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1. I n t r o d u c t i o n  

Let K be a compact set in the N-dimensional Euclidean space R N. We define 
the global optimization problem with the following task: 

find the couple x*,f* such that: 

f*  = f (x*)  <<. f (x )  V x  r K (1.1) 

w h e r e f : K - - R ,  f E G(K). 

Many approaches, often of  a very different nature, have been suggested to 
solve this problem: even if, by now, a class of  methods is widely agreed upon as the 
most effective one, a general computational paradigm is still lacking. 

First, we note that the very definition of  the problem as given in (1.1) is  not 
well posed in the classical sense. Indeed, even within infinitely differentiable functions 
with a unique global minimum point, it is possible to choose functions which are as 
close to one another as we want, yet  their global minima are far apart. As a simple 
example we can take f6(x) = cos(x) + 8x, x @ ( - 2n,2n). The opt imum is located 
near - n or + n when 3 is a small positive or negative constant, respectively. So, while 
two such functions f6 l(X) andf62(x ) characterized by 81 < 0 < 82 have a supremum 
norm difference bounded by 2n182 - 81 l, the distance between the solutions is ap- 
proximately 2n. On the other hand, the value f *  of  the global mininmm depends con- 
tinuously on the data of  the problem, in the sense that, as it is easy to show, for any 
continuous functions f and g we have: 

[ f*-g*  I <- SUPK I f {x ) -g(x) l  = I [ f - g l l =  

so that the basic requirement of  well-posedness of  the global optimization problem is 
fulfilled if we restrict ourselves to the search for the global opt imum value f* .  

From now on, when speaking of the 'global optimization problem' ,  we will 
refer to the following task: 

find f *  such that: 

f* <~ f(x) V x  E K (1.2) 

w h e r e f : K  m R, f ~ C(K) . 
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A basic difficulty of  problem (1.2) is the impossibility of  bounding the error 
in the approximate solution: in fact, if we let any algorithm choose n points in the 
domain K, it is always possible to build a smooth function, interpolating f in those 
points, whose global minimum value can be kept as far as desirable from f* .  

If we restrict the function class to which f" belongs, it is possible to build de- 
terministic algorithms (space covering techniques), which have the property of finite 
convergence to an estimate whose distance from the optimum can be deterministically 
controlled. The price to be paid for this is, apart from the necessity of restricting the 
function class, the exponential increase of  the computational effort with the dimen- 
sion of problem (1.2), and the necessity of giving precise bounds to the variation of 
the objective function: thus their numerical usefulness is restricted to very small sized 
(say 1 or 2 dimensions) problems. Nevertheless, we shall discuss them in some detail 
in sect. 2 because the analysis of their performance can give some insight into the very 
nature of  global optimization problems and its hidden intractability. 

In sect. 3 we shall consider other deterministic methods, namely trajectory 
techniques and the tunneling approach, which are widely investigated but require a 
very complex implementation, and still do not offer a reliable numerical performance. 

Probabilistic methods can be seen as a tool for overcoming the basic diffi- 
culty of  problem (1.2) by allowing some kind of uncertainty to the final result. Thus 
a 'solution'  found by any of these methods can be thought of as having a certain 
'probability '  of  being the true one. This uncertainty does not seem to be too heavy 

a price in order to have infom~ation about the solution of  problems which would 
otherwise be intractable. A class of probabilistic methods, naJnely those based on ran- 
dom sampling, which we shall be discussing in sect. 4, are now considered as the most 
reliable toot for solving global optimization problems. In sect. 5 we shall briefly be 
concerned with random search techniques which have received early attention in the 
literature [1,39], and can be regarded as an effective tool, at least in some instances, 
of  global optimization. Section 6 will be devoted to the analysis of a particular class 
of probabilistic methods, in which the objective function is modeled as a sample path 
of  a stochastic process. 

We must "also remark that the distinction between deterministic and proba- 
bflistic methods is quite crude as random elements are often introduced, as we shall 
see later on, into deterministic schemes to improve their performance. 

