢(t). This would 

again lead to a contradiction. If, on the other hand, 11) 2 was zero every- 
where on ~( t ) ,  the Cauchy data would be zero and so the solution would 
be flat. One could not have a flat toroidal horizon in a flat space which 
is Euclidean at infinity. 

This shows that Lf(t) and hence ~,~ has spherical topology. It has not 
been excluded that 5e(t) might have several disconnected components, 
each topologically spheres, which represent separate black holes at 
constant distance from each other along the axis of symmetry. For  
reasons explained in the next section I think this could occur only in the 
limiting case where the black holes have a charge q = + G } m .  

5. Energy Limits 

In view of the previous two sections, it seems reasonable to assume 
that in a gravitational collapse the solution outside the horizon settles 
down into a Kerr  solution with a z < m 2. If the collapsing body had a net 
electrical charge of q e.s.u., one would expect the solution to settle down 
to a charged Kerr  solution [10] with a 2 + e  2 < m  2 where e--G--~q.  
One would therefore expect the area of the 2-surface 0N(t) in the horizon 
to approach the area of a 2-surface in the horizon of the Kerr solution. 
This area is 

4 ~ G 2  c - 4 ( 2 m  z - e 2 + 2 m ( m  z - a 2 - e2)~). (6) 

Consider a black hole which by a surface 5P(t) has settled down to a 
Kerr  solution with parameters m 1, a 1 and el. Suppose the black hole now 
interacts with various particles or fields and then settles down again 
by a surface 5P(t ') to a Kerr  solution with parameters m2, a2 and e 2. 
From Section 2 it follows that the area of (?N(t') is greater than or equal 
to the area of ~N(t). In fact it must be strictly greater if there is any 
disturbance at the event horizon. Thus 

2 m ~  - e 2 + 2 m . 2 ( m  2 - a 2 - e~)  ~ > 2mZ~ - e~ + 2 m ~ ( m  2 - a 2 - e~)  ~.  (7) 

Note that m2 can be less than m~ if a~ or e t are nonzero. One can interpret 
this as meaning that one can extract rotational or electrostatic energy 
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from a black hole. One way of extracting rotational energy would be to 
construct an asymmetric frame of rods around the black hole. According 
to the argument in Section 3, the frame would start rotating and would 
emit gravitational waves until the rotation of the black hole was damped 
out. Another way of extracting energy would be to use the fact that the 
Killing vector K a is spacelike on and in a region just outside the event 
horizon. One could then employ the procedure described in Section 3 
of sending in a particle and getting one back with greater energy. In this 
case the negative energy particles could fall through the horizon. Christo- 
doulou [22] has shown that using this process one can get arbitrarily 
near the limit set by inequality (7). Using charged particles one can 
extract electrostatic energy from a black hole. By lowering a particle of 
the opposite charge down the axis on a rope one can get arbitrarily near 
the limit set by (7). 

Consider now a situation in which two stars a long way apart  collapse 
to form black holes Nl(t) and ~ 2( t ) .  One can neglect the interaction 
between them and take the areas of (~l(t) and aY)a(t)  to be given by 
formula (6) with the values of the parameters ml, al, el and m2, a2, e2 

respectively. Suppose the two black holes now collide and merge to form 
a single black hole N3 (t'). This process will give rise to a certain amount  
of gravitational radiation and, if the black holes are charged, of electro- 
magnetic radiation as well. By the conservation law for weakly asymptoti- 
cally simple space-times [23], the energy of this radiation is (ma + m2 

- m3) c 2. This is limited by the requirement that the area of 0~3(t'  ) must 
be greater than the sum of the areas of ~?N'l(t ) and c~9¢2(t ). This gives the 
inequality 

2m 2 - e~ + 2m3(m ~ - a3 z - e~) ~ 
(8) 

2 2 2 m z ( m 2 _ a ~ _ e ~ ) ~ + 2 m 2 _ e ~ + 2 m l ( m ~ _ a Z _ e 2 ) ~ .  > 2 m  2 - e 2 + 

The fraction e = (m~ + m2)- l (m 1 + m 2 - m3) of energy radiated is always 
less than 1 - 2  -~. If el and e2 are zero or have the same sign, then e < 1. 
If, in addition, a 1 = a 2 = 0, then e < 1 - 2 -~. 

By the conservation of charge, e 3 = e I + e 2. Angular momentum,  on 
the other hand, can be carried off by the radiation. This cannot happen 
however if the situation is axisymmetric, i.e. if the black holes have their 
rotation axes aligned along their direction of approach to each other. 
Then m 3 a  3 = m~a~ + m 2 a  z. It can be seen that if the angular momenta  
have the same sign there is less energy available to be radiated than if 
they have opposite signs. This suggests that there may be a spin dependent 
force between two black holes as indeed one might expect from the 
analogy between angular momen tum and magnetic dipole moment.  
Unlike the electrodynamic case, the force would be attractive if the 
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angular momenta  had opposite  directions and repulsive if they had the 
same direction. However,  even in the limiting case rn 1 = m2 = al = a2, it 
is still possible to radiate some energy. This suggests that the repulsive 
force is never strong enough to balance the attractive force between the 
masses. It seems that the only  way to obtain a strong enough repulsive 
force is to go to the other limiting case in which mt = ei, mz = e2 and 
al = a 2 = 0. Hartle and I [24] have found static solutions containing 
two or more such black holes. 
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