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VARIETIES OF GENERALIZED STANDARD AND GENERALIZED ACCESSIBLE ALGEBRAS 

G. V. Dorofeev UDC 519.48 

In this paper we shall consider algebras over an associative and commutative ring qU 
with unity and containing 1/6. 

For the variety of generalized accessible algebras and certain of its subvarieties, con- 
sidered in the present paper, we shall use the following notation: 

6Ace - variety of generalized accessible algebras, 

ACC- variety of accessible algebras, 

~S~ - variety of generalized standard algebras, 

$~- variety of standard algebras, 

CQm~- variety of commutative algebras, 

~ - variety of alternative algebras, 

~0~- variety of Jordan algebras, 

AsJ-variety of associative algebras, 

~SS~rrgrn-variety of commutative associative algebras. 

Variety $~CC was defined in 1969 in [i], variety Ar162 in 1956 in [2], variety ~$~ in 

1968 in [3], and variety St in 1948 in [4]. 

THese varieties are related by the set-theoretical inclusions shown in the diagram on 
the next page (Fig. i). 

Moreover, the ordered set ~ of the varieties shown on this diagram is a sub-semilattice 
of the lattice of all varieties of algebras relative to the operation of intersection. 

The basic result of the present paper is the proof of the assertion that this ordered 
set forms a sublattice in the lattice of all varieties of algebras relative to the operations 
of union and intersection. In particular, there hold the equations 

We mention that for variety ~00 and its subvarieties, the corresponding assertion was proven 
in [5]. 
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Thus, the variety of generalized accessible algebras is the minimal variety containing 
all commutative and all alternative algebras. In other words, some identity holds in every 
generalized accessible algebra if and only if it holds in every commutative and in every 
alternative algebra. Whence follows the validity for generalized accessible rings of a host 
of assertions proven in [6, 7, 8]. bloreover, it turns out that a free generalized accessi- 
ble algebra is the subdirect sum of free commutative and free alternative algebras, and that 
each primitive accessible algebra is either commutative or alternative [9]. 

Similarly, the variety of generalized standard algebras is the minimal variety contain- 
ing all Jordan and all alternative algebras, and a free generalized standard algebra is the 
subdirect sum of a free Jordan and a free alternative algebra, while each primitive general- 
ized standard algebra is either Jordan or alternative. 

1 ~ Let A be an algebra over ring qb. For any elements ~ Z ~  we set 

= x  of=XT+I/x ' 

S ( x , ~ , z )  = (x , t / , z )  + ( f . , z . x )  + ( z ,x ,~ / ) .  

F u n c t i o n  f i g ,  . . . .  , a , ) ,  d e f i n e d  on a l g e b r a  A and assuming v a l u e s  in  t h i s  a l g e b r a ,  i s  c a l l e d  

skewsymmet r i c  i n  a rgumen t s  ~L " " ' t i  , i f  i t  changes  s i g n  upon any t r a n s p o s i t i o n  o f  t h e s e  a r -  
, l 

guments .  

S i n c e  //~ g q6 , f u n c t i o n  f i s  t h e n  skewsymmet r ic  in  any c o l l e c t i o n  o f  a rgumen t s  i f  and 

o n l y  i f  i t  v a n i s h e s  each  t ime  two o f  t h e s e  a rgumen t s  assume i d e n t i c a l  v a l u e s .  We s h a l l  de -  

n o t e  the set of  functions skewsymmetric in arguments ~;, ..... X~, by SS (~', ' ' " ' ~ ' i f ) '  

In algebra A we shall consider the following subsets: 

A' is the ideal generated by all commutators [w,~] , 
~(A) is the ideal generated by all (right) alternators {aP, J,f), 

~(~.) is the ideal generated by all elements of the form $(a~,~,g), 

V(A)={LrE~ ](a~,~ ) ~](CCs )} is the alternative center. 

Moreover, we shall denote by NIA), Z(A), and C(A) , as usual, the respective associative center, 

commutative center, and associative--commutative center (or, simply, center), and by D(A)= 

(A,A,~)+(A,A.A)A , the associator ideal of algebra A . 

Algebra A is called elastic if in it there holds the identity 

(x,~. .~)  = 0 ,  ( i )  

or, in linearized form, 

(:r,y. z )  ~ ss (~r, z ) .  (2) 
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An elastic algebra is called standard if in it there hold the identities 

S(x, f, z ) -  O, 

(z],t,z.)+ (zx, 4tJ+(z],~,x)=o, 

and generalized standard if in it there hold the identities 

$ (x~, z, x ) -  ,~ ( z,$~,7, ~x, 

(z~,~,z)+ c~z,{,~+<~y,Lz~- [~, (~,i/,=~ + ([7,f] ,  z,~)  , 

where a r /~ ,~  - -~ (x~ r )  - ~r(~r) + (~ , /~ , ] )  + {~rs -- (~ r~)~ .  

