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A b s t r a c t  

Mechanisms involved in the biological suppression of infection and inoculum potential of Botrytis cinerea are 
numerous and variable and the involvement of two or more mechanisms has been demonstrated in several systems. 
Reported combinations include antibiosis with enzyme degradation of B. cinerea cell walls; competition for 
nutrients followed by interference with pathogenicity enzymes of the pathogen or with induced resistance; and 
alteration of plant surface wettability combined with antibiosis. Since germinating B. cinerea conidia are dependent 
on the presence of nutrients, competition for nutrients is regarded as important in systems where biocontrol is 
involved. Conidial viability and germination capacity are also potentially affected by the presence of antibiotics 
produced by biocontrol agents and present in the phyllosphere. Slower in action are mechanisms involving induced 
resistance in the host plant and production of hydrolytic enzymes that degrade B. cinerea cell walls. The latter has 
been demonstrated much more convincingly in vitro than in the phyllosphere. Biocontrol in established lesions and 
reduction of sporulation on necrotic plant tissues is a means to minimize the pathogen inoculum. 

Abbreviations: BCA - bio-control agent; Bc -Botrytis cinerea; PG - polygalacturonase; PL - Pectin Iyase; PME 
- Pectin methyl esterase; PR - pathogenesis related; VPD - vapour pressure deficit. 

T h e  a r e n a  for  b i o c o n t r o l  - the  p h y l l o s p h e r e  

There are numerous reports of attempts to control foliar 
pathogens, including Bc, by means of antagonists (See 
for instance Tronsmo, 1992; Andrews, 1992), and only 
a few will be reviewed here. Species of leaf bacte- 
ria (Blakeman and Brodie, 1976), yeast (Fokkema et 
al., 1979) and filamentous fungi (Dubos and Bulit, 
1981; Fokkema, 1973) can inhibit pathogens by com- 
peting for nutrients. Fungi and a few bacteria are capa- 
ble of direct parasitism (Kranz, 1981; Scherff, 1973). 
Antibiosis has been attributed to many bacterial strains 
(Leben and Daft, 1965), but also to fungi (Andrews, 
1985; Ghisalberti and Sivasithamparam, 1991), and 
yeasts (Baigent and Ogawa, 1960). 

The organisms involved in bio-control of foliar 
diseases include the pathogen, the host, the BCA and 

phyllosphere microorganisms. These are all affect- 
ed by one another, by cultural practices and by pes- 
ticides. Necrotrophic pathogens, such as species of 
Botrytis, use exogenous nutrients in many circum- 
stances, in order to germinate and to grow on the 
plant surface before penetration. Reduction of nutri- 
ent concentrations generally results in a reduced rate 
of pathogen conidial germination and slower germ- 
tube growth, thereby reducing the number of infection 
courts and the extent of subsequent necrosis incited 
by the pathogen (Blakeman, 1975, 1985; Blakeman 
and Fokkema, 1982). Mechanisms and attributes other 
than those which can be evaluated in Petri dishes are 
of importance under field conditions. Among these are 
the ability to live and grow on the plant surface under 
varying nutritional and microclimatic conditions, and 
to colonize the plant in such a way as to prevent the 
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establishment of the pathogen. This makes it very diffi- 
cult to select antagonists for field applications, and the 
problem is further complicated by the fact that an iso- 
late, although effective against a certain pathogen on 
one Crop, may be ineffective against the same pathogen 
on another crop. 

The chemical exudates on the plant surface con- 
tain.macro- and micro-elements, sugars, sugar alco- 
hols, pectic substances, amino acids, and organic acids 
(Tukey, 1970). The quality and quantity of leachates 
from plants are affected by plant age (Blakeman, 1972) 
and factors such as temperature, VPD and surface 
moisture, light, fertilization and pollen (Sol, 1967; 
Tukey, 1970; Weissman, 1964) which change con- 
stantly (Burrage, 1971). These changes may affect 
phyllosphere microflora directly (Dik et al., 1992) or 
have an indirect effect by modifying leaf characteris- 
tics, e.g., metabolic state, morphology (Cutter, 1978) 
and surface chemistry (Hallan and Juniper, 1971). As 
nutrients fluctuate there are community changes in 
colonization by bacteria, yeasts and filamentous fungi 
(Blakeman, 1982, 1985; Fokkema, 1981). Plant sur- 
faces are covered with hydrophobic wax layer on which 
water is distributed as discrete droplets. The wettabili- 
ty of the plant surfaces can be modified by weathering, 
plant status and surfactants. Furthermore, microorgan- 
isms are known to produce surfactants (Cooper, 1986); 
thus, they can induce changes in the wettability of plant 
surfaces. 

The pathogen and diseases caused by it 

Bc infects the leaves, stems, flowers and fruits of var- 
ious crops. On fruits, it causes a typical rot that is 
frequently covered with a grey mould and which may 
serve as a source of inoculum within the crop. On 
some fruits (tomato, pepper), flowers (gerbera, rose, 
cyclamen) or phylloclades (ruscus) the pathogen also 
induces small, necrotic lesions, usually surrounded by 
a bright halo (named 'ghost spot' in the case of toma- 
to infection) (Elad, 1988, 1989; Elad et al., 1992; 
Salinas et al., 1989; Verhoeff, 1970). In greenhouse 
vegetables, stems of plants can be infected either by 
invasion by the fungus, through the petiole or direct- 
ly through wounds, after pruning and harvesting. The 
infection may ultimately girdle the stem and kill the 
entire plant (Jarvis, 1989; Yunis et al., 1990). Infec- 
tions may remain quiescent in the developing fruit or 
infected flowers of several crops, e.g., grape in vine- 
yards, strawberry and other berry crops in the open 

field, and tomato, eggplant or pepper grown in green- 
houses. 