We conclude this brief introduction by observing that because of the high 
computational cost of  global optimization problems, some research is being devoted 
to the design and analysis of parallel algorithms, i.e. algorithms which can be imple- 
mented on multiprocessor systems and array processors [32,11,37]. 
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2. Space covering techniques 

Space covering techniques originate from the desire to provide deterministic 
bounds on the approximation error. This can be done by restricting the function class 
to which f belongs to a subclass where some bound on the variation of the objective 
function or its derivatives is known a priori. The easiest way to do so is to impose a 
Lipschitz condition on f :  

f E  L~ ,p (K)  = { g : l g ( x ) - g ( y ) l  <- f~p(x,y) V x , ) , E  K} ,  (2.1) 

where ~ is a known positive constant and p is a continuous distance on K. 

DEFINITION 1 

An n-step deterministic strategy S n is an n-dimensional vector of functions 

(Yl ,Y2 . . . . .  Yn)  such that 

y l ( f ; K  ) = x 1 E K ,  

Y i+ t ( x l ' f l ' x 2 ' f 2  . . . . .  x i ' f i )  = X i + l  E K f i  = f ( x i )  i = 1 . . . . .  n -  1 . 

We shall use the term 'passive' or 'a priori' to denote those strategies which 

are constant in L~, p (K). In the following, we shall denote by 8 n the class of strategies, 
and by. 5~ n the subclass of passive ones. 

In order to measure the effectiveness of a strategy, the a posteriori and 
a priori errors are introduced as follows: 

DEFINITION 2 

The accuracy of an n-step strategy S n is: 

o4c(Sn,f) = min f ( x i )  - f *  . 
i = 1  . . . . .  n 

DEFINITION 3 

The accuracy guaranteed by an n-step strategy S n over the class L ~ , o ( K  ) is: 

= Sup o t ( S n , f ) .  A ( S n )  f e  L~ ,p(K)  
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In this class, any strategy guarantees a finite accuracy. In fact, let 
(Xl,X 2 . . . . .  Xn) be the points chosen by a strategy S n and let 

d = Sup min p(x,xi). 
x ~ K  l"= 1,n 

Then it is easy to show that S n guarantees the accuracy ld over the class Le,p{K). 
The following optimali ty criteria can be given for a deterministic strategy. 

DEFINITION 4 

4* 
A strategy S n is A-optimal in L~,p(K) if: 

A (Sn) = Elf Sup o4c {Sn,f) 
an~ Sn f<Lv,p(K} 

DEFINITION 5 

L e t e >  0. A s t r a t e g y S n .  such t h a t A ( S n .  ~ < e i s n - o p t i m a l i n L ~ , p ( K )  if 

, , *  -- <- 

By the above optimali ty criteria, strategies are evaluated on a 'worst  case' 
basis, i.e. their effectiveness is measured on that function over which they display the 
poorest performance. Thus, not surprisingly, the following equivalence results can be 
shown to hold: 

THEOREIvl 1 [47] 

Inf A(Pn) = Inf A(Sn). 
Pn e 5~ n S n e c.q n 

THEOREM 2 [7] 

L e t e >  0. 

m i n { n : 3 S  n E S n, 

= mini., : 3  P,~ e 

A(S,~) < e} 

A (Pn) < e }. 
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After these results, it is clear that an a priori analysis is not sufficient to give 
an effective criterion to select 'good'  strategies, that is, strategies that, apart from 
pathological worst cases, display a better behaviour than passive ones. 

What can be done, still in the framework of worst-case analysis, is to character- 
ize those strategies which take advantage in an optimal way of  the function evaluations 
already performed [48]. 

Let 

L~,o :Xl,X 2 . . . . .  Xm ; f l , f  2 . . . . .  f m (K)  

: {0  C L~,o(KJ:rk(x i )  : fi, i = l  . . . .  , m } ,  

and let 'choice'  functions C m : K m - - K  be given. 

DEFINITION 6 

A strategy Z n is sequentially A-optimal in L~, p (K) if: 

Y i + l  = C n - i ~  , 

where Pn l i is an ('n - / ) - s tep  A-optimal strategy in LQ,p ; Xl ,X 2 . . . . .  x i ;  f l  . . . . .  f i  (K)  
and o represents the composition operator. 

