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Abstract. The existence of a unique thermodynamic state for dilute classical systems 
is proved for a class of regular multi-particle potentials. The method relies on integral 
equations for "modified" correlation functions. 

Integral equations have been used successfully to prove the existence 
of equilibrium states of lattice systems defined by multi-particle potentials 
for both classical and quantum statistical mechanics [1-3], and of 
classical continuous systems with two-body potentials [4]. However, 
difficulty in deriving and solving integral equations for continuous 
systems with any additional multi-particle potentials has led to a belief 
that these linear methods do not generalize in a natural way to the case 
of multi-particle potentials in the continuum. 

In this paper, we will demonstrate that for stable, multi-particle poten- 
tials satisfying a regularity condition, Definition 2.1, the Kirkwood- 
Salzburg equations for the correlation functions generalize to a set of 
integral equations having, for sufficiently high temperatures, a unique 
solution which is analytic in its parameters and to which the finite volume 
correlation functions of the Gibbs ensemble converge. For finite type 
potentials, a more transparent formulation of regularity is derived. We 
wish to emphasize that the success in deriving integral equations for 
multi-particle potentials appears to arise from an optimal use of the 
expected thermodynamic behavior of the solutions. 

1. Integral Equations for Modified Correlation Functions 

We shall study classical continuous systems of point particles in 
v-dimensional Euclidean space, IEL We assume that the potential energy 
of the particles is specified by a sequence {(pm}m => 2 of m-body potentials; 
namely, for n>__ 2 and x 1 .. . . .  x.~IE ~, then the potential energy of n 
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particles located at x~ . . . . .  x, is U (xt, ..., x,), where 

r a=2  l < i l < i 2 < ' " < i r a < n  

To simplify notation, we will generally use upper case letters to denote 
finite subsets of tE ~ and drop the integer superscripts on the potentials go. 
In this notation, 

U(X) = 2 go(T). 
TCX 

Where it is desirable to indicate an n-element subset of IE ~, we will write 
X, or N(X)  = n, and we will abbreviate the integration symbol ~ dxl.. ,  dx, 

A n  

by SdX, .  
A n 

Definition t.1. The potential q) is stable 1-5] if there exists a positive 
constant B such that 

U (X) >= - N (X) B 

for all X C IEL We shall call q9 ultra-stable if, for some #, 0 < # < t, B can 
be chosen so that 

U ( X w  Y w z ) - t ~ ( U ( X w z ) -  U(X)) > - N ( X u  Y) B 

for all X, Y, z C IE v with N(z) = 1. 
For  X C IE ~ and any x ~ X, define 

w~(x) = E ~o(xus)= u(x)-  u(x-x)  
S c X -  x 

and let co (X) be the element of X which is the smallest element, in some 
lexicographic order, of the set {x e XI Wx(X) > Wr(X), Vy e X}. Then, 
for any Y C IE ~, define 

w(x) = w~(X)(x) 

w(x, Y)= y~ q,(sv Yuo4x)). 
S e X  - ~ ( X )  

The finite volume correlation functions 9a, for A a bounded, Lebesgue- 
measurable subset of IE v, are given on E = U (IEV)" by 

n 

z n +  N(X)  

ea(x) = z~ ~ZA(X) E n ! S d r .~-~(x~°)  (t) 
n = O  A n 
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where )~A(Xn) for each n > 1 is the characteristic function of the region 
A"C E, and ZA is the grand canonical partition function: 

ZA= ~ of dY.e -pv(~°) 
n = 0  A n 

Define modified correlation functions g~ for 0 < # < 1 by 

g"a(X) = e~'~w<x) eA(X). 

The modification factor in these functions will avoid the high energy 
divergence of the Kirkwood-Salzburg equations for multi-particle poten- 
tials. 

Theorem 1.2. For A a bounded Lebesgue-measurable subset oflE v and 
{q0m}m_>_2 an ultra-stable potential, the finite volume modified correlation 
functions g~, 0 < # < 1, satisfy the integral equations 

g~(X)= ~ ~ dn~gUA(XUR.--e)(X))K~(X,R.)+XA(X)c~(X ) 
n=O (~v) .  

with the kernel K"A defined by 

K~(X, R.) 