An a l g e b r a  i s  c a l l e d  a c c e s s i b l e  i f  i n  i t  t h e r e  ho ld  t he  i d e n t i t i e s  

(x ,~ ,z )+  (z,  x ,~/)  - (~ , z , f )=O , 

(Ez, f], z,~)-o, 

and generalized accessible if in it there hold identity (i) and 

- o ,  

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(yo) 

(ll) 

As was shown in [8], identities (5) and (7) in the definition of a generalized standard 
algebra are redundant while, in the definition of a generalized accessible algebra, identity 
(ll) can be replaced by the simpler identity 

l [ ~ ,~ ] ,  z , ~ ) ,  (z. Ez,~],~)=o. (12) 

The set-theoretical inclusions among the varieties at issue, shown on Fig. i, are ob- 
vious or are readily proven [3, 8, 9]. We now consider the intersections of these sets. 

Since r ~ , it then immediately follows from identity (8) that an accessible alter- 

native algebra is associative and, therefore, AcFnAe~ = Ass. Exactly the same way, from iden- 

tity (3) follows the equation 1{nA~i=ASs. Furthermore, in an accessible algebra the right 

side of identity (6) equals O, which follows from identity (9) and the results of [5]. Con- 

sequently, an accessible generalized standard algebra is standard and, therefore, Accn$$~ 
S~ . The coincidence of the remaining intersections with those shown on Fig. 1 is obvious, 
and we shall formulate the assertion thus obtained in the following form. 

Assertion I. The ordered set G of the varieties represented on Fig. 1 is a sub-semilat- 
tice in the semilattice of all varieties of algebras relative to the operation of intersec- 
tion. 

2 ~ . Let A be a generalized accessible algebra over ring q 5, let V-V(A), Z = ~(A). In 

algebra A there hold the following identities: 
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(x,j/~ ) -  Cz, yoz, t)+(x,g, zot)-xocg, z,t)+(x,s 

S ( z , # . z ) e  ss C:v,y,z) 

(xo~/, z,L)= xo$ (~,,z,~)+~,o S (z,z, ~), 

3([,,~],~,~, ) = ~ ([u,~], ~,~), 

([u,~], ~~,~,~, z) = o, 

(~ ~ ,~ ] ,~ ,~ . I=  (z, [~ , r  

( ~ , ~ ]  x , ] , ~ )  - z (z, E~.~],{), 

C~y, [ ~ , r  (~',~,, [u,~]~:r, 

([u,~],~z, z ) = ~([~,~,~/,~), 

(15) 

(16) 

(17) 

(~8i 

(19) 

(2o) 

(21) 

(22) 

(23) 

(24) 

(25) 

(26) 

(27) 

Identity (13) holds in any algebra, identities (14)-(19) hold in any elastic algebra: 
identity (16) follows from the linearization identity (X, 2,~) = 0 and the others are proven 

in [i0, 8]. Identity (20) follows immediately from the definition of ~ (~,Z) since, by 

identity (12), the commutator ~U,~ lies in the alternative center; analogously, identity 

(21) follows from (18) since, by virtue of (i0), alternator 

center. Identity (22) follows from (20) and (21), with (16) 
(23)-(26) are proven in [6]. 

Let us prove identity (27). Denoting commutator [U,~] 
tity (13), we shall have 

But, by virtue of 

(~,~,~) lies in the commutative 

taken into account. Identities 

for brevity by m and using iden- 

C~, :v x) = (rn,~x,z) -Cm,g,x ~) + m ( j , x , z ) +  r~,] ,x)x.  

i d e n t i t i e s  (16) ,  (20) ,  and (19) ,  

3(m,~,x ~) = $ (m,~ ,x~)-x~ = Jx~ g,x),  

and then, using (26), we obtain 

whence follows identity (27). 

In what follows we shall use identities (i), (i0), (12), (16), and (20) without, as a 
rule, any particular mention. 