Low VPD, free moisture on plant surfaces and cool 
weather conditions are considered the most important 
environmental factors which promote infection by Bc 
(Blakeman, 1980; Elad and Shtienberg, 1995). Opti- 
mum temperatures for infection are between 10 and 
20 ~ but infection can occur and grey mould may 
develop even at 2 ~ and above 25 ~ Elad, 1989; 
Elad et al., 1989; Jarvis, 1980; Marois et al., 1988; 
Salinas et al., 1989). Conidia of Bc require nutrients 
for germination and for subsequent germ tube growth. 

Pathogen hydrolytic enzymes are crucial for infec- 
tion by Bc (Elad and Evensen, 1995; Verhoeff, 1980). 
These include: cutinase, which hydrolyses secondary 
ester linkages of the cutin polymer (Salinas et al., 
1992); cell-walt-degrading enzymes, i.e., pectolytic 
enzymes (exo- and endo-PG, PL and PME), during the 
first phase of host-pathogen interactions (Collmer and 
Keen, 1986; Johnston and Williamson, 1992; Leone, 
1992); cellulase and a trans-eliminase (Verhoeff and 
Warren, 1972); xylanases, arabinase, /3-glucosidase, 
/3-galactosidase,/3-mannosidase, and a-galactosidase 
(Urbanek and Zalewska-Sobczak, 1984). 

A BCA should be capable of inhibiting the 
pathogen during one or more of the key stages of its 
disease cycle. Infection with Bc can be reduced by 
pre-inoculation of the phylloplane with epiphytic 
filamentous fungi, bacteria or yeasts (Reviewed by 
Blakeman, 1993; Blakeman and Fokkema, 1982) or by 
treating wounds at pre- or post-harvest stages. BCAs 
may reduce conidial germination and tissue penetra- 
tion and may also interfere with lesion development 
(Elad et al., 1994a, b) and sporulation (Fokkema, 
1993; K6hl and Fokkema, 1993; K6hl et al., 1995a, 
b). Many investigations of the bio-control of Bc have 
been reported (reviewed by Dubos, 1992; Elad and 
Shtienberg, 1995; Elad et al., 1995; Gullino, 1992), 
they will be referred to here only with respect to the 
mode of action through which control is imposed. 

Interference with infection 

The process of Bc conidial germination and subse- 
quent host penetration are affected by microorganisms 
introduced into the phyllosphere. Microorganisms may 
change the physical properties of the host surface or 
may attach to the conidia of the pathogen, so affecting 
their behaviour through physical or biochemical asso- 
ciation. Further, microorganisms compete with germi- 
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nating conidia of Bc for nutrients or space and may 
even secrete compounds inhibitory to the germinating 
conidia. Further contributions to the biocontrol of the 
pathogen are made by interference with the pathogenic- 
ity enzymes of Bc and even induced resistance. As will 
be shown below, most of the studies demonstrating 
biocontrol of Bc emphasize competition and inhibito- 
ry compounds as important mechanisms, whereas, the 
roles of other modes of action have so far received less 
attention in research. 

Surface activity 
Microorganisms can change the wettability of plant 
surfaces, as has been shown for introduced surface- 
active Pseudomonas spp. and for natural populations 
stimulated by added nutrients (Bunster et al., 1986). 
The surface effect induced by microorganisms may 
interfere with the attachment of pathogens to their 
hosts (Bunster et al., 1986). Bacillus brevis has been 
found effective against grey mould of Chinese cab- 
bage. The antagonist, by causing drops to spread 
and dry, decreased the periods of wetness observed 
on leaves, thus restricting the occurrence of condi- 
tions favourable for Bc (Edwards and Seddon, 1992). 
This phenomenon is probably widespread but has been 
neglected in our search for potent mechanisms of bio- 
control. Moreover, apart from the active antagonist, the 
few biocontrol preparations available contain additives 
which are active in changing the behaviour of water on 
plant surfaces, which by itself could affect the abil- 
ity of Bc to germinate. Such a phenomenon of drop 
spreading and drying is observed when suspensions of 
formulated agents containing spreader compounds are 
applied on leaves (Elad, unpublished) and should be 
regarded as important on plant surfaces affected by Bc. 

Attachment of biocontrol agents to the fungal 
pathogen 
An example of the interaction between Bc conidia and 
potential BCAs is demonstrated in Figure 1. Cells of 
BCAs may attach to their hosts, and attachment mech- 
anisms are recognized to play a role in cell-cell inter- 
actions in fungi and other microorganisms, including 
yeasts (Douglas, 1987). Lectins have been described as 
crucial for such interactions, including those involved 
in biocontrol systems (Barak et al., 1985, 1986; Elad, 
1995a; Manocha, 1990) Attachment of cells of the 
antagonistic yeast, Pichia guilliermondi to Bc hyphae 
was observed by Wisniewski et al. (1991). The attach- 
ment could be blocked by agents that alter protein 
integrity (salts, proteases, etc.) and certain sugars (Wis- 

Figure 1. Scanning electron micrographs of the interaction between 
yeast cells and conidia of Bc (Bar = 5 #m). 

