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E S S E N T I A L  I D E A L S  IN C(X) 

F. AZARPANAH (Ahvaz) 

A b s t r a c t  

It is shown that X is finite if and only if C(X) has a finite Goldie dimension. 
More generally we observe that the Goldie dimension of C(X) is equal to the Souslin 
number of X. Essential ideals in C(X) are characterized via their corresponding 
z-filters and a topological criterion is given for recognizing essential ideals in C(X). 
It is proved that the Fr~chet z-filter (cofinite z-filter) is the intersection of essential 
z-filters. The intersection of ideals Ox where x runs through nonisolated points in 
X is the socle of C(X) if and only if every open set containing all nonisolated points 
is cofinite. Finally it is shown that if every essential ideal in C(X) is a z-ideal then 
X is a P-space. 

I n t r o d u c t i o n  

A nonzero ideal E in a commuta t ive  ring R is called essential if it intersects 
every nonzero ideal nontrivially.  This concept was first  introduced in [7] and plays 
an impor tan t  role in the s t ructure  theory of noncummuta t ive  Notherian rings, see 
[5] or [13]. One of the central notions in the context of  C(X), the ring of continuous 
real valued functions on a completely regular Hausdorff  space X,  is tha t  of a prime 
ideal. It turns  out tha t  every prime ideal in C(X) is either an essential ideal or a 
maximal  one, therefore the s tudy  of  essential ideals in C(X) is worthwhile. We note 
tha t  for any ideal B in C(X) ( or more generally in any commuta t ive  semiprime 
ring), the ideal B @ Ann(B), where Ann(B) = { f  E C(X) : fB  = (0)} is the 
annihilator of B in C(X), is an essential ideal in C(X). Hence an ideal B in a 
commuta t ive  semipr ime ring is an essential ideal if and only if Ann(B) = (0). This  
immediate ly  shows tha t  an ideal B in C(X) is essential if and only if B n C*(X) 
is an essential ideal in C*(X), and also if A is an essential ideal in C*(X), then 
AC(X) is an essential ideal in C(X). The intersection of all essential ideals in any 
commuta t ive  ring R is the socle, the sum of all minimal  ideals of R, see [5], p. 59, or 
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[11], p. 62 and for a topological characterization of the socle of C(X) ,  see [10]. It is 
interesting to note that  the set of isolated points in a completely regular Hasudorff 
space X is dense if and only if the socle of C(X) is essential in C(X), see [10], 2.1. 
We note that  in this case the socle is the smallest essential ideal in C(X). 

A set {Bi}ieI of nonzero ideals in C(X) is said to be independent if Bi M 
(~iT~jeI Bj) : (0), i.e., ~ i e I / ? i  = GiEIBi. Then we say C(X) has a finite Goldie 
dimension, if every independent set of nonzero ideals is finite, and if C(X) has no 
finite Goldie dimension, then the Goldie dimension of C(X), denoted by dim C(X) 
is the smallest cardinal number c such that  every independent set of nonzero ideals 
in C(X) has cardinality less than or equal to c. An ideal A in C(X) is said to be 
uniform if any two nonzero ideal contained in A intersect nontrivially. These ideals 
are related to finite Goldie dimension, see [5] or [13]. We observe that  an ideal in 
C(X) is uniform if and only if it is a minimal ideal. 

The smallest cardinal number c such that  every family of pairwise disjoint 
nonempty open subsets of X has cardinality less than or equal to e, is called the 
Souslin number, or cellularity of the space X and is denoted by S(X), see [1]. If 
S(X) is countable, then we say that  X has the Souslin property. We show that  for 
any completely regular Hausdorff space X, the Souslin number of X is equal to the 
Goldie dimension of C(X). We also show that  the z-filter corresponding to the socle 
(Fr&het z-filter) is the intersection of all essential z-filters. We study the relations 
of essential ideals with z-ideals, prime ideals and prove that  if every essential ideal 
in C(X) is z-ideal, then X is a P-space. 

For a large class of topological spaces, including compact Hausdorff ones, we 
show that  the socle of C(X) is the intersection of the essential ideals 0,~, where x 
runs through the set of nonisolated points in X and O~ = {f  E C(X) : Z(f)  is a 
neighborhood of x}, see [3]. In this paper C(X) is the ring of continuous real valued 
functions on a completely regular Hausdorff space X and the reader is referred to 
[3], for undefined terms and notations. 

