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ESSENTIAL IDEALS IN C(X)

F. AzarPANAH (Ahvaz)

Abstract

It is shown that X is finite if and only if C(X) has a finite Goldie dimension.
More generally we observe that the Goldie dimension of C(X) is equal to the Soushn
number of X. Essential ideals in C(X) are characterized via their corresponding
z-filters and a topological criterion is given for recognizing essential ideals in C(X).
It is proved that the Fréchet z-filter (cofinite z-filter) is the intersection of essential
z-filters. The intersection of ideals O where £ runs through nonisolated points in
X is the socle of C(X) if and only if every open set containing all nonisolated points
is cofinite. Finally it is shown that if every essential ideal in C(X) is a z-ideal then
X is a P-space.

Introduction

A nonzero ideal E in a commutative ring R is called essential if it intersects
every nonzero ideal nontrivially. This concept was first introduced in [7] and plays
an important role in the structure theory of noncummutative Notherian rings, see
[6] or [13]. One of the central notions in the context of C(X), the ring of continuous
real valued functions on a completely regular Hausdorff space X, is that of a prime
ideal. It turns out that every prime ideal in C(X) is either an essential ideal or a
maximal one, therefore the study of essential ideals in C'(X) is worthwhile. We note
that for any ideal B in C(X) ( or more generally in any commutative semiprime
ring), the ideal B @ Ann(B), where Ann(B) = {f € C(X) : fB = (0)} is the
annihilator of B in C(X), is an essential ideal in C(X). Hence an ideal B in a
commutative semiprime ring is an essential ideal if and only if Ann(B) = (0). This
immediately shows that an ideal B in C(X) is essential if and only if BN C*(X)
is an essential ideal in C*(X), and also if A is an essential ideal in C*(X), then
AC(X) is an essential ideal in C(X). The intersection of all essential ideals in any
commutative ring R is the socle, the sum of all minimal ideals of R, see [5], p. 59, or
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[11], p. 62 and for a topological characterization of the socle of C(X), see [10]. It is
interesting to note that the set of isolated points in a completely regular Hasudorff
space X is dense if and only if the socle of C(X) is essential in C(X), see [10], 2.1.
We note that in this case the socle is the smallest essential ideal in C(X).

A set {B;}ier of nonzero ideals in C(X) is said to be independent if B; N
(3 izjer Bi) = (0), ie, 3 o;cr Bi = ®ier Bi. Then we say C(X) has a finite Goldie
dimension, if every independent set of nonzero ideals is finite, and if C(X) has no
finite Goldie dimension, then the Goldie dimension of C'(X), denoted by dim C(X)
is the smallest cardinal number ¢ such that every independent set of nonzero ideals
in C(X) has cardinality less than or equal to ¢. An ideal A in C(X) is said to be
uniform if any two nonzero ideal contained in A intersect nontrivially. These ideals
are related to finite Goldie dimension, see [5] or [13]. We observe that an ideal in
C(X) is uniform if and only if it is a minimal ideal.

The smallest cardinal number ¢ such that every family of pairwise disjoint
nonempty open subsets of X has cardinality less than or equal to ¢, is called the
Souslin number, or cellularity of the space X and is denoted by S(X), see [1]. If
S(X) is countable, then we say that X has the Souslin property. We show that for
any completely regular Hausdorff space X, the Souslin number of X is equal to the
Goldie dimension of C(X). We also show that the z-filter corresponding to the socle
(Fréchet z-filter) is the intersection of all essential z-filters. We study the relations
of essential ideals with z-ideals, prime ideals and prove that if every essential ideal
in C(X) is z-ideal, then X is a P-space.

For a large class of topological spaces, including compact Hausdorff ones, we
show that the socle of C(X) is the intersection of the essential ideals Oz, where z
runs through the set of nonisolated points in X and O, = {f € C(X) : Z(f) is a
neighborhood of x}, see [3]. In this paper C(X) is the ring of continuous real valued
functions on a completely regular Hausdorff space X and the reader is referred to
[3], for undefined terms and notations.

1. Uniform ideals

The following results shows that the set of uniform ideals in C(X) and the
set of minimal ideals coincide.

ProprosITION 1.1. If A is an tdeal in C(X), then the following are equivalent.
(i) A is a uniform ideal in C(X).
(i1) For any two nonzero elements f,g € A, fg # 0.
(111) A is a minimal ideal in C(X).

ProOF. (1)=>(i1) We note (f) N (g) # (0) implies that 3hy, hy € C(X) such
that fhy = ghs # 0. This shows that fgh;hy # 0 and therefore fg # 0.