niewski et al., 1991). The attachment of various antag- 
onistic yeasts (Rhodotorula glutinis and Cryptococcus 
albidus) to conidia of Bc, and their self-aggregation 
was tested in order further to assess the nature of these 
phenomena (Elad, unpublished). The attachment of the 
yeast cells to conidia of Bc is typically associated with 
the presence of a fibrillar material, as seen in Figure 
1. Attachment of yeast ceils to conidia was evident for 
four of the five BCAs and aggregation in the presence 
of the conidia was also pronounced in four cases out of 
five. These phenomena were prevented in two of the 
yeasts by boiling the host conidia. Sugars either pro- 
moted or inhibited the attachment or self-aggregation, 
indicating a specific lectin involvement in the systems. 
Moreover, in some cases, interaction was decreased 
by protease or trypsin, HCI and NaOH which affected 
a protein moiety, or by/3-glucanase which degraded 
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a glucan moiety, both associated with lectins. Salts, 
SDS and fi-mereaptoethanol, which affected the inter- 
actions, may have denatured the proteins or affected 
their activity and dispersal. The data indicate a vari- 
able involvement of lectin-like compounds whose role 
and origin are different in each yeast pathogen system 
(Elad, unpublished). However, their direct role in bio- 
control of Bc has not yet been elucidated and should be 
studied further. However, Cook and Long (1995) suc- 
cessfully used the attachment phenomenon to screen 
potential biocontrol agents among phyllosphere bacte- 
ria and yeasts which adhere to hyphae of Bc. 

Competition with germinating conidia of B. cinerea 
Nutrients present in water on plant surfaces may 
be utilized by both Bc and saprophytic microor- 
ganisms. Pseudomonas sp. from the leaf surface 
removed amino acids much more rapidly than did coni- 
dia of the pathogen (Brodie and Blakeman, 1975). 
On the other hand, streptomycin applied to beet 
root leaves increased germination of the pathogen, 
because of reduced development of the bacterial pop- 
ulation (Blakeman and Sztejnberg, 1974). Competi- 
tion for nutrients or space was demonstrated when 
post-harvest biocontrol was tested with various yeasts 
on apple fruits, e.g., the yeast strain 87 of Candida 
sp. (McLaughlin et al., 1990), the basidiomycetous 
yeast Cryptococcus laurentii (there was no evidence of 
inhibitory substances or induction of wound healing) 
(Roberts, 1990), Sporobolomyces roseus (Janisiewicz 
et al., 1994) and Candida oleophila (Mercier and 
Wilson, 1994). 

T. harzianum T39, which is the core of a com- 
mercial preparation that controls grey mould (Elad et 
al., 1994c), is a competitor against germinating Bc 
conidia at early stages of interaction (Zimand et al., 
1995). Isolates of the yeasts Rhodotorula glutinis and 
lit Cryptococcus albidus, of the bacteria Xanthomonas 
maltophilia, Bacillus pumilus, Lactobacillus sp. and 
Pseudomonas sp., and of Gliocladium catenulatum 
were able to reduce germination of conidia of Bc and 
the severity of rot symptoms on detached leaves, and to 
control the disease on whole plants. Since the nutrient 
concentration on leaves had an effect on control effica- 
cy, activity was partially attributed to competition for 
nutrients. 

Bc needs extemal nutrients for germination and is 
very susceptible to the absence of nutrients in the phyl- 
losphere. This is the reason for the widespread idea that 
microorganisms capable of efficient nutrient utilization 

should be good BCAs of this pathogen. However, the 
role of competition for nutrients or for space is not 
easily proved. Indeed, in the above mentioned cas- 
es, the fact that dead cells of the BCAs were also 
effective raised the possibility of the involvement of 
induced resistance (Elad et al., 1994a, b). In the pres- 
ence of propagules of Bc on the symptomless leaf, the 
yeast population was reduced as compared with that 
on noninfected leaves, probably due to deprivation of 
nutrients by the pathogen. However, on established 
lesions, the yeast population proliferated. The intro- 
duced yeasts probably consumed the leaking nutrients 
from the damaged host tissue (Dik et al., 1991), thus 
protecting the leaves (Kthl et al., 1991) and affecting 
the developing grey mould. 

Inhibitory and toxic substances 
Germinating conidia of Bc are also susceptible to the 
presence of inhibitory compounds in their vicinity. Pro- 
duction of compounds inhibitory to fungi, including 
Bc, is common among microorganisms. Tronsmo and 
Raa (1977) and Tronsmo and Dennis (1977) found 
that T. pseudokoningii and T. viride were able to pro- 
duce substances which inhibited the pathogen on fruits 
of strawberries and apples. Grey mould of snap bean 
pods and blossom was reduced by 77-97% by T. hama- 
turn (Nelson and Powelson, 1988), which produced 
inhibitory volatiles. On the other hand, the success- 
ful BCA, T. harzianum T39 does not act by means of 
volatile or nonvolatile inhibitory products (Zimand et 
al., 1994). An isolate ofPenicillium chrysogenum was 
found to produce inhibiting products which reduced 
conidial germination of B. fabae and lesion develop- 
ment on leaves of faba bean (Jackson et al., 1994). 
Janisiewicz and Roitman (1988) found an isolate of 
Pseudomonas cepacia to be effective against Botry- 
tis, Penicillium and Mucor rots of apples and pears, 
by production of the powerful antibiotic pyrrolnitrin. 
Bacillus brevis (Edwards and Seddon, 1992) is effec- 
tive against grey mould of Chinese cabbage by secret 
on of gramicidin S (and alteration of leaf wettabili- 
ty). The antibiotic itself was very effective against Bc. 
Leifert et al. (1995) related the control of Bc by B. 
subtilis and B. pumilus to antibiotics. 