LEMMA i. In algebra A there holds the identity 

S(~ , z , t ) -8 (~Fg ,  t)+S(x,~,~t)=zSc~,z,t  ) + 3(x,~,~)t. 
~roof. We denote the left side of the identity to be proven by h; then, using succes- 

sively identities (19), (20), and (14), and taking (16) into account, we obtain: 
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However, 

ea = S ( ~ ,  z , t ) -S~x,  foz, t)+S(x,y, z . t ) +  

+ ~([x, f l , , ,~) -S(z , [ i , z ] , t )+S(~, i ,  [z,Q)- 
= ~oS(~,z ,~)+~oSlz .z ,~)-~oS(~,z ,~)-  

- zoS (:r,~/,t)+zoS(~,~r ~x.~,z)+ 

+ ~ { E ~ , ~ ] , ~ , t ) - ~ , [ # . ~ ] , ~ ) + ~ ( ~ . ~ , [ ~ , ~ ] )  = 

it follows from identity (i0) that 

and, therefore, 

Cx, (7,z, g)]r ss (f, z,~), 

~[~, <~,~,~], ~,~.~.Q = [~, ~ c~,~,~] § Is ~=, y,,), 8. 

Consequently, ~- s163 QED. 

LEMMA 2. In algebra A there holds the identity 

' [ [~ ,~ ] , t ] (~ ,~ ,~=o .  

Proof. We denote commutator [Z,S] by ~, and alternator (~,~,~) by/9. 

as a corollary of (i0) and (21); moreover, by virtue of (27), 

.~p = ~(~,f/,~/)- (~,f, Lj)~Z. 

Therefore, 

By identity (17) 

which also proves Lemma 2. 

COROLLARY i. In algebra A 

[ ~ , ~ ]  p - [ ~ p ,  t ]  - o. 

there holds the identity 

S ( z . ~ c , z ) ( L u , u )  = o. 

LEMMA 3. For any elements ~,S,~, ~eA, 

Proof. We denote the binary commutator /~Z,S],~] by /~. We first note that, by identity 
(27) and Lemma 2, 

(nu, x, x) - / z (u ,~x )=O,  

and, consequently, for any ~ A  (/zt/,x,~;~_ss (.T,~) and, since ([Pt.,U-I,X,~/)~_ SS (3',~) 
of (12), then ('/'t,tg,~,~/)a. SS(.~,at/), i.e., 

(/to/./, .Z'; f )  + (/7,/./,aU, 87) =0, (28) 

We now transform associator (~,floU, JC), using identity (15) and the linearization, flow- 
ing from (23) and (24), of the identity 

(x-~ s ] , f , x )  = (x,E'~.sT,~)ox: 

by virtue 
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by virtue of (28). 
we obtain 

(f, n,u,x)-  (]on, U,X)+(],n, uoX)-fo(n,u,x;  - ( ] , z ,a)oX 

=- (x .~ ,U,~ l )+ (~ , ' ,  n . u ) ~  + ( x , n . u ) . # ,  + 

+(it, a ,uoX)-~o  (~z,u,x)- if, ~,u)ox - Cx,a,~,u)+ ( ~t,r~, uoX) 

Moreover ,  a g a i n  u s i n g  the  l i n e a r i z a t i o n  o f  the  a f o r e m e n t i o n e d  i d e n t i t y ,  

( t ~  - - - - ( u . n , y , ~ ) §  + ( u . ~ , y l ~  

and we t r a n s f o r m  the  s econd  t e rm  by u s i n g  i d e n t i t i e s  (20) and ( 1 9 ) :  

From the expression we have obtained for the associator (y. n,z/, ~), again using identity (28), 
we shall now have 

c'~/.~zou,:r) . -  (u,,'z, 9,,x~ = ( ~ ~  

From this equation and from identity (28), it readily follows that n0u~V, but commuta- 

tor In, u] also lies in V, and therefore the sum 2n~=n~ e V , which also proves Lemma3. 

COROLLARY i. For any elements ~,~ ~EA 

S I.r, u, z)  ~ V. 

LEMMA 4. Let ~ be the ideal generated in algebra ~ by alternator p=I~,~,~), and let 

Z,~, ~E.~ Then, 

P r o o f .  Each e lement  of  i d e a l  P is  the sum of  e lements  of  the  form ~ , = p r ,  r~ . . .  7, , 

where ~ is  e i t h e r  a r i g h t  m u l t i p l e  R~ or a l e f t  m u l t i p l e  L~. by some element ~-eA . 

When ~=0 the equation mar=0 is valid thanks to Lemma 2. We denote the binary com- 

mutator ~,S].~j by nz~ and, when Iz=/, for any u~A we shall have, remembering that p~Z, 

nz(u~) = m(iou)= (mt~)Ll=O (29) 

by identity (22) and Lemma 2. 

Consider n = 2. Using Eq. (29) and the linearization of identity (25), for any ~,0"6A 
we obtain 

nz Lip, u~Lr]= [ r~ i p u ~  - (,,-z, ~. ' ,  ~r.) = (p l , , , ,n ,a-}  = -  : :~u, m , p ) + ( p , u , m ) o "  + ( o', u, nz)p .  

