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Abstract 

The use of logistic regression is proposed as a method of verifying and calibrating disease risk algorithms. The 
logistic regression model calculates the log of the odds of a binary outcome as a function of a linear combination of 
predictors. The resulting model assumes a multiplicative (relative) relationship between the different risk factors. 
Computer programs for performing logistic regression produce both estimates and standard errors, thus permitting 
the evaluation of the importance of different predictive variables. The use of receiver operating characteristic 
(ROC) curves is also proposed as a means of comparing different algorithms. An example is presented using data 
on Sclerotinia stem rot in oil seed rape, caused by Sclerotinia sclerotiorum. 

Introduction 

Risk algorithms have been designed and used to pre- 
dict whether future disease levels in individual fields 
will exceed a certain level in the future. If the predicted 
risk is sufficiently high, then control measures, often 
in the form of protective sprays, are recommended. 
Traditional risk algorithms include those proposed for 
late blight of potato caused by Phytophthora infestans 
(Krause et al., 1975), Alternaria leaf blight of carrots 
caused by Alternaria dauci (Gillespie and Sutton, 
1975), and apple scab caused by Venturia inaequalis 
(Mills, 1944). In these systems, risk 'points' (calculat- 
ed in lookup tables as a function of weather and other 
risk factors) are summed and sprays are then recom- 
mended after a threshold is exceeded. 

The origin of these risk algorithms is not always 
clear, though they are undoubtedly based on exten- 
sive experience and subjective judgement. The unclear 
origins can create problems if these algorithms (in 
unmodified form) are to be used in geographic areas 
with different climatic conditions or with other host 
plant cultivars with different levels of resistance. The 
relatively subjective nature of the development process 
also makes it difficult to develop new algorithms for 

other pathosystems in the absence of extensive experi- 
ence. 

An objective method for calibrating and verifying 
these algorithms is needed if functional ones are to 
be used outside of the area of development, or if new 
ones are to be developed without extensive experi- 
ence. In this paper, we describe a method of evaluat- 
ing and calibrating risk algorithms based on logistic 
regression, and the graphical comparison of different 
risk algorithms via receiver operating characteristics 
(ROC) curves. 

Materials and methods 

Original algorithm 

In Sweden, Sclerotinia sclerotiorum (Lib.) deBary 
generally infects oil seed rape during flowering, caus- 
ing Sclerotinia stem rot. Adequate control of the 
disease can generally be obtained by application of a 
single fungicide spray during flowering. This fungicide 
application is not required every year, and considerable 
savings can be obtained by only applying fungicide 
when necessary. 
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A disease prediction algorithm for Sclerotinia stem 
rot in oil seed rape using a risk point sum was described 
by TwengstrOm and Sigvald (1993) (Table 1). If the 
total number of points was less than 60, sprays were 
not recommended, and between 60 and 100 was an 
intermediate, uncertain zone. A total of 100 or more 
points indicated high risk for Sclerotinia sclerotiorum 
infection and fungicide application was recommended. 

While disease level at harvest is a continuous vari- 
able, the outcome from this algorithm represents a need 
to apply a fungicide spray. This is a binary variable 
corresponding to a final disease level over 20% (a spray 
was needed) or less than or equal to 20% (a spray was 
not needed). The decision threshold was determined 
by the point where the cost of fungicide applications 
were offset by the increase in yield, here referred to 
as the the economic action threshold (Twengstr6m and 
Sigvald, 1993). 

Data collection 

Rapeseed growers in the provinces of Uppland and 
Vastmanland in eastern parts of Central Sweden were 
asked to leave a 20m by 50m plot unsprayed during 
the years 1988 to 1991. Past cropping history and 
present cultural practices as well as current and fore- 
casted weather predictions were also collected so that a 
disease risk forecast could be calculated for each field. 
At the end of the growing season, 200 plants were 
randomly selected from the untreated plots in these 
fields and used to calculate disease incidence. A total 
of 267 fields were available for analysis. The original 
disease prediction algorithm was used to calculate the 
point score, and a particular field was judged to be in 
need of a spray if the final disease incidence exceeded 
the economic action threshold. 