Although the ecological relevance of tests in Petri 
dishes is open to doubt (Elad and Chet, 1995), antag- 
onism in culture has been routinely studied. For 
instance, Trichoderma viride showed two successive 
steps in antagonism, in vitro: the first one fungistatic, 
possibly resulting from diffusible antibiotics; and the 



second a fungicidic effect which was contact depen- 
dent (Lamy et al., 1981). Growth of Bc, Monilia laxa, 
M. fructigena and Phomopsis viticola was inhibited 
when they were inoculated on agar containing more 
than 108 heat killed conidia of T. viride per ml (Ale- 
Agha et al., 1974). T. viride, which controlled choco- 
late spot of bean, inhibited three Botrytis spp. to the 
same extent as its culture filtrate (Morris and Lane, 
1990). Recently, reports have been published that the 
peptaibol antibiotics trichozianins A1 and B1, pro- 
duced by T. harzianum, and gliotoxin, produced by 
Gliocladium virens in culture, inhibited spore germi- 
nation and hyphal elongation in Bc (Di Pietro et al., 
1993; SchirmbOck et al., 1994). B61anger et al. (1995) 
found that in dual cultures of T. harzianum and Bc, 
antagonism was initially by antibiosis leading to cell 
death, which was followed by degradation of the cell 
by means of chitinolytic enzymes. 

The role of antibiotics in biocontrol can be con- 
vincingly established by testing mutants which lack 
antibiotic production. Although multiple mutations 
or pleiotropic for other relevant activities may have 
occurred during the production of mutants, the muta- 
tion serves as one of the tools for testing the role 
of antibiotic production. Antibiotic production was 
responsible for the biocontrol of Bc by B. subtilis on 
Astilbe micro-plants. A UV-induced antibiotic nega- 
tive mutant strain of this culture showed no activity 
on seedling bioassay in vivo (Leifert et al., 1995). 
Furthermore, Li and Leifert (1994) found that an 
antibiotic-producing isolate of B. subtilis was capable 
of protecting Astilbe microplants as long as resistance 
did not develop in the Bc population. However, this 
points to the potential risk of resistance development 
when reliance is placed on antibiosis-based biocontrol 
agents. 

Restraining pathogen hydrolytic enzymes 
Interference with pathogenicity processes has not been 
thoroughly studied yet, except for one system: the 
effect of T. harzianum T39 on germination of and sub- 
sequent lesion production by Bc was tested on bean 
leaves. Initially, the biomass of germ tubes of the 
pathogen was reduced by the BCA, 20 h after appli- 
cation (nutrient competition), but no difference in the 
amount of pathogen mycelium could be observed 48 
h after inoculation. Nevertheless disease was signif- 
icantly reduced by T. harzianum T39 (Zimand et al., 
1995). In this case, the activity of pectolytic enzymes 
PG, PME and PL, produced by Bc on bean leaves was 
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reduced in the presence of the antagonist. These reduc- 
tions in enzyme activities were detected even 4 days 
after inoculation (Zimand et al., 1995). The activities 
of chitinase,/3-1,3-glucanase and cutinase, but not that 
of cellulase, were also reduced in the presence of the 
BCA (Kapat et al., unpublished). These new findings 
indicate the possible discovery of a new mechanism 
by which biocontrol affects the pathogen: interference 
with the pathogenicity process. The precise steps lead- 
ing to this effect are not clear yet. The effect may 
be the result of direct action of T39 on Bc hydrolytic 
enzymes; it could also be an indirect effect, via plant 
factors which induce enzymatic activity in Bc. It is 
speculated that in the future there will be more reports 
on the importance of this mechanism in suppressing 
infection by Bc and other pathogens. 

Enzymes degrading fungal cell wall and 
mycoparasitism 
Cell-wall-degrading enzymes of microbial origin. 
Fungal-cell-wall degrading enzymes are associated 
with degradation of hyphae of many pathogens (Elad, 
1995a) but there have been only a few reports on this 
phenomenon in relation it to Bc. Trichoderma and 
Gliocladium spp. are known as mycoparasites (Elad, 
1995a), and Tronsmo and Raa (1977) and Tronsmo 
and Dennis (1977) claimed that Trichoderma controls 
Botrytis rot of strawberry and apple, presumably by 
direct parasitism and antibiotic production (mentioned 
above). Labudova and Gogorova (1988) found isolates 
of T. reesei and T. harzianum capable of producing 
proteinase, mananase, laminarinase and chitinase and 
claimed that this implied that the nature of the antago- 
nism of the two isolates was based on mycoparasitism. 
When fructifications of the antagonist were observed 
on the margins between necrotic and healthy areas on 
the rotting berries, microscopic observations revealed 
coiling and penetration of the mycelium of the latter 
by the antagonist (Dubos, 1987). 

In vitro conidial germination of Be served as a 
bioassay for testing hydrolytic enzymes and antibi- 
otics of T. harzianum and enzymes of Enterobacter 
cloacae (Lorito et al., 1993a, b; Schirmb6ck et al., 
1994). A synergistic activity of chitinolytic enzymes of 
the two microorganisms and bacterial cells was found 
(Lorito et al., 1993a); combination of endochitinase 
and chitobiosidase of T. harzianum resulted in a syn- 
ergistic increase in antifungal activity, which by itself 
was more pronounced than the activity of the bacterial 
chitinases (Lorito et al., 1993b). An antifungal syner- 
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gistic effect was observed when the chitinases,/3-1,3- 
glucanase and the above-mentioned peptaibols were 
present in the conidial suspension of Bc (Schirmb0ck 
et al., 1994). Similarly, endochitinase from G. virens 
had synergistic antifungal activity in combination with 
gliotoxin (Di Pietro et al., 1993). It was suggested 
recently (Wisniewski et al., 1991) that the mode of 
action of the postharvest biocontrol yeast, Pichia guil- 
liermondii, combines tenacious attachment with secre- 
tion of cell-wall degrading enzymes. The role of chiti- 
nases and/3-1,3-glucanase in the control achieved by 
T. harzianum T39 was assessed by comparing enzy- 
matic activities of five isolates of the same species and 
correlating them with control achievements (Zimand et 
al., 1991); there was no correlation between ability to 
degrade Bc cell-wall polymers and biocontrol activity. 