= ( -  1)'ZZA(X)e uew(x) ~ ( -- 1)N<W)exp{ -- f lU(Xu VV) + flU(Xw W -  o(X)) 
W c R n  

- 3~ w ( x u R . -  co(x))} (2) 

and 
1, N ( X ) = 0  

a(X)= 0, N(X)>0"  

Proof 1. The identity 
oo 

zN(A) e-t~V(A) = ZAm~ = 
= 0  

& ,g.~ 
~ . .  (-1)rnQA(AUWm) (3) 

A m 

for A C A follows from stability, since 

dV, ( dSm e_~U(AuV~uS~,) - -ltn  
n = 0  A n m = 0  A m 

dR,. e ~v(a~R~) ( 1)N(v) e-eV(A> 
= ~ m T  2 - = 

m =  0 A m A C  R m  

The above equations were derived jointly with D. Robinson of Centre Universitaire, 
MarseiUe. 
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and the integrands are absolutely summable for stable potentials. 
Substitute (3) in (1) to obtain 

zn + N(X) 
Q~(X)= ZA I)~A(X)e'PW(X) ~ n! ~ dS"e-eV(x~s"-'°(x)) 

n=O A n 

x {e -~v(x~'s")+~v(x~'s"-°'(x)} 

--n=O-- ~ m=O ~ ) ~ A ( X ) Z A  n ~ T d S n  ~m ~dEm Q ~ l ( X t J S n L 3 g m - ( ' o ( X ) )  

x {(-  1)~e up(w(x)-w(x's"''V"-°'(x)) e -av(x''s")+av(x'os"-~'(x))} 

- ~ ~ . g A ( X u R . - c o ( X ) )  z~(X)z 2 ( -1)  N(v)euaw(x) 
n = 0 A n VCRn 

X e -  fi u ( x u  (R,, - V)) + I1 U(Xu(Rn - V) - o~(X)) -,u B W(XuRn - co(X)) 1 . 

Finally, observe that the R,, integration can be extended to (IE~) ~, since 
the 9~ vanish outside A. 

2. Regular Potentials 

In order for the integral equations to have a unique solution in the 
limit A ~ 0% it will be necessary to restrict attention to a class of ultra- 
stable potentials satisfying a regularity requirement. 

Definition 2.t. The potential (p is regular if the following properties 
are satisfied for some #, 0 < # < 1, and for fl sufficiently small: 

(a) Except for X in a set of Lebesgue-measure zero, if X C IE" and 
W(X) < 0% then for every bounded, measurable region A C 1E ~', n > 0, 
and non-degenerate covering S i . . . . .  Sj of the set Y= {71 . . . . .  Yn}, 

i.e., Si=Y,,O:t:Si=~S k for i+k  the function e -upw(x'r"-~'(x)) 
i= 

) 
× ~I I e-~w(x's~)- 1[ is integrable with respect to Y on A. 

~=~ 
(b) Except for X in a set of Lebesgue-measure zero, if X C IE *' and 

W(X) = 0% then W(X, R) > - oo almost everywhere (with respect to R). 
(c) if A-+ oe in the sense of van Hove, then 

lim ess sup ~ J--mT-.v ~ ~ e-~pw(x~r~-~(x)) 
A-+oo XcA n=l • j= l  S l , . . . , s j c r n  

w~Si = yn 
O*8i*S~ 

x ~ le -pW(x'sa- 1l e -B(1-u)w(x) I < 00. 
i= 1 / 



Thermodynamic States 263 

We shall see that for an ultra-stable, regular potential, a unique 
infinite volume state can be defined for dilute systems. An equivalent 
formulation of regularity which gives a more transparent restriction on 
the potentials ~o or the "interaction energies" W would obviously be 
desirable. Although we cannot derive this in general, we will give in 
Section 3 a sufficient criterion for regularity for a class of physically 
reasonable potentials. 