Logistic regression 

For the purposes of this study, fields were divided 
into two groups (over 20% and 20% or less diseased 
plants, corresponding to the economic action threshold 
used in developing the original algorithm), yielding a 
binary outcome variable. Independent variables were 
the original weather and cropping history data from the 
respective fields. 

A comprehensive description of logistic regression 
would be difficult to give in this space, but generally 
stated it calculates the probability of a given binary 
outcome as a function of a set explanatory variables 
(McCullagh and Nelder, 1989). If we denote the true 

risk or probability of the 'outcome' as P, the model 
assumes that the logarithm of the odds of P (odds(P) 
= P/(1 - P)) is a linear function of the explanatory 
variables. Note that the logarithm of the odds of (P) is 
logit(P). In this particular situation, the binary outcome 
is the probability that the final disease level in a given 
type of field (defined by a unique combination of the 
covariates) exceeds the economic action threshold. It 
could also be considered the probability of the need 
to apply fungicides in a given field. The model fits 
the logit of this probability as a linear function of the 
covariates (such as cropping history and weather data) 
for that field. Differences between the observed out- 
come and the predicted outcome (P) are accomodated 
by assuming the predicted values follow a binomial 
distribution. For further details regarding logistic 
regression, it is suggested that the reader consult 
Hosmer and Lemeshow (1989), or a reference work on 
general linear models (McCullagh and Nelder, 1989). 

Normal least squares methods cannot be used to 
calculate the regression coefficients in logistic regres- 
sion, and maximum likelihood methods are required. 
Both GLIM with binomial error and logistic link (The 
Numerical Algorithms Group Ltd, Wilkinson House, 
Jordan Hill Road, Oxford, United Kingdon OX2 8DR) 
and the SAS Procedures GENMOD and LOGISTIC 
(SAS Institute Inc., SAS Circle, Box 8000, Cary, NC 
27512-8000) were used to fit these models with iden- 
tical results. All these methods yield, in addition to 
the parameter estimates, the variance and covariance 
matrix of the parameter estimates. The standard devi- 
ation of the parameters (the square root of the vari- 
ance) was used to calculate 95% confidence intervals 
for the estimates. Candidate models were compared 
using their deviance ( - 2  times log likelihood). The 
difference in deviance between two models was tested 
against a X 2 va lue  (the number of degrees of freedom 
corresponding to the difference in degrees of freedom 
between the two models), i.e. a likelihood ratio test 
(LRT) (McCullagh and Nelder, 1989). 

Risk factors were evaluated in two ways. In the 
first, the ability of a risk factor alone to predict the 
risk that a field became diseased was tested. This con- 
sists of testing the deviance reduction attributed to a 
variable when it is first entered into the model. In the 
other method, the predictive ability of a factor was 
tested by removing it from a complete model with all 
explanatory variables. The latter method, referred to 
as a Type 3 analysis in Genmod (SAS Institute, 1993), 
duplicates the analysis of deviance entry that a vari- 
able would have if it was the last variable entered. If 



Table 1. Risk factors with points from original prediction algorithm, with likelihood ratio test (LRT) for that 
factor entered into a model first, and for that factor entered into a model last 
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Risk factor Possible answers Points LRT LRT 

Factor first Factor last 

Number of years since last oil-seed More than 6 years 0 1.097 8.819 

crop 5-6 years 5 2 df a 2 df a 

3-4 years 15 

t - 2  years 20 

Level of infection in last oil-seed None 0 18.275 15.819 

crop Low (1-10%) 10 5 df 5 df  

Moderate (11-30%) 20 

High (31-100%) 30 

Don't know (low risk) 10 

Don't know (high risk) 20 

Have peas been grown in the field No 0 0.108 0.054 
during thelast five years Foliage den- Yes 5 1 df  1 df  

sity (including weeds) 0.5 m above Thin 0 12.387 12.818 

ground Normal 15 2 df 2 df 

Heavy 30 

Rain in June Less than normal 0 40.62 1.438 

Normal (35-55 mm) 10 2 df 2 df  

More than normal 20 

Rain the last two weeks Less than 10 mm 0 17.638 1.637 

10-30 mm 15 1 df b 1 df b 

More than 30 mm 25 

Weather forecast High pressure 0 12.612 9.601 

Variable 5 2 df  2 df  

Low pressure 10 

Regional risk value for apothecia 0-5 0 51.083 19.082 
development (per 100 sclerotia) 6-10 5 2 df c 2 df c 