The involvement of cell wall degrading enzymes 
produced by antagonists, in Bc control under in vitro 
conditions is open to doubt. These enzymes have not 
been convincingly shown to take part in disease sup- 
pression. Furthermore, the role of mycoparasitism in 
control of Bc in vivo is doubtful since it is too slow to 
be effective against such a pathogen, which is capable 
of fast germination and subsequent host penetration. 

Host-plant pathogenicity-related proteins. The pres- 
ence of chitinase, a PR, plant-defense protein has been 
recorded in infected kiwi fruit (McLeod and Poole, 
1994) and in transgenic tobacco plants (Roby et al., 
1990) infected by Bc. In the latter, the chitinase pro- 
moter was activated during attack. Transgenic tobacco 
plants carrying genes ofPR1 a (acidic PR1),PR2 (basic 
/3-1,3-glucanase), PRQ' (acidic glucanase), PR3 (basic 
chitinase) or PR3b (acidic chitinase) were less suscep- 
tible to Bc than wild-type tobacco plants (Shaul, Elad, 
Kapulnik and Chet, unpublished). The induction of 
PR1, PR2 and PR3 in leaves of tobacco plants infected 
by Bc was tested (Elad, 1995b; Shaul et al., 1995). 
Tobacco plants were either wild-type or transgenic, 
containing PR1 and PR2 genes with/3-glucuronidase 
(GUS) promoter. Northern analysis of RNA extracts 
from infected leaves of regular plants revealed the pres- 
ence of PR1, PR2 and PR3. In the transgenic plants, 
PR1 and PR3 were found. However, immunoblotting 
revealed the presence only of acidic and basic PR3 pro- 
teins and not others. The identity of the actual inducing 
fragment and the chain of events leading to induction 
of PR proteins is not clear. Furthermore, the role of the 
PR proteins in combating the infection caused by Bc 
is also not clear. In the tobacco system it was induced 
and detected after the appearance of the initial symp- 

toms, but transgenic tobacco plants carrying genes of 
PR proteins were less susceptible to Bc than wild-type 
plants. 

Induced resistance 
Induced resistance is also recognized as an important 
mode of action of biocontrol in vegetative tissues (Kuc, 
1987; Sequeira, 1983). Wilson (1989) suggested that 
part of the mode of action of yeasts against certain cit- 
rus fruit rots may involve induced resistance in the fruit. 
Antagonists applied to harvested fruits may induce 
wound healing processes: in grapefruits, production 
of ethylene, phenylalanine ammonia Iyase and perox- 
idase was induced (Droby et al., 1991). Dead cells 
of antagonistic yeasts and bacteria were found capa- 
ble of reducing grey mould similarly to live cultures 
in some cases (Elad et al., 1994a, b). The application 
of dead yeast cells was associated with an increase in 
the indigenous populations of bacteria and yeasts, but 
the indigenous populations were not high enough to 
reduce germination of Bc conidia and their penetration 
of the host tissue (Elad et al., 1994a). The BCAs did not 
induce resistance when applied at a short distance from 
the pathogen, and did not produce detectable inhibito- 
ry compounds. It was concluded that the activity of the 
BCAs was associated with their cells or cell walls, and 
at least part of the activity was not associated with live 
cells. Similarly, dead cells of T. harzianum T39 were 
also capable of partial control of Bc infection (Kapat 
and Elad, unpublished). Thus, locally induced resis- 
tance, along with competition for nutrients, resulted in 
the inhibition of grey mould on bean and tomato. 

Cellulase from T. viride applied to a suspension 
cell culture of grapevine induced a hypersensitivity- 
like response in it. The elicitor treatment induced phe- 
nolic metabolism and formation of H202 and of the 
phytoalexin resveratrol (Calderon et al., 1993). The 
formation of extracellular peroxidases and of a new 
form of basic peroxidase, which were correlated with 
the formation of resveratrol oxidation products and tis- 
sue browning were found (Calderon et al., 1994). The 
authors suggest this elicitation process as a potential 
mechanism of induced resistance incited by T. viride. It 
seems that induced resistance is a credible mechanism 
by which suppression of Bc may be achieved, and it is 
tentatively proposed that natural biocontrol of Bc may 
be imposed by this mechanism. This is a relatively new 
direction for research and more information is needed 
in order to evaluate the role of induced resistance in Bc 
control. 



725 

Control of pathogen inoculum 

Inoculum of the pathogen on necrotic tissue or on plant 
debris threatens both the crop in the field and outside 
it, in the season of production and also in later seasons. 
That is why research into restraining inoculum produc- 
tion and survival is considered important and has been 
carried out for several crops. The possibility of disrupt- 
ing the life cycle of Bc at these late stages was found 
fruitful when control of lesion development and coni- 
dial production, by means of various microorganisms 
were attempted. 