(11)=>(iii) By Proposition 3.1 of [10], it is sufficient to show that there exists a
fixed isolated point z € X such that X — {2z} C Z(f), Vf € A. Now let 0 # f € A,
z and y be two distinct elements in X — Z(f) and G, H be two disjoint open
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sets containing z and y respectively. Then by complete regularity of X, there are
elements g;, g2 in C(X) such that g(X — G) = g2(X — H) = {0} and ¢1(z) =
g2(y) = 1. Clearly g1 f and g>f are nonzero elements of A and g;fg2f = 0, a
contradiction. Next, suppose that for distinct nonzero elements f;, fo € A there are
distinct elements x; and z3 in X such that X —{z1} C Z(f1) and X —{z2} C Z(f2).
Then we have fi f3 = 0 which contradicts (ii).

(iii)=>(i) This is trivial. W

2. Goldie dimension versus Souslin number

It is well-known that if a commutative ring R (in fact any ring) has a finite
Goldie dimension, then there is an integer n > 0 such that a direct sum of nonzero
ideals in R has always m terms, where m < n and there is a direct sum of uniform
ideals (with n terms) which is essential in R, see [5] and [13]. We observe that
any reasonable finiteness condition on a ring R, such as Noetherianness or having
Krull-dimension, in the sense of Gabriel and Rentschler, see [5] or [13], immediately
implies that R must have a finite Goldie dimension. The next result shows that X
must be finite if the Goldie dimension of C'(X) is finite. Of course we could obtain
this result from the equality of the Souslin number and the Goldie dimension but we
give a different proof in this case because of the importance of finiteness of Goldie
dimension.

PROPOSITION 2.1. X is finite if and only if C(X) has a finite Goldie dimen-

sion.

PRroOOF. Suppose that the Goldie dimension of C(X) is finite, then there is
an essential ideal which is a finite direct sum of uniform ideals. Since each uniform
ideal is minimal in C(X), this essential ideal is the socle of C(X) and we also note
that the cardinality of the set of isolated points is the same as the cardinality of the
set of minimal ideals in C(X), see [10]. This shows that the set of isolated points
in X is finite and dense and therefore it must be X. The converse is obvious. W

Next we prove our main result of this section.
THEOREM 2.2 If X is an infinite space, then dim C(X) = S(X).

PrROOF. Let dim C(X) = ¢ and @®;¢sB; be a direct sum of ideals in C(X),
where |I|, the cardinality of I, is less than or equal to ¢. Now for each ¢ € I, let
0 # f; € B;, then f;f; = 0, when i # j. Hence (X — Z(f)) N (X — Zf;)) = 0,
and this implies that F = {X — Z(f;) : 1 € I} is a collection of disjoint open sets
in X, ie., S(X)>c Nowlet {Gi : k € K} be any collection of disjoint open sets
in X, then for all k¥ € K, there exists 0 # fr € C(K) such that fi(X — Gi) = {0}.
Now we put By = (fi), Vk € K and claim that {Br}xex 1s an independent set
of nonzero ideals in C(X). If we prove our claim, then we are through, for in
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that case dimC(X) = ¢ > |K|, e, ¢ > S(X). Therefore we must show that
Be N (Lprex Br) = (0).

Now let f € Bx N (X 44k Br), then f = frg = frog1 + frog24+ -+ frogn,
whereg,g9;, € C(X), fx € By and fr, € B,,, 1 = 1,2,...,n, and k # r;, for all
i=1,2,...,n. But clearly fifr, = 0 for every ¢ = 1,2,...,n implies that fZg = 0,
ie., f2 =0 and therefore f=0. M

REMARK 2.3. It is a celebrated question whether the product of two spaces
with Souslin property has the Souslin property. This statement is independent of
the usual axioms of set theory, see [8]. It is interesting to note that for completely
regular spaces this becomes equivalent to an algebraic question, namely if C(X) and

C(Y) have countable Goldie dimensions, then is the Goldie dimension of C(X xY')
countable?

3. Essential ideals in C(X)

In this section we characterize essential ideals via a topological property and
then using this we note that any ideal containing a prime ideal in C(X) (this is
called a pseudo-prime ideal, see [4]) is either essential or a maximal ideal generated
by an idempotent which is also a minimal prime ideal.

THEOREM 3.1. If E is a nonzero ideal in C{X), then the following are equiv-
alent.
(1) E intersects every nonzero z-ideal in C(X) nontrivially.
(i1) E s an essential ideal in C(X).
(11i) Ann(E) = (0).
(iv) NZ[E] is a nowhere dense subset of X.

PROOF. (i)=(ii) Let J be a nonzero ideal in C(X), then Z~1[Z[J]] = {f €
C(X) : Z(f) € Z[J]} is a z-ideal, therefore 30 # f € EN Z~1[Z[J]]. Hence for
some g € J we have Z(f) = Z(g). This means that 0 £ fg € JNE. :

(ii)=>(iii) It is clear that ( Ann(E)NE)® = (0), implies that Ann(E)NE = (0).
Hence Ann(E) = (0).