The first two terms on the right of the equation we have just obtained are equal to 0 by iden- 
tity (22), while, from identity (20) and Corollary i to Lemma 2, it follows that the third 
term too equals 0. Therefore, it is also the case that 

n'z ~pa')8"] -- O, (30) 

We now note that, by virtue of Lemma 2, 

m(.r,g,Z}6 Ss (.~,~,$), (31) 

and then, taking into account that p~Z and using identities (30) and (29), we obtain 

nz ~zZ (p/r)~-nz [[~zp)zr]-tzz (u,p,~r} = trl (p,u,zT) = zTz ~pu)~r] - tn~o (~Ir)~=O. (32) 
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We make the induction hypothesis: for any binary commutator z~ and any ~<~ 

r~ (~ 5 ''" T~ )= 0. (33) 

When n = 3, Eq. (33) is true by virtue of (29), (30), and (32); denoting ~ ~ .,. T~_2 by ~, 

we shall have ~-~$~...~-~r ~ "~ Ts so we consider the four possible cases. 

If ~-~, ~-: ~s then, using the induction hypothesis and the linearization of identi- 

ty (25), we obtain 

However, 

: -  (~z ,m,q)  ~ - (g ,~ ,m)r  + (~',~,,m;g, 

(~u ,m,~)  - ( m , ~ , m a )  --  ( m g ) ( ~ a )  - nz ~ ( r  --  O, 

by the induction hypothesis and, analogously, (~ ,U,  rn') -- O. Moreover, 

titles (20) and (18) and the induction hypothesis that 

G(au, m)~ - 2S (e-, ~z,m)~ - O. 

if follows from iden- 

Consequently, 

If Tu--,~#, G- L#. 
we obtain 

( i  R, z r  o. (34) 

then,  us ing  the i n d u c t i o n  hypo thes i s  and i d e n t i t i e s  (17) and (34) ,  

= Era, ~] (~ u) - [ m  (~u). d + S C,~, gu. ~) - 3 (m, gu, ~) = ~ [m (ga)] ~ - 3,~ E(~a~ @, 

and, as a consequence of (34) ,  

If Ta=L . and ~ : Z~r then, by virtue of (35) and (31), 

~E~,  ~@ = , ~  (~,~,~;  + ~ I-~ c ~  = ~ ~, ~ , ~ :  o, 

= Lzz and ~ = L#- , then equation 

thanks to (34). 

Finally, when 

is proven exactly the same as (36). 

therewith, the proof of the lemma. 

by the alternator p:(~,]). 

(35) 

(36) 

(37) 

Equations (34)-(37) complete the induction and, 

COROLLARY i. For any elements x,~,zEA , 

S(x.~.z)P:O. 
be the ideal generated in algebra A 

~P and any %,~A , S(u/,g,~): 0. 

LEMMA 5. Let P 

Then, for any element 

Proof. Just as in the proof of Lemma 4, we shall assume that an = p~ ~ ..~ Tn, and 

proceed by induction on ~. When ~= 0 the equation 

S~pr, T, . . .  L , ~ , ~ ) - o  (38) 
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assumes the form S(p,~,~)= 0, and is valid thanks to identity (21). Denoting p~...Tn_ ~ 

by ~ we shall have W'-~-g$. 

If 7- = L~ then, by Lemma i, 

S (~ ,z .~  ) -  S ( z . t , :  9) - $ Cz, t~,~)-oe(zt,~,qO,~,oe(t,c,~)+ o~ (zZ:)~-O 

by Corollary 1 to Lemma 4 and the induction hypothesis. If, however, ~--~a" ,then, again 
by Lemma I, 

,S (~<r,Z,t)-  S ( 4 r  = S ( ~ , < z ) +  $(t, 7.,e'z ) - ~,.r (9 ,~s~)-  ,,e(6,~,e-)~r=O 

by what  h a s  been  p r o v e n  as  w e l l  as  t h e  i n d u c t i o n  h y p o t h e s i s .  

T h i s  a l s o  c o m p l e t e s  t h e  p r o o f  of  Lemma 5. 

COROLLARY 1. For  any  e l e m e n t  T a -  ~ Tg... ~ o f  t h e  m u l t i p l i c a t i o n  a l g e b r a  o f  a l g e b r a  a , 

s(cx,~, z~ f ~, t a  ) ~ liO ( *,ft, z ) .  