Ultra-stability yields immediately. 

Lemma 2.2. For z sufficiently small, gU A e L ~° (E), the Banach space of 
bounded, Lebesgue-measurable functions on E with sup norm I] ][ ~. 

Lemma 2.3. I f  (p is an ultra-stable, regular potential, then the kernel 
Kua is a bounded operator on L °° (E), with norm 

sup z j=~ s , , . . . , s j c r ,  i=1 !IK~tt <ess_ xcA A~ ~ 2 ~I t e -#w(x ' s ' , -  1I 

uiSi=gn 
O=~ Si:~= Sk 

x exp { - fl (1 - #) W(X) - #fl W(X  u Y , -  co (X)) I . 

/ 
Proof Compute 

K~ (X, R) exp {fl (1 - #) W(X)  + fl # W ( X  u R - co (X))} 

t S¢~ J 

J 
= zzA(X) ( -  i) N(R) Z ( -  i) N(w) ~ Z l ]  ( e-#w(x's')- 1) 

WcR j = l  SI,...,SjcW i=1 
O#Si~:Sk 

j = i  SI,--.,SjcR VCR-k2iS~ i =1 
~#S~4:Sk 

J 

= zzAIx) Y, Z I1 
j = I  SI,-..,SjcR i=1  

wiSi=R 
O#Si~Sk 

observing in the last equation that ~, ( - 1 )  N(v) vanishes unless T =  0. 
VcT 

Lemma 2.4. I f  q~ is an ultra-stable, regular potential and fl is suffi- 
ciently small, then for some # < 1, the K~ converge to a bounded operator 
K% on L~(E) as A---,oo in the Jbllowing sense. For every sequence {Ai} 
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which converges .lim Ai = Go in the sense of van Hove, and for each f e L l(E), 
t--+ oo 

KU4+~ f ~ KS  + f strongly in L 1 (E). 
Here, and throughout, T +, for T an operator on L~(E), signifie s the 

adjoint of T restricted to the space L ~ (E) of absolutely Lebesgue-integrable 
functions with norm [I [[1. 

Proof Define K s pointwise by Eq. (2) with the characteristic function 
Za replaced by the identity function, 

K](X,  Y) = ZA(X) KS(X ,  Y) 

and let ~(X) denote the Lebesgue measure of any set S C E. 
Ife > 0 and ~r(C) < 0% there exists a bounded set C' C C with ~r(C- C') < e. 

For i sufficiently large, A~ D C', and then 

K~4 + f(s) = Zai(s) KS  + f(s) = KS  + f(s) 

if s e C'. Thus 

({sis e C, K~ + f(s) - KS  + f(s) # 0}) < e. 

That is, K~ + f o K % + f  in Lebesgue measure on every measurable set 
of finite measure. 

Furthermore, K~ + f - -*K~ + fweakly.  For if e > 0, choose a bounded 
measurable region DCE so that l[f--fD[Jl<e, where fD denotes the 
restriction of f to D. Then, for i sufficiently large, Ai 3 D, and for each 
z e L ® (E), 

]Sf(X) ((KUA~-- KS) ~) (X) d X[ <_ ] S f(X-) ( ( K ~ -  KS) z)(X) d X I 
E D 

+e[IK" ~,', I, l[~ll~ <e(llK~,[I + IIK~II)EI~II A i - -  a ~ - o o  II = oo • 

The Lemma follows from the observation that strong convergence 
in D is equivalent to weak convergence and convergence in measure 
on every measurable set of finite measure. 

Definition 2.5. Let g% be a solution of the integral equation 

Call 0~, defined by 

(1 - K ~ )  g ~  = c~. 