1. U n i f o r m  idea l s  

The following results shows that  the set of uniform ideals in C(X) and the 
set of minimal ideals coincide. 

PROPOSITION 1.1. IrA is an ideal in C(X), then the following are equivalent. 
(i) A is a uniform ideal in C(X). 

(ii) For any two nonzero elements f, g E A, f9 # O. 
(iii) A is a minimal ideal in C(X). 

PROOF. (i)=>(ii) We note ( f )  M (g) # (0) implies that  3hl, h2 E C(X) such 
that  fha = gh2 • O. This shows that  fghlh2 # 0 and therefore fg 7s O. 

( i i)~(i i i)  By Proposition 3.1 of [10], it is sufficient to show that  there exists a 
fixed isolated point x E X such that  X - {x} C_ Z(f),  Vf E A. Now let 0 # f E A, 
x and y be two distinct elements in X - Z(f)  and G, H be two disjoint open 
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sets conta in ing  x and y respect ively.  Then  by comple te  regu la r i ty  of X ,  there  are 
e lements  g l ,  g2 in C(X) such t ha t  gl(X - G) = g2(X - H )  = {0} and gl(x) = 
g2(Y) = 1. Clear ly  g l f  and  g2f are nonzero e lements  of A and gl fg2 f  = 0, a 
cont rad ic t ion .  Next,  suppose  t ha t  for d i s t inc t  nonzero e lements  f l ,  f2 E A there  are 
d is t inc t  e lements  x l  and  x2 in X such t h a t  X - { x 1 }  C_ Z( f l )  and X - { x 2 }  C_ Z(f2). 
Then  we have f l f2  = 0 which con t rad ic t s  (ii). 

(iii)::r Th is  is t r iv ia l .  �9 

2. G o l d i e  d i m e n s i o n  v e r s u s  S o u s l i n  n u m b e r  

It  is wel l -known tha t  if a c o m m u t a t i v e  r ing R (in fact any ring) has a finite 
Goldie  d imension ,  then  there  is an integer n > 0 such tha t  a direct  sum of nonzero 
ideals  in R has a lways m terms,  where m < n and there  is a direct  sum of uni form 
ideals  (wi th  n te rms)  which is essent ia l  in R, see [5] and [13]. We observe tha t  
any reasonable  finiteness condi t ion  on a r ing R, such as Noether ianness  or having 
Kru l l -d imens ion ,  in the  sense of Gabr ie l  and  Rentschler ,  see [5] or [13], i m m e d i a t e l y  
impl ies  t ha t  R mus t  have a f inite Gold ie  d imension.  The  next  result  shows t ha t  X 
mus t  be finite if the  Gold ie  d imens ion  of C(X) is finite. Of course we could ob ta in  
this  resul t  f rom the equa l i ty  of the  Sousl in number  and the Goldie  d imens ion  bu t  we 
give a different p roof  in th is  egse because  of the  impor t a nc e  of finiteness of Gold ie  
d imension .  

PROPOSITION 2.1. X is finite if and only if C(X) has a finite Goldie dimen- 
sion. 

PROOF. Suppose  t h a t  the  Gold ie  d imens ion  of C(X) is finite, then there is 
an essential  ideal  which is a f inite direct  sum of uni form ideals.  Since each un i form 
ideal  is m in ima l  in C(X),  this  essential  ideal  is the socle of C(X) and we also note 
t ha t  the  ca rd ina l i ty  of the set of i so la ted  po in ts  is the  same as the  ca rd ina l i ty  of the 
set of m in ima l  ideals in C(X),  see [10]. Th is  shows tha t  the  set of i sola ted  poin ts  
in X is f inite and dense and therefore  i t  mus t  be X .  The  converse is obvious.  �9 

Next  we prove our  m a i n  resul t  of  this  section. 

THEOREM 2.2 ]f X is an infinite space, then d imC(X)  = S(X).  