Colonization of necrotic plant material by 
microorganisms 
The invasion of dead tissue by Bc was regarded 
by Newhook (1951) and Wood (1951) as a suitable 
process for inhibition of the pathogen by BCAs, since 
the substrate supports active saprophytic growth. They 
inoculated senescent lettuce leaves with antagonists 
such as Fusarium sp. and Penicillium claviforma, iso- 
lated from the same crop, in order to prevent prima- 
ry establishment of Bc. Saprophytic micro-organisms 
established naturally on dead lettuce tissue in the field 
gave a considerable degree of control of Bc (Newhook, 
1951). Establishment of Cladosporium herbarum and 
Penicillium sp. on dead petals adhering to tomato fruit 
reduced infection from 46-80% in trusses of non- 
treated control to 1-3% (Newhook, 1957). Later, C. 
herbarum effectively controlled grey mould on straw- 
berries by protecting the flowers, even under field con- 
ditions (Bahtt and Vaughan, 1962). Trichoderma effec- 
tively protected floral caps of grapes from invasion by 
Bc. Isolations from floral caps showed that 61% of 
the caps in control plots carried Bc whereas only 12% 
of the caps in Trichoderma-sprayed plots carried it 
(Dubos et al., 1982). Thus, application of the antago- 
nist at the flowering stage can prevent establishment of 
Bc on dead flower parts and can delay the development 
of the first foci of disease in vineyards. Similarly, the 
suppressive effect of Gliocladium roseum (Peng and 
Sutton, 1990; Sutton, 1990) described below is due to 
better colonization than by the pathogen of dead straw- 
berry leaves. Substrate competition rather than antibio- 
sis or hyperparasitism is the key biocontrol mechanism 
in this system (Sutton and Peng, 1993). 

Suppression of sporulation of B. cinerea 
Botrytis spp. sporulate abundantly on necrotic tissue 
and crop remains, and the conidia from successive 
cycles of infection contribute to the development of 

an epidemic within the crop (K6hl et al., 1995a; Sut- 
ton, 1990; Sosa-Alvarez et al., 1995; Yunis and Elad, 
1993). K6hl, Fokkema and coworkers (Fokkema et al.; 
1991; K6hl and Fokkema, 1993; K6hl et al., 1992, 
1995bc), working with Botrytis spp. on dead leaves of 
onion and lily, demonstrated that reduction of pathogen 
sporulation by means of several isolates of fungi may 
minimize the conidial load in the crop. Peng and Sut- 
ton (1990) tested various antagonists for their ability 
to control sporulation of Bc on strawberry leaflets and 
found that Trichoderma and Gliocladium isolates were 
most effective. G. roseum and Myrothecium verrcaria 
have been reported effectively to suppress sporulation 
of the pathogen on black spruce seedlings (Zhang et al., 
1994), and several microorganisms, including Penicil- 
lium sp., Arthrinium montagnei, Ar. phaeospermum, 
Sesquicillium candelabrum, Chaetomium globosum, 
Alternaria alternata, Ulocladium atrum and T. viri- 
de, reduced sporulation of the pathogen in previously 
established lesions. These sporulation-inhibiting fungi 
did not reduce the infection of leaves by Bc. Most of 
these selected fungi and some bacteria were also found 
to be capable of reducing lesion expansion (Elad et al., 
1994a). K6hl et al. (1995c) selected BCAs according 
to their capability to suppress sporulation after expo- 
sure to interrupted periods of leaf wetness. In this way 
Kt~hl et al. (1995c) were able to obtain an isolate of 
U. atrum which is capable of coping with field con- 
ditions. Unlike Peng and Sutton (1990), K6hl et al. 
(1995c) found that Gliocladium did not perform well 
under field conditions whereas U. atrum suppressed 
sporulation by more than 90% (K6hl et al., 1995c). 

The interaction of saprophytes with germinating 
propagules of pathogens is different from their interac- 
tion with the sporulating phase of the pathogens, with 
respect to the length of the interaction time (Fokkema, 
1993). In addition, the interaction with germination 
takes place on the undamaged plant surface, whereas 
the interaction with sporulation occurs in necrotic leaf 
tissue. The epidemiological implementation of pre- 
and post-infection biological control in the field may 
result in reduced disease spread. Reductions in pro- 
duction of inoculum followed by a suppression of its 
ability to infect would create an accumulative effect 
over several disease cycles (Jarvis, 1980; K6hl et al., 
1992, 1995a) in greenhouses where the population of 
Botrytis is developing independently of exogenously 
contributing inoculum (Jarvis, 1980; Yunis et al., 1990) 
and also in field crops where inoculum produced within 
the field makes the main contribution to the develop- 
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ment of epidemics (K6hl et al., 1995a; Jarvis, 1962; 
Jordan and Pappas, 1977). 

Colonization of sclerotia 
Sclerotia of Bc are claimed to be an important source 
of primary inoculum in certain agrosystems (Nair and 
Nadtotchei, 1987). Therefore, the limitation of the via- 
bility and infectivity of sclerotia surviving on the canes 
of grapes and in soil may essentially influence the epi- 
demics in the following year. Mycoparasites such as 
Gliocladium roseum, Trichoderma viride, Acrostalag- 
mus roseus, T. pseudokoningii, T. Iignorum, Conio- 
thyrium minitans and Teratosperma oligocladum have 
been isolated from sclerotia of various Botrytis spp. 
or found capable of parasitizing the sclerotia (Summa- 
rized by Ghaffer, 1988). Among the mycoparasites, the 
ability of Trichoderma spp. to rot sclerotia of Botry- 
tis spp. is well substantiated (Coley-Smith and Cooke, 
1971; Coley-Smith, 1980). As sclerotia are mainly 
produced in temperate-zone vineyards, cold tolerant 
antagonists are essential for their decay. Indeed, K6hl 
and Schl6sser (1989) found 19 isolates which macer- 
ated sclerotia of Bc in vivo at 5 ~ On grape vines, the 
production of sclerotia as resting structures was partly 
hindered by Trichoderma spp. which had been applied 
in late summer (Dubos et al., 1982). However, the 
treatment of sclerotia left in the field with the purpose 
of control of Bc was not thoroughly implemented so its 
potential for grey mould suppression is not yet clear. 