11-20 15 

21-100 25 

a The groups labelled 1-2 years and 3-4  years were combined to form one group in the logistic regression 
analysis. 

b The groups less than 10 mm rain and 10-30 mm rain were combined to form one group in the logistic regression 
analysis. 

c The groups labelled 11-20 apothecia and 21-100 apothecia were combined to form one group in the logistic 
regression analysis. 

none of the independent variables are correlated, the 
two LRT's would be identical. Since the independent 
variables here are related, any complete analysis of 
deviance tables would be dependent on the order of 
the variables. This method (examining the importance 
of a variable if entered first and last) duplicates the 
essential portion of the analysis of deviance table in 
a manner that is not dependent on the order of the 
variables. A complete analysis of deviance table was 
generated for the final model, where the reduction in 

the residual deviance was calculated for each variable 
as it was added to the model. 

Both the original and the modified algorithm 
produce a range of values, and since neither is a per- 
fect predictor, any decision threshold based on these 
algorithms (such as 'spray if the point accumulation is 
above a given level') yields one of four possible situa- 
tions (Table 2). The cells A and D represent the number 
of correct decisions, whereas B and C represent the 
incorrect decisions. If a total of A+C fields had a final 
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Table 2. Calculation of true and false positive error rates for a 
predictor of Sclerotinia stem rot in oil-seed rape 

Disease exceeds 20% Disease less than 20% 

Spray A 
Don't spray C 
Total A+C 

B 
D 
B+D 

A/(A+C) True positive B/(B+D) False positive 

disease level over 20%, and our algorithm predicted 
this would occur in A fields, then the true positive rate 
(TP) would be A/(A+C). Likewise, if (B+D) fields had 
a final disease level less than 20%, and our algorithm 
recommended a spray for B of these fields, then the 
false positive rate (FP) would be B/(B+D). The TP 
and FP rates can be affected by changing the decision 
threshold. For example, recommending a spray with a 
lower point accumulation would increase the TP rate, 
but may also increase the FP rate. An ideal algorithm 
would maximize the TP rate and minimize the FP rate. 

The relationship between TP and FP for the risk 
prediction algorithms was examined graphically by 
plotting receiver operating characteristic (ROC) curves 
(Metz, 1978). These curves plot the TP as a function of 
the FP at all possible decision thresholds. In an ROC 
curve using our example, the origin of the graph repre- 
sents the decision 'not-to-spray' for all fields. This 
decision yields no false positives (i.e. a recommen- 
dation to spray in the absence of the need to spray: 
the quantity B in Table 2 is 0) but captures no true 
positives (recommending a spray for those fields that 
truly require one: the quantity A in Table 2 is also 0). 
The upper right comer would recommend spraying all 
fields, thus detecting all fields that truly require a spray 
(C = 0, TP rate = 1) but also recommending a spray for 
all fields that do not require them (D = 0, FP = 1). An 
efficient algorithm would yield a curve 'pushed to the 
upper left comer ' .  

Results  

The risk factors proposed in the original algorithm 
varied in their ability to predict final disease in the 
fields tested (Table 1). Some factors, such as level of 
infection in the last rapeseed crop, were of importance 
irregardless of which other risk factors were included 
in the model. Other factors, such as whether peas had 
been grown in the field during the last five years, were 

not able to predict the need to spray alone or in com- 
bination with other risk factors. A third group were 
factors that could be significant by themselves, but 
which were not significant after other risk factors were 
included in the model. The number of years since the 
last oil-seed crop was initially not important (X 2 = 
1.097, 2 df, when entered first), but gained in impor- 
tance with the addition of other variables (X 2 = 8.819, 
2 df, when entered last). This was due to the regional 
risk value (data not shown). 