(iii)=(iv) Suppose the interior of N Z[E] is nonempty and is denoted by U =
intN Z[E]. Now there exists a nonzero element f € C(X) such that f(X~U) = {0}.
Thus for every g € E we have fg =0, i.e., Ann(E) # (0), a contradiction.

(iv)=(i) Let I be a nonzero ideal and 0 # g € I, then X — Z(g) is open set
and clearly (X — Z(g)) N (X — N Z[E]) # 0, this implies that there is f € E such
that (X — Z(g)) N (X — Z(f)) # 0, therefore Z(gf) # X,ie,0#gf € ENnI. A

REMARK 3.2. Part (iv) of the previous result is an effective criterion for
recognizing the essential ideals in C(X). One can easily see that every free ideal is
an essential ideal and a principal ideal (f) is an essential ideal in C(X) if and only
if Z(f) is nowhere dense. If £ € X is a nonisolated point, then again by the same
criterion we see that O, is an essential ideal. We also note that if X is an infinite
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space and V is an open set such that V # X, then E = {f € C(X) : V C Z(f)} is
a z-1deal which is not essential.

COROLLARY 3.3. Every pseudoprime ideal in C(X) is either an essential ideal
or a mazrimal ideal which is at the same time a minimal prime ideal.

Proor. Let A be a pseudoprime ideal in C(X) and P be a prime ideal such
that A D P. Then it is sufficient to show that P is either essential or a maximal ideal
with the required property. We know that NZ[P] is either empty or a singleton.
Therefore by our criterion if P is a nonessential ideal, then NZ{P] is singleton {z}
and again by our criterion x must be an isolated point in X. Thus P C M, and
M, = eC(X), where e is the idempotent in C(X) such that e(z) = 0, e(X — {z}) =
{1}. Now e(1—¢) = 0 € P implies that e € P, for 1 —e ¢ P (we note that 1 —e € P
implies 1 —e € M,, which is impossible). This shows that P = M, = eC(X). Finally
to show that P is a minimal prime, let @@ be a prime ideal such that @ C P, then
e(l—e)=0impliesthate € Q,1e., Q=P. W

COROLLARY 3.4. X is finite if and only if C(X) has no proper essential
1deals.

ProoF. If X is finite, then we are through. Conversely each maximal ideal
M, is nonessential ideal and hence z is an isolated point in X by our criterion. Thus
X is a discrete space and again by our criterion every proper ideal must be fixed.
Hence X is compact which shows that X must be finite. MW

COROLLARY 3.5. X is a discrete space if and only if the set of essential ideals
and the set of free ideals coincide.

Proor. Evident by our criterion. W

Next we give a natural definition of an essential z-filter.

DEFINITION. A z-filter F in a space X is called an essential z-filter if FNF' #
{X} for every nontrivial z-filter F’. The following result shows that the essential
z-filters behave like the z-ultrafilters and prime z-filters.

ProposITION 3.6. (i) If E is an essential ideal in C(X), then Z[E] is an
essential z-filter.

(i) If F is an essential 2-filter, then Z7![F| = {f € C(X): Z(f) € F} is an
essential ideal in C(X).

PROOF. (i) Let F be a nontrivial z-filter, then ENZ~1[F} # (0), i.e.,, Z[E]N
F #{X}.

(ii) By our Theorem 3.1, it is sufficient to show that Z=}[F]NT # (0), where
I is a nonzero z-ideal. But this is clear, for F'N Z[I] # {X} implies that 3f # 0,
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which f € Z-[F]NnI. M

Next we note that if every essential ideal in C(X) is a z-ideal, then by Corollary
3.3, every prime ideal becomes a z-ideal and therefore by [3], 14 B.3, X is a P-space.
But we give a direct proof of this fact.

ProPosITION 3.7. X is a P-space if and only if every essential ideal in C(X)
15 a z-ideal.

PROOF. Let every essential ideal in C(X) be a z-ideal, then we show that
C(X) is a regular ring, see (3], 4]. Now let f € C(X), then E = (f?} ® Ann(f?) is
an essential ideal and Z(f) = Z(f?) € Z[E] implies that f € E. Hence f = f2g+h,
where g € C(X), h € Ann(f?). We claim that h = 0, for we note that Z(fh) =
Z(f?h) = X, ie., fh = 0. Hence h(f2g + h) = 0 and this shows that h? = 0, i.e.,
h=0. Thus f = f%g,i.e., C(X) is a regular ring. The converse is well-known. W

4. Essential ideals and prime ideals in C(X)

In Corollary 3.3, we have noted that any nonmaximal prime ideal in C(X) is
essential. The following result shows that for an infinite space X, there is always
an essential ideal in C'(X) which is not a prime ideal.

ProrosiTION 4.1. If X is an infinite space, there s an essential ideal 1n
C(X) which is not a prime ideal.