DEFINITION 7 

A strategy En ,  is sequentially n-optimaI in L~, o (K) if: 

Y i + l  = C n * l i ~  , 

where Pn * I i is an n-optimal strategy in L c,p ; x 1, x2 . . . . .  xi ; f l ,  f2 . . . . .  f i {K)  and n *1 i 
is the number of steps it requires. 

These strategies (which are easily seen to be optimal in the sense of  Defini- 
tions 4 and 5 are designed in such a way as to adapt their behaviour to an 'updated'  
worst case and they can be considered as a good way of exploiting sequentiality 
while retaining a priori optimality. Unfortunately, the computational cost of actually 
building the optimal (passive) strategies required at each step of these algorithms 
makes them unfeasible for practical problems, even of very low dimension. 

In [45] a method for one-dimensional optimization is described in which each 
new observation is placed where the uncertainty about the value of  the objective func- 
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tion is maximum. Allowing K = [0, 1], we have: 

x 1 = 1 / 2 ,  

Xi+l  = arg max I min f l . + ~ l x - x j , ]  i = 1 , 2  . . . . .  
x ~  K j = 1,i 

This strategy could be generalized in a straightforward way to higher dimen- 
sional space, but only in the one-dimensional case, the optimization problem whose 
solution is required in order to find each new point, allows for a simple solution. 

Shubert's strategy is not optimal in the sense of Definition 5: it is easy to 
see that when the objective function is constant, an optimal (passive) strategy requires 
a number of steps which is roughly one half of those necessary for Shubert's algo- 
rithm to stop. 

Another well-known deterministic strategy [25] is based on the idea of 
growing around each observation point a hypersphere whose radius is such that we can 
guarantee that the minimum of the objective function inside these spheres is bounded 
from below by 4" - e, where f~  is the minimum observed value. Then each new obser- 
vation is placed outside these hyperspheres, whose radius is easily found to be R i 
= (e + f (x i )  -J~iJ/P~. The algorithm stops when a covering of K has been performed 
with such spheres. If N ;> 1, in order to keep down the computational overhead and 
the memory requirements, the algorithm utilizes a covering made of N-dimensional 
hypercubes inscribed in the above-mentioned spheres, and each new point is chosen 
by changing one component of the last observation point by the quantity (e/~ 
+ R i ) / x / N .  Only in the one-dimensional case is Evthushenko's strategy optimal (more, 
it is sequentially n-optimal). It should be noticed, however, that the defini- 
tion of the choice functions C m in Definitions 6 and 7 is a crucial factor in deter- 
mining the performance of sequentially optimal strategies in that a bad choice of 
C m can completely annhilate the advantage of sequentially optimal schemes. Com- 
putational experience shows that, apart from pathological cases, Shubert's algorithm 
out-performs the one by Evtushenko. In [43] a scheme where the one-step optimality 
of Shubert's scheme is embedded in a sequentially n-optimal algorithm is presented. 

3. T r a j e c t o r y  t echn iques  and  the  tunnel ing  a p p r o a c h  

Trajectory techniques (see [17,18,29,51,53]) are based on the idea of finding 
many, hopefully all, local minima by means of the numerical integration of a dif- 
ferential equation. In [17,18], the solutions of the set of nonlinear equations: 

grad f ( x )  = 0 (3.1) 
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are sougllt following the trajectories of the system of  differential equations: 

d(gradf)/dt  + grad f  = 0 .  (3.2) 

The relationship between this system and (3.1) can be easily recognized by observing 
that in the analytic solution 

grad f (x( t))  = grad f(x(O)) exp( - t) (3.3) 

the vector x(t)  converges, as t ~ ~, to a solution of  (3.1). By making equation (3.2) 
explicit with respect to t, we obtain: 

dx /d t  = - H -1 (f(x)) grad (f{x)),  (3.4) 

where H(f(x)) is the Hessian matrix of f in x. System (3.4) is not defined on the 
hypersurface det(Hj = 0. Since H -1 = adj(HJ/det(H), where aclj{H) denotes the ad- 
joint matrix of H, we can replace (3.4) by 

dx /d t  = - adj(H) grad (f(x)) , (3.5) 

which amounts to a scale change in the parameter t and to a reversal of  trajectory 
direction when the region det(H) = 0 is crossed. Of course, once a local minimum 
has been found, a change of sign in (3.5) is necessary in order to escape from its 
region of  attraction [26,27]. 