A subset of the most important risk factors were 
tested in a reduced model that included number of 
years since last oil-seed crop, level of infection in last 
oil-seed crop, foliage density, rain in June, and weather 
forecast. Peas as a previous crop was eliminated since 
it was unrelated to the risk of stem rot. The regional 
risk value was also left out of the model in order to test 
the performance of an algorithm without this factor, 
since it is expensive to measure, and cannot be easily 
used without access to sclerotia and proper training. 
Rain within the last two weeks and rain in June were 
highly correlated with each other. Rain in June was a 
better predictor (Table 1), and was retained. Analysis 
of deviance (Table 3) showed that most variables in 
this model were important. The number of years since 
the last crop was not statistically significant in this 
particular model since the regional risk value was not 
included. The parameter estimates resulting from the 
regression (the natural logarithm of the odds ratio) and 
their standard errors are presented in Table 4. Expo- 
nentiating the parameter estimate yields the odds ratio, 
which can be interpreted as the relative risk. Both 
values are useful, since the parameter estimates have 
an additive relationship, and can thus be summed in a 
manner similar to the original risk algorithm, whereas 
the relative risk values themselves are easier to inter- 
pret. 

The original prediction algorithm varied in its 
ability to predict whether disease incidence would 
exceed the economic action threshold (Figure 1). The 
reduced, calibrated model with only five risk factors 
was similar in its ability to predict the need to spray 
(Figure 2). Both the original and the reduced model 
had a wide range of values for fields that developed 
little or no disease. This is somewhat underestimated 
in the Figures 1 and 2 since several points near the Y 
axis are actually several observations. A simultaneous 
comparison of the ROC curves from the original and 
calibrated risk algorithm also shows relatively small 
differences between the two algorithms in their ability 
to predict the need for fungicide treatments (Figure 3). 
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Figure 1. Accumulated risk points (original scale) as a function of disease incidence in 267 oil seed rape fields from 1988 to 1991. 
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Figure 2. Log relative risk from a reduced model (number of years since last oil-seed crop, level of infection in last oil-seed crop, foliage 
density, rain in June and weather forecast) as a function of final disease assessment from 267 oil seed rape fields from 1988 to 1991. 
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Table 3. Analysis of deviance showing relative importance of of adding various factors in a reduced 
model predicting 'need to spray' (based on final disease incidence over 20%) 

Added Factor a Deviance b DF c X 2 Pr> X 2 

Intercept 211.1804 0 

Number of years since last oil-seed crop 210.0831 2 1.0974 0.5777 

Level of infection in last oil-seed crop 191.1924 5 18.8907 0.0020 

Foliage density 180.7123 2 10,4800 0.0053 

Rain in June 148.9162 2 31.7962 0.0000 

Weather forecast 138.8070 2 10.1091 0.0064 

a Each factor added to the model listed in the previous line. 
b Residual deviance of model. 
c Degrees of freedom added to model due to addition of the factor. 

Table 4. Risk factors, natural logarithm of relative risk, and standard error for a reduced model to predict 
'need to spray' (based on final disease incidence over 20%) 

Risk Factor Possible response loge (RR) SE Relative risk 

Number of years since More than 6 years Reference - 1 

last oil-seed crop 5-6 years 0.6074 0.5414 1.84 

1-4 years -0.8506 0.8828 0.43 

Level of infection in last None Reference - 1 

oil seed crop Low 1.4497 1.2269 4.26 

Medium 1.7098 1.4527 5.53 

High 3.9872 1.4034 53.90 

Don't know (low risk) 1.9424 1.2334 6.98 

Don't know (high risk) 1.078 1.1744 2.94 

Foliage density Thin Reference - 1 

Normal 1.8974 0.88 6.67 

Dense 2.4075 0.9854 11.11 

Rain in June Less than normal Reference - 1 

Normal 1.1920 0.6791 3.293662 

More than normal 2.7092 0.5976 15.01726 

Weather forecast High Pressure Reference - 1 

Variable 2.7749 1.1817 16.03702 

Low pressure 1.17711 1.5519 5.88 

Discussion 

The use of logistic regression allows for the develop- 
ment and calibration of risk algorithms from empirical 
data. Using logistic regression, the importance of 
various risk factors can be evaluated in a systematic 
manner. The increased risk resulting from the pres- 
ence of a given risk factor can be readily quantified, 
along with an indication of the amount of variability 
associated with this estimate. Use of relative risk also 
implies a multiplicative relationship between the dif- 
ferent risk factors. Thus if factor A increases the risk 
by a factor of 2 and factor B by a factor of 1.5, the 