~ (X) = e- ~" w(x) g~ (X) 

an infinite volume state. 
When [IK~[[ _-< C < I  for all A, KS is a strict contraction on L°~(E), 

and the integral equation in Definition 2.5 has a unique solution. 
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Theorem 2.6. I f  q) is an ultra-stable, regular potential, then in a region 
of the fl - z plane defined by 

t dY. lim esssup ~ -(-MT 
A~oo XcA n=l  

J 
E ]-I i e-~w(x's~)- 1.1 

j = l  SI , . . . ,SdcY  n i=1 
<3iSi= Yn 

O # S l * S g  

x exp { -/~(1 - ~) w ( x )  - ~ w ( x  u Yo- ~o (x))} 
< Z  - 1  ] 

there is a unique infinite volume state 0~o. I f  A ~ oo in the sense of van Hove, 
then g~ converges weakly to g~, and 011 converges pointwise to Q~o almost 
everywhere. In particular, if W(X)  is bounded below, then Oa converges 
to ~ weakly. 

Proof It remains only to be proved that for any f e  L ~ (E), e > 0, and 
sequence {Ai} with Ai ~ 0% 

I(f, (I - K~,) -~ ~Za,) -- ( f  (I -- K~) -~ a)[ < e 

if i is sufficiently large, where we have used ( f  z) to denote the integral 
over E of the product f ( X )  z (X), f ~ L 1 (E), ~ ~ L °° (E). Estimating ( I -  K +)- 1 f 

N i 
by y, (K+)J fand  (Ka) i -  (K) i by ~ K ~ - k ( K A - K ) K  k-~, it is clear that 

j=o k=l 
(I - K~ +)- 1 f__, (I - K~ +)- 1 f strongly, by Lemma 2.4. Then: 

f(f, ( x -  g ~ )  - ~ ~ ZA,)-- (f, (I -- K~)-: ~)l 

<--_ I((X- K~+, ) - V -  ( t -  K~+) f, ~ZA)i 

+ I((I - K%+) - ' J ;  ~(1 - Za))] 

< e /2  + I((I - K ~  +) f :~(1 - ZA~))[ 

for i sufficiently large. But if D C E is a bounded measurable region satis- 
fying i] (I - K~ +)-1 f _ ((I - K~ +)-1 f)D [11 < e/2, then 

I((x- K~+) - ly; ~(a- ZA,))I < ~/2 

when Ai ) D. 

Corollary 2.1. If ¢ is an ultra-stable, regular potential, then in the 
region of the f l -  z plane defined in Theorem 2.6, ¢~(X) is an analytic 
function of fl and z. If ~ is a translation-invariant potential, then Q~ 
is translation invariant. 
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3. Potentials of Finite Type 

For potentials which satisfy some physically reasonable restrictions 
of finiteness and continuity, a sufficient condition for regularity can be 
given which directly generalizes the usual definition of regularity [5] 
for two-body interactions. 

Toward this end, define d:E-qR  by d (X)=  min lx -y t .  If {5~}n__>1 
x , y e X  
x ~ y  

is a sequence of non-negative numbers, let E{~,~ = {X ~ E]d(X) > 6N(X)} C E, 
and write Ix(Y) for ]e -~w(x ' r ) -  ll/N(Y)!, X, Y~ E. 

Definition 3.t. A potential {~P"},__>2 is of finite type if 
(a) for each n, ~" is continuous on (1E~)"c~E~o~, 
(b) q ) Z ( x , y ) ~  as d(xuy)-~O, x ,y~ lW,  
(c) (p is bounded below on E, 
(d) for each X ~ E, there exists a sequence (~x},~ ~ of step functions 

in L~(E), with intervals of uniform volume 1/n and bounded below by Ix, 
such that t~x-~Ix strongly and {t~},>__~ is Cauchy uniformly in X. 

Lemma 3.2. If ~p is ultra-stable and of finite type, then W(X)/N(X) 
is bounded below on E, and W ( X ) - * ~  as d (X)~0 .  