The methods based on this idea, although theoretically appealing, have 
serious drawbacks both from a theoretical and from a practical point of view. In 
[52] a counterexample is exhibited, where a region of  non-convergence of  Branin's 
method is shown to exist for a function whose contours are topologically equivalent 
to spheres. Secondly, this, as well as the other proposed trajectory approaches, fail 
in giving a precise answer to the most peculiar problem of global optimization, that 
is when to stop the computation; in other words, unless an a priori knowledge of  
the number of local minima of f is available, the algorithm cannot be stopped with 
the certainty of having located the global minimum. 

In [58] an improvement to the basic scheme of trajectory methods has been 
proposed: random elements are introduced by associating to problem (1.2) the sto- 
chastic differential equation: 

dx = - grad (f(x)) + eyt)dw 

x(0) = x 0 
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where w is an N-dimensional Wiener process. It is possible to prove, at least for some 
classes of functions that, provided that e(t) approaches zero slowly enough as t tends 
to infinity, the probability for a trajectory of the above dynamic stochastic system 
leaving x 0 at t = 0 to reach a point x at time t is such that: 

lim P(x , t ; xo ,O)  = Z c i 6 ( x - x ~ ) ,  
t - *~  i 

where x~ are the global minimizers o f f ,  0 ~< c i <~ 1 and Z ic i  = 1. From a computa- 
tional point of view, it seems more convenient to follow simultaneously several (say 
M > 1) trajectories, keeping e(t} constant. After a number of steps of numerical inte- 
gration, the M trajectories are compared. The 'worst '  one is discarded and e(t) is de- 
creased. The numerical integration is continued after splitting one of the remaining 
M -  1 trajectories into two: the splitting is obtained very easily since, because of  the 
stochastic term, each initial value problem is solved by an infinite number of trajector- 
ies. 

More recently, Griewank [28] designed a trajectory method considering a 
model of  the objective function given by the sum of a smooth unimodal function 
and a bounded perturbation. The algorithm consists of  following the trajectories of 
the second order differential equation 

x"  (t) = - A (I - x ' ( t )x '  T(t)) 17 f (x ( t ) ) / ( f (x  (t)) - c) , 

where A > 0 and c />  f* .  As long as f ( x ( t ) )  >> c, the trajectory is little affected by 
the perturbation. 

Finally we mention a method which came to be termed the 'tunneling 
approach' [54,55]. The basic idea is that, starting from a local minimum point 2, 
a point x 0 is sought such that f ( x  O) <~ f(g).  Starting from this point, a local opti- 
mization routine, a local optimum with function value not greater than f (2)  will 
be found. If {xi* } iQ= 1 are those local minima already found whose function value 
is f (g) ,  this starting point can be found by solving the equation 

T ( x , a )  = ( f ( x ) - f ( Y ) ) /  [ ( x - x ~ ) T ( x - x ~ ) l  ~" = 0 (3.6) 
" =  1 

provided that the parameters A = (X l, . . . , XQ), inserted to ensure that the solution 
of  (3.6) will be different from the x i s, are properly set. Even if computational re- 
suits are reportedly good, a basic weakness is inherent to the stopping rule of  this 
algorithm: deciding that no root of  T(x ,A)  exists in K can be as hard a problem as 
the global optimization problem (1.2) itself. 
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4. M e t h o d s  b a s e d  on  r a n d o m  s a m p l i n g  

Probabilistic methods have been proposed since the earliest studies in global 
optimization and they have been gaining increasing attention in the last decade. Some 
of them, namely those based on a clever combination of random sampling and cluster 
analysis, can now be regarded as effective tools for the numerical solution of global 
optinrization problems and display the following positive features: 

(a) the required number of function evaluations grows rather slowly with 
the dimension of the problem; 

(b) they are sequential in nature, i.e. at each stage an approximation to the 
global opt imum is given and the decision is taken whether to stop and accept the ap- 
proximation, or to reject it and perform further sampling: 

(c) they require little a priori information about the objective function. 