presence of both A and B would increase the risk by a 
factor of 2 x 1.5 or 3. An iterative method can be used 
to further refine these risk estimates. As additional data 
are accumulated (for example, after the current grow- 
ing season), the risk estimates can be recalculated and 
the resulting new algorithm tested the next growing 
season. 

The use of ROC curves is a method of comparing 
risk algorithms that does not rely on the algorithms 
having the same scale. An added advantage is that it 
allows for flexibility on the part of the decision maker. 
Variable decision thresholds, with varying TP and FP 
rates, can reflect the risk attitudes (utility functions) 
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Figure 3. Receiver operator characteristic curves from the original disease forecast algorithm (--13--) and recalibrated algorithm (- -~-- ) .  
The space between each marker represents a change of 20 points for the original algorithm and a change of 1 (measured as logeRR) for the 
recalibrated algorithm. 

of the decision maker (Teng and Yuen, 1991). Thus, 
a risk averse decision maker may set his criteria level 
further to the right on Figure 3, and spray his fields 
with a lower 'point accumulation', when compared to 
a decision maker more willing to take risks. He could 
thereby increase his true positive rate, but at the cost 
of increasing his false positive rate. The advantage of 
the ROC curves is that the rate of both kinds of errors 
(applying an unneeded spray, and missing a needed 
spray, in our example) can be estimated. Given these 
error rates and the relative costs of both kinds of error, 
the decision maker can determine a critical value for 
his decision threshold, that reflects his attitudes toward 
risk. 

One should be cautious in using these estimates for 
risk prediction in rapeseed fields without testing with 
additional data. Since the data used to compare the 
algorithms were the data used to calibrate the risk esti- 
mates, the results we report here are of limited value 
for forecasting purposes. The relationship between the 
number of years since the last crop, the other indepen- 
dent variables, and the development of disease needs 
to be explored further. Certainly additional years of 
data, along with verification with an independent data 

set would be required to develop risk algorithms with 
wide applicability. This is currently being done with a 
larger data set by one of the authors (E.T.). Despite the 
limited data set, the risk estimates reflect the current 
knowledge of the biology of this particular disease, 
with increased risks from higher !evels of infection in 
the last crop, a more dense crop canopy, increased 
precipitation, and a weather prediction indicating 
precipitation. The factor for number of years since 
the last crop was not important in this model, though it 
is important in the presence of the regional risk value 
(Table 1). The regional risk value is a bioassay of the 
sum of all factors that affect apothecial development, 
and this quality of information may be required in order 
for the factor for the number of years since the last crop 
to be important. 

Logistic regression has been used in plant path- 
ology primarily to analyze disease incidence or other 
outcome data that is a proportion, such as the propor- 
tion of spores that have germinated (Fitzell et al., 1984; 
Schuh et al., 1987; Dodd et al., 1991; Schuh, 1992; 
Johnson et al., 1994). In such analyses, the independent 
variables are similar, but the outcome of such analyses 
represents disease incidence or the proportion of spores 
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which have germinated. A related method, Poisson 
regression, has been used to characterize leatherjacket 
(Tipula spp) populations (McCracken et al., 1994). 
In this case, the dependent variable is the number of 
larvae in a sample. Little work has been done using the 
need to apply some control measure as the outcome 
variable. 