LEMMA 6. In  a l g e b r a  ~ t h e r e  h o l d s  t h e  i d e n t i t y  

P r o o f .  By v i r t u e  of  t h e  C o r o l l a r y  1 to  t h e  Lemma 5 (when n = 0 ) ,  

S ( ( X , ~ , Z ) , ~ , a )  = 8((~,Z,  Z),  t , a )  = 3 ((Z,:e , t ) ,~  , U), 

and since ~(X,  7, g ) r  7 then 

3(S (x4,z) ,~,a ) - S ( S ~ .r , t , z ) ,4~)= S (( ~r,,~,z)*qt,~,xJ+ (z,:r,<q),la ) = aS ((:c,~,z),iu), 

whence follows the assertion of the lemma. 

LEMMA 7. Ideal $ -- $(~) of algebra ~ coincides with the ~O submodule 

3 =  8(A,A,A) + S(A,A,A),4. 

Proof. Since ~C8 it suffices to convince ourselves that 2~ is an ideal of algebra ,4. 

But, by Lemma i, for any ~,~,Z, ~E~, 

~$ (x, ~, z) = ~ ~x, it, z) - S ( 4 xf,,z) + $ ~4 x,~i~)-&g,.r,,r e t  , 

and, by Lemma 6, 

<< 

Finally, 

= $(x,y.sj<tu) + (,5'c:r,,,u,~), t u)-,5' (:z',,9,, ,){~u) + $O~,F,a),4u)eB. 

by what  h a s  b e e n  p r o v e n  and by Lerama 6. 

COROLLARY 1. I d e a l  S i s  c o n t a i n e d  in  t h e  a l t e r n a t i v e  c e n t e r  7 .  

For  t h e  p r o o f  i t  s u f f i c e s  to  u s e  Lemma 6 and C o r o l l a r y  1 to  Lemma 3. 

LEMMA 8. For any element 7" ~ =~ ~ ...~ of the multiplication algebra of algebra a, 

S((.r,<,4,,~)T" z~,u) --- (S (m,<C, z jT "  t' u) l 1 v ~ 
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Proof. Just as in the proof of Lemma 6, we remark that, by virtue of Corollary 1 to 
Lemma 5, 

; ((~,f ,z)z ~, ~, ~)- ~(I~,z,~), T~ L~)=S(~z,~f~Z~L~), 

and since, from Corollary 1 to Lemma 7, ~(X,y,z)  Tn~ V, the proof of Lemma 8 proceeds as in 

the previous case considered. 

We formulate the results obtained in Lemmas i, 6, and 7 as a separate assertion. 

Assertion 2. Let A be a generalized accessible algebra over commutative and associa- 

tive ring~with unity, containing 1/6. Then, for any elements ~,~,Z, ~, de A and any ele- 

ment T ~ = ~ ~,.. ~ of multiplication algebra of algebra ~, 

c) S (z,y, (z, Lu)) = (x,~,S (z,Lu)). 
3 ~ . Let ~ be some variety of algebras over ring q~, A a free algebra of this variety 

with set of generators X=~,~z,...], and , on algebra A , let there be given the trilinear 

function ~(~,~,Z} possessing the following properties: for any elements a,~,%,~, ~ ~ and 

any element ~= ~... ~nof the algebra of right multipliers of algebra A, 

c) &' (z,], Cz,~,u~=(~,y,U(~,L~. 
(When n = O, we assume,  as u s u a l ,  t h a t  f o r  any Xe~ X ~ = X . )  

LEMMA 9. Let  ~ be the  i d e a l  g e n e r a t e d  in  a l g e b r a  A by the  v a l u e  of  f u n c t i o n  ~ ( ~ , ~ , z )  

Then, s e t  ~ of  e l em en t s  of  the  form 

u cx, % ,  

are monomials of generators of set X , . T I , ~ , . . . , ~  n ~ X,  and n )0, generates where ~ ~, z 

U asa ~module. 

Proof. We prove initially that ideal U coincides with set 

elements of the form U(x,~,Z) § U(~,U,~)uT. 

By property b), when n = 0, for any x,~,~,~,deA we have: 

[d (x,#,z) ~]" = U (~ f,Z)C~U) + ( U ~x,y,z), ~,u) = U ( x , f , z ) ( { a )  + U(~x,F,z ), L u )  eS,, 

whence it follows that ~ is a right ideal in ~ . Moreover, from property a) it immediately 
follows that 

and t hen ,  u s i n g  p r o p e r t y  b ) ,  we o b t a i n  

By what has been proven, the first three terms on the right of this equation lie in B, and 
for the second, by property c), we have 

of linear combinations of 

u ~Ucf, z,~)]= (u~)Ucf, z,6)- (u,x, Ucf, z,~))- (az) Ucf, z,t) - U(u,x, cf.z,~)). 
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Thus, each element of ideal ~ is a linear combination of elements of the form ~(~,~,Z) 

and ~(X,~,Z}~, where it can obviously be assumed that 2,~,Z, and ~ are monomials. 