ProoF. We consider two cases.

Case 1. Let X have more than one non-isolated points, say z and y. Now
define E = {f € C(X) : {z,y} C Z(f)}, then NZ[E] = {z,y} and therefore
by our criterion, E is essential. Now there are elements fi, f» € C(X) such that
fi(e) = fa(y) = 0 and fi(y) = fo(z) = 1, then ifs €EEbut fi ¢ £ i =12, 1,
E is not prime ideal.

Case 2. Suppose X has at most one nonisolated point, say & € X, if there
exists such a point. Then if S is the socle of C(X) we have NZ[S] = {z}, or 0 if
z does not exist, see the proof of Corollary 3.6:in [10]. Thus by our criterion S is
essential. We claim that S is not a prime ideal, for let A = {z1,22,...,2n,.-.},
B = {y1,¥%2,.-,Yn, .-} be two disjoint infinite open subsets of X such that z €
AU B. Define f,g € C(X) by f(X — A) = {0}, f(zx) # 0, 9(X — B) = 0 and
g(yr) #0, k=1,2,...,n,.... Then (X — A)U (X — B) = X implies that fg = 0,
but f¢ S, g¢S, for by [10], Proposition 3.3, S = {h € C(X) : X — Z(h) is finite},
i.e., S is not a prime ideal. M

CoROLLARY 4.2. If X is an infinite space, then there is an essential 1deal
which is a z-ideal but not a prime ideal. W
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5. Essential ideals and the socle of C(X)

The socle S of C(X) is characterized in [10] as the set of all functions which
vanish everywhere except on a finite number of points of X. We know that in any
commutative ring the socle is the intersection of all essential ideals. In this section
we prove a similar topological result, namely theorem 5.3. We recall that if X is any
set and z € X, then F = {A C X : x € A} is an ultrafilter called a principal filter
at z and if X is an infinite set then the set F consisting of all confinite subsets of X
is called cofinite filter, or the Fréchet filter. It is easy to see that every ultrafilter
is either principal or contains the Fréchet filter. If S # 0 is the socle of C(X), then
we call Z[S] the Fréchet z-filter (we note that every element of Z[S] is confinite in
X) and therefore every z-ultrafilter is either fixed (principal) at some isolated point
in X or contains the Fréchet Z-filter, but not both. We need the following lemma:

LEMMA 5.1. Let H be the set of nonisolated points of X and f € NycyOy,
then Z(f) s open.

ProoF. Clearly H C int Z(f) and therefore Z(f) — int Z(f) = G consists
only of isolated points and is open. Hence Z(f) = GUint Z(f) is also open. W

The next result shows that for a compact space X, the socle of C(X) is an
intersection of certain essential ideals.

PROPOSITION 5.2. If S is the socle of C(X) and H is the set of nonisolated
points of X, then S = Ny Oy if and only if every open set in X containing H is
finite.

PRrROOF. Let S = NyecygO; and G be an open set containing H. Then G is
both open and closed set. Now there exist f € C(X) such that f(G) = {0} and
f(X —G)={1}. Hence f € O, Vz € H, ie., f € S which means that X — Z(f)
is finite. Conversely since each O, Vx € H is essential, we have S C NgenO;.
Now let f € Nz O, then by the previous Lemma, Z(f) is open and hence by our
hypothesis, X — Z(f) is finite, ie, f€S. M

The following result shows that a topological space X has isolated points if
and only if the intersection of essential z-filters is nontrivial.

THEOREM 5.3. If S is the socle of C(X), then Z[S] = NgZ[E], where E runs
over the set of all essential ideals of C(X).

PROOF. We note that S is a z-ideal, see [10], and S = NgE, where I runs
over the set of all essential ideals of C(X), therefore Z(f) € Z[S] implies that
feS=NgE, e, f € E and Z(f) € Z[E], for every essential ideal E. Conversely,
let Z(f) € NgZ[E] and put F = X — Z(f). Then if H is the set of nonisolated
points of X we have H C Z(f), for Z(f) € NeeuZ[O;]. We also note that f €
Neerg Oy for each O, is a z-ideal. Now by Lemma 5.1, Z(f) is open and therefore
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F is both open and closed set and consists only of isolated points. Then define
Fg = {g € C(X) : F — Z(g) is finite}. We observe that every finite subset A of F
is both open and closed subset of X, therefore if we define g4 € C(X) such that
ga(F — A) = {0} and ga(X — (F — A)) = {1}, then g4 € Fk. Now NaZ(ga) = 0,
where A runs over the collection of all finite subsets of F. This means that Fx
is a free ideal and hence is an essential ideal in C(X). Hence Z(f) € Z[Fk], i.e.,
F — Z(f) is finite. But F — Z(f) = X — Z(f) and this means that f € S. Thus
ZiS|=ngz[E]. N
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