Improved biological control 

It is obvious that a biocontrol microorganism will 
not persist and effectively control disease unless it 
becomes established, survives, and is adapted to the 
plant environment. Nonetheless, insufficient research 
efforts have been directed towards the development of 
treatments or cultural practices capable of enhancing 
the establishment, survival and activity of the BCA 
(Elad, 1990; Windels and Lindow, 1985). Ecophysio- 
logical research on biocontrol agents by Magan (1995) 
points to the possibility of improving the tolerance 
of BCAs to low water availability in the phyllosphere. 
Mycelium and conidia of Gliocladium roseum has been 
tested for improved germination at lowered water 
availability (Magan, 1995), by manipulation of carbon 
concentrations and water availability to affect the accu- 
mulation of specific polyols in the thallus of the fungus. 

The addition of various sugars, amino acids or 
other nutrient sources was attempted by researchers 

who were aiming at improved biocontrol of Bc. How- 
ever, such nutritional fortification failed, probably 
because the pathogen was encouraged to germinate and 
infect by the added nutrients. It is probably impossible 
to find nutrients which would encourage the antagonist 
while not encouraging the pathogen. 

Biological control of Botrytis rot of apple fruits 
by strains 87 and 101 of Candida sp. was enhanced 
when wounds were treated with CaC12, KC1 or CaCO3, 
(McLaughlin et al., 1990). In another study, Sugar et al. 
(1994) found enhanced activity of microorganisms in 
combination with several salts; these authors suggest 
that the salt ions affect the growth and survival of the 
microorganisms, or that they stimulate physiological 
processes in the microorganisms that result in excre- 
tion of new or additional metabolites. Wisniewski et al. 
(1995) found enhanced activity of two isolates of Can- 
dida oleophila in the presence of CaC12, and suggested 
that this was due to the direct inhibitory effect of calci- 
um ions on pathogen germination and metabolism, and 
indirectly due to the ability of the yeast to maintain nor- 
mal metabolism in the presence of toxic levels of calci- 
um. Similarly, some salts (CaCO3, MgC12 and KC1 but 
not CaSO4, enhanced the survival of T. harzianum T39 
on bean and tomato leaves (Elad, unpublished). Some 
of the salts (KCI, CaSO4, CaCO3 and MgC12 enhanced 
biocontrol activity of this BCA. Enhancement of bio- 
control of Bc by salts has been observed also on rose 
and gerbera cut flowers (Elad, unpublished; Kerssies, 
1993). 

Field examination of T. harzianum T39 activity 
(Elad et al., 1993) revealed better performance of the 
BCA at a low VPD (but not in the presence of wetness) 
and at high temperatures (25 ~ Under controlled 
conditions, the effect of VPD on the T. harzianum pop- 
ulation was marked: higher populations were obtained 
under lower VPD. On the other hand, the effect of tem- 
perature could not be generalized; although there was 
a tendency towards higher populations at lower tem- 
peratures, it could be attributed to the relatively lower 
VPD conditions (within the limits of 0.35-0.55 kPa) 
that may occur at lower temperatures. 

Formulation of a biocontrol agent can improve the 
activity, widen the range of conditions under which 
it is effective, increase its ability to withstand dras- 
tic changes in the phyllosphere and to survive well 
under unfavourable microclimatic conditions. This 
was shown by O'Neill et al. (1996) on wounded toma- 
to stems. Temperature had a greater effect than vapour 
pressure deficit (VPD) on the efficacy of biocontrol. 
Suppression of B. cinerea incidence by Z harzianum 
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on stem pieces was significant at 10~ and higher 
temperatures up to 26 ~ Control of infection was sig- 
nificantly lower at a VPD of 1.3 kPa (60% reduction), 
than at VPD < 1.06 kPa (90-100% control). Reduc- 
tions in the severity of stem rotting and the sporulation 
intensity of grey mould were generally not affected 
by VPD in the range 0.59-1.06 kPa. Survival of T. 
harzianum on stems was affected by both temperature 
and VPD and was greatest at 10~ at a low VPD and 
at 26 ~ at a high VPD (O'Neill et al., 1996). 

Use of information on the effects of microclimatic 
conditions on biocontrol and survival of T. harzianum 
T39 led to the development of a weather-oriented inte- 
grated control system (named Botman) for optimal use 
of the BCA with minimized use of chemical control 
means (Elad and Shtienberg, 1995). Enhancement of 
the T. harzianum population on plants fertilized with 
3, 5, 8% NPK emphasizes another effect of cropping 
practice which is important for the establishment of 
the BCA in the phylloplane (Elad and Kirshner, 1992, 
1993). Studies such as this one are important for gain- 
ing a better understanding of the introduction of the 
BCA into its target space; lack of attention to this 
point may lie behind cases of unexplained success or 
failure of biocontrol experiments which involve such 
a BCA. 

Interaction of BCAs with other phyllosphere 
microorganisms 

In the phyllosphere, the introduced BCA faces not only 
the pathogen but also a variety of other microorgan- 
isms with which it constantly interacts. The coloniza- 
tion of apple wounds by natural microorganisms and 
an introduced yeast, Candida oleophila, was moni- 
tored by Mercier and Wilson (1994) who found that the 
presence of naturally occurring microflora (the yeasts, 
Aurobasidium pullulans and Sporobolomyces roseus, 
and isolates of the bacteria Erwinia, Pseudomonas and 
Gluconobacter did not interfere with the biocontrol of 
storage rot; in some cases it was even beneficial. 