We now consider an arbitrary element U/e~ of the form 

where ~,~,Z, ~,,~Z, ...,~a are monomials. If not all the ~ belong to X then, having chosen 

, ~, . . ~  by R L-/ , and R~+/.. among them the monomial ~i=UC of maximal degree we denote . -t 

R~ by ~"% Then, using property b), we obtain: 

= 
- . 

This equation, as is easily seen, provides the possibility of induction on the maximal 

degree of the monomials ~,...,~, to show that element mr is a linear combination of elements 

of set C. It is clear now that each element of ideal Uis also linearily expressed in terms 

of set C. 

Lemma 9 is proven. 

LEMMA i0. Let F be a free nonassociative algebra over ring q0 with set of free gener- 

ators X . Then, set C of elements of the form 

where ~, ~, and % are monomials of generators of set X,~,~ .... ,~eX and n~O , is a basis 

of associator ideal _~=2(F) of algebra ~. 

Proof. It follows from identity (13) that associator (~, ~, %) , as a trilinear function 

of its terms X,~, and Z, possesses properties a)-c) and, having applied Lemma 9 to associa- 

tor ideal 2, we find that set ~ generates ideal ~ as a q) module. It remains to prove the 

linear independence of set C over~q 

Let 

(39) 

be a linear combination of elements of set C with nonzero coefficients. In Eq. (39) we con- 

sider the term having the greatest total degree in associator C~,~i.Zi), and let term 

have, among them, the greatest degree in the third term of the associator. Having expanded 
in Eq. (39) all the associators, we present its left side in the form of sum of monomials, 

one of which will be the monomial 0--oc(... ((~(fZ))~)~z)...}~ occurring as the expansion of the 

associator in &f. We now show that monomial 17" cannot be contracted with the remaining mono- 

mials. 

99 



Indeed, for the construction of an element of set C, in the expansion of which there 
occurs monomial s we must initially split off in it some number of right multiples by the 

elements ~eX, i.e., present monomial s in the form 

and thereafter present monomial U=(,,,((~%~)~...)~i as the first or second term of an ap- 

propriate associator. Since R eX~ then, when ~2 , monomial U can be presented only as the 

first term of the associator 

and, when i = i, only as the first term of associator 

(~, ~X, ~,). (41) 

However, associators (40) and (41) have total degree strictly larger than that of associator 

(~,~,%) occurring in dY and, therefore, do not occur as associators in the terms on the left 

of Eq. (39). 

Consequently, we must split off in monomial s all right multiples by elements ~gE~ : 

But then, monomial U- ~(~) can be presented either as the second term of an associator oc- 

curring in ~ or, with ~=S~ , as the second term of associator (S,~,~Z); however, the second 

possibility also contradicts the choice of term uy. 

Thus, monomial ~ cannot in fact be contracted with the other monomials in Eq. (39), so 
that Eq. (39) is untrue. The contradiction thus obtained completes the proof of Lemma i0. 

LEMMA ii. Let function ~(~,~,Z)possess, in variety ~ , properties a)-c), and 

~- T~(~'Y~'~)Tu,~ Tu2L' ~=L~' (42) 

where ~,~,Z~,~I,Uz~ ..... ~,~ are monomials, and, moreover, arbitrary elements of the asso- 

ciator ideal of free nonassociative algebra ~ with set of free generators ~ . Then if v = 0 

in algebra ~, in each algebra ~ of variety ~ , there holds the equation 

Proof. Considering (~y,~)as a trilinear function possessing properties a)-c), we can 

according to Lemma 9, express element ~ in the form of a linear combination of elements of 

set ( , using, for this, only tranformations permissible by properties a)-c). The identical 

sequence of transformations can also be applied to element U(~)E~ since, by hypothesis, 

function U(~.~,~) also possesses properties a)-c) in variety dTZ . With this, at each step 

the elements, having been obtained in algebra ~ , are "U rings" of the corresponding elements 

in algebra ~. 

If, now, v = 0 in algebra ~ then, by virtue of Lemma i0, with the last transformation 

in ~ we obtain a linear combination with zero coefficients; consequently, in algebra ~ we 

obtain a "U ring" of these linear combinations which, naturally, also has zero coefficients. 