Logistic reqression is a method widely used in 
human epidemiology to quantify risk factors in retro- 
spective studies, commonly called case/control studies 
(Hosmer and Lemeshow, 1989). The method allows 
for sampling to take place after the diseased individ- 
uals have been identified, so that the sampling propor- 
tion of the healthy and diseased population is not the 
same, or is even known. Typically, close to 100% of 
the diseased individuals (cases) are sampled, but for 
rare diseases, less than 1% of the healthy population 
is sampled. As long as the exposures of interest do 
not differentially bias the sampling procedures for the 
cases and the controls, these sampling fractions cancel 
out each other in the calculation of the odds ratio. One 
extension of the method allows for several response 
categories (Agresti, 1990) which could be useful if 
the economic action threshold (in this case the 20% 
final disease level) can vary. The different response 
categories can take several forms (nominal, ordinal, 
or interval variables), which in combination with the 
postulated relationship between the outcomes and the 
independent variables, affect the structure of the final 
model (McCullagh and Nelder, 1989). Attempts to use 
these methods did not give satisfactory results with 
these data. 

The development of risk assessment algorithms 
needs to be guided by the required specificity of the 
final algorithms. If data from a wide variety of cropping 
situations (variation in cultivars, cultural practices, 
climate etc.) is used to develop these algorithms, the 
result may have wider applicability at a loss of speci- 
ficity. Likewise, restricting the variation in the under- 
lying data may not permit the discovery of important 
factors, merely because they are always present (or 
absent), though this may not necessarily affect the 
validity of the resulting algorithm in that particular 
setting. 

References 

Agresti A (1990) Categorical Data Analysis. John Wiley and Sons, 
New York, 558 pp 

Dodd JC, Estrada AB, Matcham J, Jeffries P and Jeger MJ (1991) 
The effect of climatic factors on Colletotrichum gloesporioides, 
causal agent of mango anthracnose, in the Phillipines. Plant 
Pathology 40:568-575 

Fitzell RD, Peak CM and Darnell RE (1984) A model for estimating 
infection levels of anthracnose disease of mango. Annals of 
Applied Biology 104:451-458 

Gillespie TJ and Sutton JC (1979) A predictive scheme for timing 
fungicide applications to conlrol altemaria leaf blight in carrots. 
Canadian Journal of Plant Pathology 1: 95-99 

Hosmer DW and Lemeshow S (1989) Applied Logistic Regression. 
John Wiley and Sons, New York, 307 pp 

Johnson DA, Alldredge JR and Allen JR (1994) Weather and downy 
mildew epidemics of hop in Washington state. Pbytopathology 
84:524-527 

Kranse RA, Massie LB and Hyre RA (1975) BLITECAST: A compu- 
terized forecast of potato late blight. Plant Disease Reporter 59: 
95-98 

McCracken DM, Foster GN and Kelly A (l 994) Factors affecting the 
size ofleatherjacket (Diptera: Tipulidae) populations in pastures 
in the west of Scotland. Applied Soil Ecology 2:203-213 

McCullagh P and Nelder JA (1989) Generalized Linear Models, 2nd 
Edition. Chapman and Hall, London, 511 pp 

Metz CE (1978) Basic Principles of ROC Analysis. Seminars in 
Nuclear Medicine 8:283-298 

Mills WD (1944) Efficient use of sulfur dusts and sprays during 
rain to control apple scab. New York Agricultural Experiment 
Station Ithaca Extension Bulletin 630, 4 pp 

SAS Institute., 1993. SAS Technical Report P-243, SAS/STAT Soft- 
ware: The GENMOD Procedure, Release 6.09, Cary, NC: SAS 
Institute Inc. 88 pp 

Schnh W (1992) Effect of pod development stage, temperature and 
pod wemess duration on the incidence of purple seed stain of 
soybeans. Phytopathology 82:446-451 

Schuh W, Jeger MJ and Frederiksen RA (1987) The influence of soil 
temperature, soil moisture, soil texture and inoculum density on 
the incidence of sorghum downy mildew. Phytopathology 77: 
125-128 

Teng PS and Yuen JE (1991) Epidemic models: Lessons from plant 
pathology. In: Levin MA and Strauss HS (eds) Risk Assessment 
in Genetic Engineering (pp. 272-296) McGraw Hill, Inc., New 
York 

Twengstr6m E and Sigvald R (1993) Forecasting Sclerotinia stem rot 
using meteorological and field specific data. SP-Report, Danish 
Institute of Plant and Soil Science, No 7. Proceedings of the 
Workshop on Computer-based DDS on Crop Protection, Parma, 
Italy, 23-26 November 1993 