PROOF. Let dim C(X) = c and @ieIBi be a direct  sum of ideals  in C(X), 
where [I], the  ca rd ina l i ty  of  I ,  is less t han  or equal  to c. Now for each i E I ,  let 

0 # fi E Bi, then f i f j  = 0, w h e n i # j .  Hence ( X - Z ( f i ) ) ~ ( X - Z f j ) )  = 0, 
and this implies  t h a t  F = {X - Z(fi)  : i E I}  is a collection of dis joint  open sets 
in X, i.e., S(X) > c. Now let {Gk : k E Ix'} be any collection of dis joint  open sets 
in X, then  for all k E Is there  exists  0 # fk E C(If) such t ha t  f k (X  - Gk) = {0}. 
Now we pu t  Bk = (fk), Vk E K and c la im tha t  {Bk}keK is an independen t  set 
of nonzero  ideals  in C(X).  If  we prove our  c la im,  then we are th rough ,  for in 
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tha t  case d i m e ( X )  = c > IKI, i.e., c > S(X).  Therefore  we mus t  show tha t  
n m )  = (0). 

Now let f E Bk M (~-~-kgreg Br) ,  then  f = f~g : f r l g l  + f r 2 g 2  + "" "-{- fr~gn, 
whereg, gi E C(X) ,  f~ E Bk and f ~  E Br, ,  i = 1 , 2 , . . . , n ,  and k # ri, for all 
i = 1 , 2 , . . . , n .  But  clearly f~fr, = 0 for every i = 1 , 2 , . . . ,  n implies tha t  f~g = O, 
i.e., f2 = 0 and therefore f = 0. �9 

REMARK 2.3. I t  is a celebrated question whether  the produc t  of  two spaces 
with Souslin p rope r ty  has the Souslin property.  This  s t a t emen t  is independent  of  
the usual axioms of set theory, see [8]. It  is interesting to note t ha t  for comple te ly  
regular spaces this becomes  equivalent  to an algebraic question, name ly  if C(X)  and 
C(Y) have countable  Goldie dimensions,  then is the Goldie dimension of C (X  x Y)  
countable? 

3. E s s e n t i a l  i d e a l s  i n  C(X)  

In this section we characterize essential  ideals via a topological  p roper ty  and 
then using this we note tha t  any ideal containing a pr ime ideal in C(X)  (this is 
called a pseudo-prime ideal, see [4]) is ei ther essential or a m a x i m a l  ideal genera ted 
by an idempoten t  which is also a min ima l  pr ime ideal. 

alent. 
(i) 

(it) 
O i) 
Or) 

THEOREM 3.1. I rE  is a nonzero ideal in C(X) ,  then the following are equiv- 

E intersects every nonzero z-ideal in C(X)  nontrivially. 
E is an essential ideal in C(X) .  
Ann(E)  = (0). 
M Z[E] is a nowhere dense subset of X.  

PROOF. (i)=v(ii) Let J be a nonzero ideal in C(X),  then Z -1 [Z[J]] = { f  E 

C(X)  : Z ( f )  E Z[J ]}  is a z-ideal, therefore 30 # f E E M Z - I [ Z [ J ] ] .  Hence for 
some g E J we have Z ( f )  = Z(g). This  means  t ha t  0 # fg E J M E. 

(ii)=~(iii) It  is clear tha t  (Ann(E)ME)  2 = (0), implies tha t  Ann(E)ME = (0). 
Hence Ann(E)  = (0). 

(iii):=v(iv) Suppose the interior of  M Z[E] is n o n e m p t y  and is denoted by U = 
tat M Z[E]. Now there exists a nonzero element  f E C(X)  such tha t  f ( X - U )  = {0]. 
Thus for every g E E we have fg = 0, i.e., Ann(E)  # (0), a contradict ion.  

(iv)==V(i) Let I be a nonzero ideal and 0 # g E I ,  then X - Z(g) is open set 
and clearly (X  - Z(g)) M ( Z  - M Z[E])  r 0, this implies tha t  there is f E E such 
tha t  (X - Z(g)) M (X - Z ( f ) )  # O, therefore Z(gf )  # X,  i.e., 0 # gf  E E M I. �9 

REMARK 3.2. Pa r t  (iv) of the previous result  is an effective criterion for 
recognizing the essential  ideals in C(X).  One can easily see tha t  every free ideal is 
an essential ideal and a principal  ideal ( f )  is an essential ideal in C(X)  if and only 
if Z( f )  is nowhere dense. If  x E X is a nonisolated point ,  then again by the same  
criterion we see t h a t  O~ is an essential  ideal. We also note  tha t  if X is an infinite 
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space and V is an open set such that  V r X,  then E = {f  E C ( X )  : V C_ Z ( f ) }  is 
a z-ideal which is not essential. 