Theorem 3.3. A stable potential ~p of finite type is regular if for fi 
sufficiently small and A ~ o~ in the sense of van Hove, 

} lim sup ~ d Y, Ix(Y,) < oo. 
A~o~ XCA [n= 1 

Proof. Let f(n) be a positive decreasing function of the positive inte- 
gers n, to be fixed later, and choose {5.}._>1 to satisfy 

e -pW(r) < f(n) whenever N(Y) = n and d(Y) < @ 

It is clearly sufficient to prove: 

lim ~ ~, n! F, le pw(xs,) lj <oe  (5) 
A~cc  1 E{~n} j = l  S l , . . . , s j c g n  i 

u iSi  = gn 
OdffSi~zSk 

uniformly in {6.}, and for each a > 0 and X ~ E, 

"( -n-~. 2 2 ]e-'~w(x's°-l] < e  (6) 
n = l  E-E{jn}  j = l  S1,.**,Sj(Yn * :  

w~Sl=Yn 
O :V S i :¢ S I, 

for some {~,},_>_1. 
Consider (6) first. Fix X e E, let e > 0, and assume ~0 is bounded 

below by M < - 1. Then W(X, Si) > 2u(X~M and Ie -~W(x's'~- 11 < e  2N¢~pM, 
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By (4), Ao can be chosen sufficiently large so that 

dy. 
~i~. le~W(x'Y")-ll<e and le-pW(X'r~)-ll<l if Y . ~ A ' *  Y, 

E-- A n 

for all n and all A 9 A0. Split the integration in (6) over the sets 
( E -  E~.})c~ ( ~  A~) and ( E -  E{~.})c~ ( E -  ? A~). Since the number of 

/ /2"\ 
coverings of I1, by j subsets is certainly less than , {j / J, the integration 

over(E-E,o . , )~(UA"o)canbeboundedby 

~ V_!Ao)" 2e.eeMe~,<x,+.(f(n)),} (7) 
n = l  { iv/'! 

and the integration over ( E -  E{a.})c~ ( E -  ~t A~) bye  times the above. 

Eq. (6) then is satisfied by choosing f(n) so that (7) is less than e. 
To prove (5), fix A, let P. = {Ix1 . . . . .  x.]} be a uniform partition of 

A" with V([x 1 . . . .  , x.])= 2, for all n; here the intervals Ix1 .... , x.] of 
the partition are labeled by the centers (x~ . . . . .  x.) of the hypercubes 
Ix1 .. . . .  x.-]. Define 

J~x~..,~x.}(X)= sup le -#wCx's)- ll 
Se[xl, ...,x.l 

and choose 2 sufficiently small so that 

_ dY. {le_PW(x,r°) 1[}) 

for all X. Then: 

, aY. 2 
n = l  E{6~}mA'~ I'll 

< g  

J 
[I]  e -pw(x ' s ° -  1[ 

j = l  SI,.*.,SjcYn i = 1  
u~Si= Yn 
~@&@Sk 

<---.:1 e.~ ~ j=l s ..... ,sjc{x:~ . . . . . .  } h=l J{s'}(X)2 2 - j  
~tSi = Yn 
~*&*Sk 

<- - J~ . . . . . . . . .  ~ ( x )  2 -j=i )T .=1 n!2 

< exp ~2- ~ {le -ew(x'Y")- 1[} + < oo 
n = l  

which completes the proof. 
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From the foregoing, it is easy to construct examples of regular multi- 
body potentials. The simplest such example is a translation-invariant 
potential with two and three body components only, satisfying: 

i) (o2(0, x) is continuous, bounded below, and absolutely integrable 
outside a set of finite Lebesgue measure, and (92(0, x)~oe as Ixl~0. 

ii) (93 is continuous, non-negative, and symmetric in its arguments, 
and (93(0, xl, xz) vanishes outside a bounded region. 

4. Integral Equation Techniques 

The technique of using integral equations to study families of functions 
on a Banach space is most fruitful if either the Banach space is chosen 
to accomodate the special properties of the family, as in Ruelle's analysis 
of two-body potentials [5], or if, as above, the family is optimally modified 
to fit a fixed Banach space. In either case, one seeks a priori bounds for 
the correlation functions, and thus expects for thermodynamic inter- 
actions implicit cutoffs at high particle densities and high energy densities. 
It is for this reason that it is natural to study the modified correlation 
functions with their "modified" high energy behavior rather than the 
correlation functions themselves. 
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