This also means that in algebra ~ there holds the equation U(E~= O. 
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LEMMA 12. If, in free alternative algebra ~ with set of free generators ~, there holds 

the identity s , where element v has the form of (42), then, in free generalized accessi- 

ble algebra ~ with set of free generators X , there holds the identity $(g)= 0, 

Proof. In algebra ~ let hold the identity s ; this means that element v, considered 

as an element of free nonassociative algebra ~, lies in the ideal of algebra ~ generated by 

associators of the forms (~,~,~)and (~,~). In other words, in algebra ~ there holds the 
identity: 

7-~tj + 

in which all the elements of ~ are monomials. 

According to Assertion 2, function S (~,~,Z) in algebra A possesses properties a)-c) 

and, consequently, by Lemma llthereholdsin ~ the identity: 

~ ~,~,,~ ~ ~,, q, ... ~ - z ~j ~ ~,  ~., ~.'~+, ~p, ,~.,, ~ ~ 7~, ~. " ~s, 
+ 

However, in algebra A function S(~J.Z)is skews)~metric and, therefore, the right side of 

the obtained equation equals 0 whence we also obtain that $(Y)= 0 . QED. 

LEMMA 13. In free generalized accessible algebra A over ring qDwith set of free gener- 

ators ~, the intersection of ideal ~ = ~(~) with alternator ideal K = ~[~) equals O. 

Proof. Let w be an arbitrary element of the intersection $~K ; by Lemma 9, element w 
is presented in the form 

~ -  ~o ~,~ s l~  ,~,~, ~ ~R~,z R~ ... %~, 

and, since ~ ~, then ~- is also presented in the form 

Thus, in a lgebra  A we have the i d e n t i t y  

~i c~i'(~,yg,~),~,, z ~2L...~,5. 7 ?~j (Pd',~'.~j)Td, ~,."~ / (43) 

Identity (43) also holds in free alternative algebra ~ as in the homomorphic image of 

algebra ,4 by ideal K; but in algebra $ this identity assumes the form 

c~ Y, ociz {.r~, ~, , x;..~RZ~_,. R~2~.. ,' a:'~,,~.~ = O, 

since S C~g ,~ ,  %~) = 3 (Zi .~i ,g i )  �9 
After having applied Lemma 12 to identity (44), we obtain the identity 

aZ~'~<,j~,~R~,~o R~ %2o, 

(44) 
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valid in algebra A . But this identity means that w = 0, QED. 

LEMMA 14. In free generalized accessible algebra ~, the intersection of ideal ~, gen- 

erated in ~ by the left sides of identities (2), (8), and (9), with the alternator ideal 

f =K(A~, equals 0. 

Proof. We shall show that ideal Z actually coincides with ideal $ . Indeed, the in- 

clusion ~C~ is obvious since the left side of identity (8), by virtue of identity (2) 

which does hold in algebra (A~)- It equals ~ (~, ~,z)and, for the proof of the inverse inclusion, 
it suffices to use identity 0 just remains to apply Lemma 13. 

THEOREM i. Ordered set ~ of varieties of algebras over ring q5 is a sublattice in the 

lattice of all varieties of algebras over ring ~ relative to the operations of intersection 
and union. 

Proof. By virtue of assertibn 1 there remains to consider only unions of the given 
varieties. Thanks to the results of [3] there hold the equations 

Jo~d + Ass=Sf, Co~,~ + Ass = Ccn'zm-~S~=Acc. 

Lemma 14 means, obviously, that 

It follows from Eqs. (46) and (45) that 

Com~ § Ae{ : Co~r~ § Ass§ AC~ =Ace +Ae{ :~Acc 

From this and from the inclusion 

follows the equation 

(45) 

(46) 

(47) 

AOC + ~$~ = ~ - + ~ =  OAcc, (48) 

Moreover, by virtue of the modularity of the lattice of varieties of algebra, we obtain from 
(46) that 

st +Aa  =Ace n = (Acc+Ae{) n OS{ =ss , (49) 

and, finally, by virtue of (45) and (49), 

&~d +A~ : Jo~ + Ass~ 4E~=3~A~=#S~. (50) 

Equations (47)-(50), together with assertion i, also complete the proof of Theorem i. 

4 ~ In this section we derive some corollaries of Theorem i. 

COROLLARY i. The variety of generalized accessible (generalized standard) algebras over 
ring ~ is the minimal variety containing the variety of commutative (Jordan) algebras and 
alternative algebras over ring q~. 

In other words, some identity holds in each generalized accessible (generalized stan- 

dard) algebra over ring ~0 if and only if it holds in each commutative (Jordan) and each al- 

ternative algebra over ring ~. 