COROLLARY 3.3. Every pseudoprime ideal in C ( X )  is either an essential ideal 
or a maximal ideal which is at the same time a minimal prime ideal. 

PROOF. Let A be a pseudoprime ideal in C ( X )  and P be a prime ideal such 
that  A D P.  Then it is sufficient to show that  P is either essential or a maximal  ideal 
with the required property. We know that  MZ[P] is either empty  or a singleton. 
Therefore by our criterion if P is a nonessential ideal, then MZ[P] is singleton {x} 
and again by our criterion x must  be an isolated point in X. Thus P C_ M~ and 
M ,  = eC(X) ,  where e is the idempotent  in C ( X )  such that  e(x) = 0, e(X - {x}) = 
{1}. Now e ( 1 - e )  = 0 E P implies that  e E P,  for 1 - e  ~ P (we note that  1 - e  E P 
implies 1 - e  E M~ which is impossible). This shows that  P = M~ = PC(X).  Finally 
to show that  P is a minimal prime, let Q be a prime ideal such that  Q c_c - P,  then 
e(1 - e) = 0 implies that  e E Q, i.e., Q = P.  �9 

COROLLARY 3.4. X is finite if and only if  C ( X )  has no proper essential 
ideals. 

PROOF. If X is finite, then we are through. Conversely each maximal  ideal 
M~ is nonessential ideal and hence x is an isolated point in X by our criterion. Thus 
X is a discrete space and again by our criterion every proper ideal must be fixed. 
Hence X is compact  which shows that  X must  be finite. �9 

COROLLARY 3.5. X is a discrete space i f  and only if the set of essential ideals 
and the set of free ideals coincide. 

PROOF. Evident by our criterion. �9 

Next we give a natural  definition of an essential z-filter. 

DEFINITION. A z-filter F in a space X is called an essential z-filter i f F M F  t r 
{X} for every nontrivial z-filter F t. The following result shows that  the essential 
z-filters behave like the z-ultrafilters and prime z-filters. 

PROPOSITION 3.6. (i) I f  E is an essential ideal in C(X) ,  then Z[E] is an 
essential z-filter. 

(ii) I f  F is an essential z-filter, then Z- I [F]  = { f  E C ( X ) :  Z ( f )  E F}  is an 
essential ideal in C ( X ) .  

PROOF. (i) Let F be a nontrivial z-filter, then E M Z -I[F] r (0), i.e., Z[E] N 
F r {X}. 

(ii) By our Theorem 3.1, it is sufficient to show that Z-I[F] M I r (0), where 
I is a nonzero z-ideal. But this is clear, for F M Z[I] r (Z) implies that 3 f  r 0, 
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which f G Z -  ~ [F] M I.  �9 

Next we note tha t  if every essential ideal in C(X)  is a z-ideal, then by Corol lary 
a.a, every prime ideal becomes a z-ideal and therefore by [3], 14 B.3, x is a P-space. 
But we give a direct proof  of  this fact. 

PROPOSITION 3.7. X is a P-space if and only if every essential ideal in C(X)  
is a z-ideal. 

PROOF. Let every essential ideal in C(X)  be a z-ideal, then we show tha t  
C(X)  is a regular ring, see [3], 4j. Now let f E C(X) ,  then E = ( f  2) | A n n ( f  2) is 
an essential ideal and Z( f )  = Z ( I  2) E Z[E] implies tha t  f E E.  Hence f = f2g+h,  
where g E C(X),  h E Ann(f2) .  We claim tha t  h = 0, for we note tha t  Z( fh )  = 
Z(f2h)  = X,  i.e., fh  = 0. Hence h(f2g + h) = 0 and this shows tha t  h 2 = 0, i.e., 
h = 0. Thus  f = f29, i.e., C(X)  is a regular ring. The converse is well-known. �9 

4. E s s e n t i a l  i d e a l s  a n d  p r i m e  i d e a l s  in  C(X)  

In Corollary 3.3, we have noted tha t  any nonmaximal  prime ideal in C(X)  is 
essential. The  following result shows tha t  for an infinite space X,  there is always 
an essential ideal in C(X)  which is not  a prime ideal. 