The effect of the introduced T. harzianum T39 on 
other phylloplane microorganisms has also been stud- 
ied recently (Elad and Kirshner, 1992) and it was 
found to be either promotive or inhibitory to bacte- 
ria, yeasts or filamentous fungi, depending on plant 
nutrition and the conditions under which the plants 
were incubated. The influence of T. harzianum may be 
attributed to an increased population of the introduced 
BCAs, related to the experimental conditions, or to the 

effect of the BCA on the interactive balance among the 
microbial populations. The results (Elad and Kirshner, 
1992, 1993) do not provide a simple picture of phyl- 
losphere BCA and Bc populations, because of compli- 
cating feedbacks within the phyllosphere, which is a 
dynamic system involving many interdependent vari- 
ables. Moreover, the results also reflect the condition 
of viable propagules at the leaf surface; these may 
themselves have complex relationships with the activ- 
ity of mycelial phases (where these exist) inside the 
plant tissues. 

Conclusions 

The mechanisms involved in the biological suppres- 
sion of pathogenicity and inoculum potential of Bc 
are numerous and varied. Most of the possible modes 
of action studied for biocontrol of plant pathogens 
have also been demonstrated in systems where Bc 
was affected by BCAs. However, in many cases these 
mechanisms were not tested under in vivo conditions, 
but in cultures with artificial systems that mimic the 
phyllosphere arena poorly. Our ultimate goal is to elu- 
cidate the contributions of mechanisms which act at the 
sites of interaction on plant tissues. Knowledge related 
to the in vivo processes which take place in systems of 
successful biocontrol of Bc is still lacking. 

It is apparent that, usually, in many systems, more 
than one mode of action is responsible for biocon- 
trol. Indeed, as described in the course of this review, 
the integration of two or more mechanisms has been 
demonstrated in several cases. These include com- 
binations such as: antibiosis with enzymes which 
degrade Bc cell walls; competition for nutrients fol- 
lowed by interference with pathogenicity enzymes of 
the pathogen or with induced resistance; and alteration 
of plant surface wettability with antibiosis. It is likely 
that further study into documented biocontrol systems 
will reveal more cases of multiple modes of action. 

The relative importance of any of the above- 
mentioned mechanisms is open to speculation. Since 
germinating Bc conidia are dependent on the pres- 
ence of nutrients, competition for nutrients should be 
regarded as important in systems where biocontrol is 
involved. Conidial viability and germination capac- 
ity are also potentially affected by the presence of 
antibiotics produced by BCAs and present in the phyl- 
losphere. However, it should be noted that production 
of antibiotics on defined media in cultures does not 
necessarily mean that the same compounds will be 
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produced in high enough quantity under the chemical 
environment of the phyllosphere nor that they will be 
stable there. The activity of antibiotics as well as their 
production by BCAs in the phyllosphere is affected by 
the physiological status of the host and by its leachates. 
The effect of an introduced BCA on the hydrolytic 
enzymes of Bc, which are capable of dissolving the 
plant cuticle and cell walls, is a novel mode of action 
discovered as yet in only one system; it explains the 
prevention of infection even when Bc produces signif- 
icant hyphal biomass on plant surfaces. In this situa- 
tion, in the absence of the BCA, infection would have 
occurred and developed earlier and much more inten- 
sively. Mechanisms which are slower in action include 
those involving induced resistance in the host plant and 
production of hydrolytic enzymes that degrade Bc cell 
walls. The demonstration of the latter has been much 
more convincing in cultures than in the phyllosphere. 

The contribution to effective biocontrol of the spe- 
cific attachment of yeast BCA cells to Bc hyphae or 
conidia has not yet been elucidated; it has been found 
to be associated with degradation of hyphae of Bc but 
not of conidia. However, it may be speculated that the 
tenacious attachment of yeast cells to Bc improves the 
ability of the former to inhibit the activity of the lat- 
ter by competition or by any other potential mode of 
action. The enhancement of activity by various salts 
is also not fully understood; it may be that the salts 
enhance the effects of certain components of biocon- 
trol. 

Treatment of established Bc with effective BCA 
results in competition between saprophytically grow- 
ing mycelium of the pathogen and of the antagonist. 
The effects of these are: i. reduction of infection via 
necrotic plant parts adhering to healthy parts; ii. reduc- 
tion of initial inoculum; and iii. reduction of secondary 
inoculum. Thus reduction of the threat to the crop in 
the same season or the next season, by conidia and 
subsequent epidemic development is achieved. 

The effect of environmental and host factors on the 
functioning of the biocontrol mechanisms responsible 
for suppression of Bc infection and sporulation are of 
utmost importance for the success of biocontrol. How- 
ever, these are the least understood basic features of 
the systems presented throughout this review. We are 
far from understanding the roles of microclimate, host 
species, host nutrition and leachates and host physio- 
logical status, and the contributions of these factors to 
the efficacy of Bc biocontrol and to the strength of the 
mechanisms by which it is achieved. 

In the past, many studies were devoted to descrip- 
tion of cases in which microorganisms successfully 
suppressed infection by or sporulation of the pathogen; 
attention was not always paid to the mechanisms 
responsible for successful suppression. The recovery 
and the thorough understanding of Bc biocontrol sys- 
tems and the study of factors which affect them or 
enhance their potential are crucial for the development 
of reliable and effective systems for suppression of Bc. 
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