The first assertion of this corollary is immediately contained in Theorem i. For the 

proof of the second assertion we remark that the mapping .~'JZP-*F(?~) putting into correspon- 

dence with each variety f2g of algebras over ring qb its ideal T(~3Z) of identities in a free 
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nonassociative algebra over qO, is an anti-isomorphism between the lattice of varieties and 

the lattice of T- ideals, so that the equation ~=]~+~ is equivalent to the equation T~)= 
TC~) n T(Z). 

For the varieties at issue, we find that the assertions 

7~E T (~Acc) and [~0 E 7-(Con't.~) and fE ,7" (A~)] 

and 

fez T(~S~)and [-~E T ( J O ~ )  and fcT(ACt)] 
are, respectively, equivalent. 

COROLLARY 2. Each primitive generalized accessible (generalized standard) algebra over 

ring QO is either commutative (Jordan) or alternative. 

Indeed, from Corollary i we obtain that, in a free accessible algebra, A Io~(~) = 0 and, 

consequently, AI"K(~) -0. This equation also holds in any generalized accessible algebra. 

Therefore, in the primitive algebra, either At=0 , or ~(A)=O, 

We deal analogously with the generalized standard algebra 

COROLLARY 3. Let A be a free generalized accessible algebra over ring ~. Then 

i) algebra A is a subdirect sum of a free commutative and a free alternative algebra; 

2) alternative center VIA) of algebra A coincides with the commutator ideal ~J; 

3) commutative center ~(~) of algebra ~ strictly contains alternator ideal ~(A). 

Indeed, algebra A , by virtue of Theorem i, is the subdirect sum of its own factor al- 

A/A' gebras and A / ~ ( A )  , i.e., a free commutative and a free alternative algebra. 

Furthermore, if element ~ belongs to Af it can then be presented in the form 

i " #L i 

and, considering ~ as an element of a free nonassociative algebra, we find that, in every 

commutative and in every alternative algebra there hold the identities 

Cf, a 2 )  = Cx.y,f)= i, Lz) .  

But t h e n ,  t h e s e  i d e n t i t i e s  a l s o  ho ld  in  e v e r y  g e n e r a l i z e d  a c c e s s i b l e  a l g e b r a ;  c o n s e q u e n t l y ,  

f e  VCA) and A ' c  V(A). The c o n v e r s e  i n c l u s i o n  f o l l o w s  f rom th e  f a c t  t h a t  in  a f r e e  com- 

m u t a t i v e  r i n g  A/A I the  a l t e r n a t i v e  c e n t e r  e q u a l s  O. 

F i n a l l y ,  t he  i n c l u s i o n  K(A)czCA) i s  p roven  the  same way as t h e  i n c l u s i o n  mIc V(A). The 

c o n v e r s e  i n c l u s i o n ,  i n  t h e  g i v e n  c a s e ,  i s  u n t r u e ,  s i n c e ,  by v i r t u e  o f  t h e  r e s u l t s  o f  [11 ] ,  

element ~ X , ~ $ ) , ~ ]  8 lies in the commutative center Z(A)  but does not lie in the alternator 

ideal ~IA) since, in the contrary case, in free alternative algebra A/~(A)there would hold 

the identity ~X,~,%),#] a=0, 

COROLLARY 4. Let A be an arbitrary generalized accessible algebra over ring QO. Then, 

in algebra A there hold the Kleinfeld identities 
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and if algebra A has a system of generators of three elements, then in it there holds the 
identity 

Indeed, these assertions are valid in each commutative and in each alternative algebra, 
the latter for algebras with three generators [12, 13]. 

COROLLARY 5. Let SAgg~be the variety of algebras generated by a free generalized ac- 

cessible algebra over ring 9with n generators. Then, there hold the strict inclusions 

l?,;cc, c c c gAc . 

Indeed, each generalized accessible algebra with two generators in accessible [6] and, 

therefore, $~3 ~ SJC~ and, from the example constructed in [14] and from Corollary 4, it 

follows that SA~,~$ac~~ Finally, the noncoincidence of varieties SA~ r and ~acc~ or, what 

amounts to the same thing, of varieties ACC I and ,~C~ , follows from the fact that a free ac- 
cessible algebra with one generator is commutative: this readily follows by induction from 
identity (17) which, in an accessible algebra, takes the form 

The present work was performed during the author's time at the Institute of Mathematics 
of the Siberian Branch of the Academy of Sciences of the USSR. The author wishes to express 
his gratitude to A. I. Shirshov and E. N. Kuz'min for their attention to this work and for 
valuable comments. 
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