PROPOSITION 4.1. If  X is an infinite space, there is an essential ideal in 
C(X)  which is not a prime ideal. 

PROOF. We consider two cases. 
Case 1. Let X have more  than one non-isolated points, say x and y. Now 

define E = { f  E C(X)  : {x ,y}  C_ Z ( f ) } ,  then MZ[E] = {x,y} and therefore 
by our criterion, E is essential. Now there are elements f l ,  f2 E C(X)  such tha t  
f l (x)  = f~(y) = 0 and fl(Y) = f2(x) = 1, then f l f2 e E but  fi ~ E, i = 1, 2, i.e., 
E is not  prime ideal. 

Case 2. Suppose X has at most  one nonisolated point,  say x E X,  if there 
exists such a point.  Then  if S is the socle of C(X)  we have MZ[S] = {x}, or 0 if 
x does not  exist, see the proof  of Corol lary 3.6iin [10]. Thus  by our criterion S is 
essential. We claim tha t  S is not  a prime ideal, for let A = { X l , X 2 , . . . , x ~ , . . . } ,  
B = { Y l , Y 2 , . . - , Y n , . . . }  be two disjoint infinite open subsets of X such tha t  x E 
A U B .  Define f , g  E C(X)  by f ( X - A )  = {0}, f (xk)  r 0, g ( X - B )  : 0 and 
g(yk) r O, k = 1 , 2 , . . . , n , . . . .  Then (X - A) U (X - B) = X implies tha t  fg = 0, 
but  f ~ S, g ~ S, for by [10], Proposi t ion 3.3, s = {h e c (x )  : x - Z(h) is finite}, 
i.e., S is not  a prime ideal. �9 

COROLLARY 4.2. If  X is an infinite space, then there is an essential ideal 
which is a z-ideal but not a prime ideal. �9 
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5. E s s e n t i a l  i dea l s  a n d  t h e  soc le  o f  C(X) 

The socle S of C(X)  is characterized in [10] as the set of all functions which 
vanish everywhere except on a finite number of points of X. We know that  in any 
commutat ive ring the socle is the intersection of all essential ideals. In this section 
we prove a similar topological result, namely theorem 5.3. We recall that  if X is any 
set and x �9 X, then F = {A C_ X : x �9 A} is an ultrafilter called a principal filler 
at x and if X is an infinite set then the set F consisting of all confinite subsets of X 
is called cofinite filter, or the Frdchet filter. It is easy to see that  every ultrafilter 
is either principal or contains the Fr~chet filter. If  S r 0 is the socle of C(X),  then 
we call Z[S] the Frdchet z-filter (we note that  every element of Z[S] is eonfinite in 
X) and therefore every z-ultrafilter is either fixed (principal) at some isolated point 
in X or contains the Fr~chet Z-filter, but not both. We need the following lemma: 

LEMMA 5.1. Let H be the set of nonisolated points of X and f �9 NxeHOx, 
then Z( f )  is open. 

PROOF. Clearly H C int Z( f )  and therefore Z(f )  - int Z( f )  = G consists 
only of isolated points and is open. Hence Z(f )  = G U int Z( f )  is also open. �9 

The next result shows that  for a compact  space X, the soele of C(X) is an 
intersection of certain essential ideals. 

PROPOSITION 5.2. If S is the socle of C(X) and H is the set of nonisolated 
points of X, then S = MxegO, if and only if every open set in X containing H is 
finite. 

PROOF. Let S = NxeHOx and G be an open set containing H. Then G is 
both open and closed set. Now there exist f �9 C(X) such that  f(G) = {0} and 
f ( X  - G) = {1}. Hence f �9 O~, Vx �9 H,  i.e., f �9 S which means that  X -  Z( f )  
is finite. Conversely since each Ox, Vx �9 H is essential, we have S C M, eHO ~. 
Now let f �9 t3~r then by the previous Lemma,  Z(f )  is open and hence by our 
hypothesis, X - Z( f )  is finite, i.e., f �9 S. �9 

The following result shows that  a topological space X has isolated points if 
and only if the intersection of essential z-filters is nontrivial. 

THEOREM 5.3. / f S  is the socle of C(X),  then Z[S] = MEZ[E], where E runs 
over the set of all essential ideals of C(X).  

PROOF. We note that  S is a z-ideal, see [10], and S = MEE, where E runs 
over the set of all essential ideals of C(X), therefore Z(f)  E Z[S] implies that  
f E S = MEE, i.e., f C E and Z(f )  E Z[E], for every essential ideal E. Conversely, 
let Z(f)  �9 MEZ[E] and put F = X - Z(f) .  Then if H is the set of nonisolated 
points of X we have H _C Z( f ) ,  for Z(I)  �9 M,~HZ[O~]. We also note that  f �9 
Mz~gOx for each Ox is a z-ideal. Now by Lemma 5.1, Z(f )  is open and therefore 
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F is both  open and closed set and consists only of  isolated points. Then  define 
FK = {g C C ( X )  : F - Z(g) is finite}. We observe tha t  every finite subset A of  F 
is both  open and closed subset of X,  therefore if we define gA E C ( X )  such tha t  
gA(F -- A) = {0}. and gA(X -- (F  -- A)) = {1}, then gA E FK. Now NAZ(gA) = 0, 
where A runs over the collection of all finite subsets of F .  This means tha t  FK 
is a free ideal and hence is an essential ideal in C(X) .  Hence Z ( f )  E Z[FK], i.e., 
F - Z ( f )  is finite. But  F - Z ( f )  = X - Z ( f )  and this means tha t  f E S. Thus  
Z[S] = nEZ[E]. �9 

ACKNOWLEDGEMENT: I would like to thank professor O.A.S.  Karamzadeh  
for his advice on this paper.  

REFERENCES 

[1] R. ENGELKING, General Topology, PWN polish scientific publishers, 1977. 
[2] N . J .  FINE, L. GILLMAN and J.  LAMBEK, Rings of quotients of rings of functions, 

McGill Univ. Press, Montreal, 1966, MP # 635. 
[3] L. GILLMAN and M. JERISON, Rings of continuous functions, Springer-Verlag, 

1976. 
[4] L. GILLMAN, Convex and Pseudo prime ideals in C(X),  General topology and 

its applications, Proceedings of the 1988 Northeast Conference, New York (1990), 
87-95. 

[5] K .R .  GOODEARL and R.B.  WARFIELD, JR;, An introduction to noncommutative 
Noetherian rings, Cambridge Univ. Press, 1989. 

[6] M. HENRIKSEN AND M. JERISON, The space of minimal prime ideals of commu- 
tative rings, Trans. Amer. Math. Soc. 115 (1965), 110-130. 

[7] R.E.  JOHNSON, The extended centralizer of a ring over a module, Proc. Amer. 
Math. Soc. 2 (1951), 891-895. 

[8] I. JUH~SZ, A.  VERBEEK and N. S. KROONBERG, Cardinalfunetions in topology, 
Math. Center Tracts, 34, Amsterdam, 1971. 

[9] O .A.S .  KARAMZADEH, On the classical Krull dimension of rings, Fund. Math. 
117 (1983), 103-108. 

[10] O .A.S .  KARAMZADEH and M. Rostami, On the intrinsic topology and some re- 
lated ideals of C(X),  Proc. Amer. Math. Soc. 93(1) (1985), 179-184. 

[11] J. LAMBEK, Lectures on rings and modules, Blaisdell Publishing Company, 1966. 
[12] M. MANDELKER, Supports of continuous functions, Trans. Amer. Math. Soc. 156 

(1971), 73-83. 
[13] J .C .  MCCONNEL and J. C. ROBSON, Noncommutative Noetherian rings, Wiley- 

Interscience, New York, 1987. 

(Received: March 1, 1994) 
(In final form: January 12, 1995) 

DEPARTMENT OF MATHEMATICS 
AHVAZ UNIVERSITY 
AHVAZ 
IRAN 