Methods based on random sampling can be structured after the following 
pattern : 

(i) Draw q points I x / E  K }, / = 1 . . . . .  q from a uniform distribution in 
K and compute f ( x / ) .  

(ii) Select the 'most promising points '  and start from them a local opti- 
mization routine obtaining a least value ./c. 

(iii) Test whetherfc  is the global minimum of f i n  K. 

The above cycle is repeated until the test is satisfied. In the simplest such 
algorithm, the point yielding the least sampled value is used m (ii) as the starting point, 
and the test in phase (iii) is satisfied if no improvement overfc  is observed in one (or 
more) further executions of  phase (i). This simple test relies upon the fact that, as the 
sample size increases, the probability of not improving over./'c decreases unless Jc is 
the global nzinimum. In this method no more than one local optimization is performed 
in the region of attraction of a n-finimum: this good feature, unfortunately, is obtained 
at the cost of  wasting most of the inforlnation contained in the sample. Effective 
algorithms require a more balanced compromise between the conflicting goals of 
making good use of the available information and of reducing the risk of  converging 
to a local minimum already found: this can now be properly accomplished using 
cluster analysis. The third step is clearly the critical part of  these algorithms: it is 
very difficult to evaluate the probability of the result being exact or, more generally, 
the probability that some meaningful index of the error does not exceed a prefixed 
level. Only very recently, some important steps have been taken in order to frame 
the third step into correct statistical terms. 

We now proceed to a closer analysis of steps ( i ) -  (iii). 
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(i) GENERAL PROPERTIES OF UNIFORM SAMPLING 

We have already remarked, while discussing the general structure of proba- 
bilistic methods, that the uniform sampling of f in K is meant to provide a sample 
for the inferential processes to be carried out on in the following stages of the algo- 
rithm, rather than to provide directly, as in the crude Monte Carlo, an approximation 
to f* .  Still, a 'per se' analysis of  crude Monte Carlo can be performed, albeit only to 
some extent and in mainly negative terms. Let K 0 C K be such that m ( K o ) / m ( K )  = o~, 
where m denotes the Lebesgue measure on K: the probability P(K 0 ; q) that at least 
one point in the sample { xj }, j = 1 . . . . .  q will belong to K 0 is given by 

P ( K o q )  = 1 - ( 1  - ~ ) q  

Now, let_K 0 be a neighborhood of  x*: one could derive, given a value c~ and a 
probability level P, a sample size ~ = log(1 - P)/log(1 - ~) and assume f q  = rain 
f ( x / )  as an approximation to f* .  / = 1,9 

A Monte Carlo procedure based upon the sequential application of  this 
fornmla has been proposed in [2]; nothing, however, can be said, for finite values o f q  
and without specific assumptions about f, about the probability that the e r r o r f q - f *  
exceeds a prefixed value, nor can we assure that the value fqhas  been achieved in K 0. 

If f E  Lp., o(K), the effectiveness of random sampling can be evaluated against 
that given by grid search, also for finite values of  q. Uniform random sampling is 
argued to be more effective than grid search for N > 6 in [3], where the statistical 
distribution of  the largest gap of  an N-dimensional uniform sample mad therefore the 
expected value of  the error f q  - f *  are computed. A partially conflicting claim - 
possibly due to more general assumptions about the location of x* - i s  in [6], where 
the perfomlance of unifoml random sampling after the criterion of  guaranteed ex- 
pected accuracy is computed and shown to be poorer than that of  grid search, which 
is an optimal passive deterministic strategy. 

( i i )  CLUSTER ANALYSIS 

By cluster analysis we mean a set of  statistical techniques aimed at dividing 
a set of data into subsets (clusters) of 'similar' objects (see [30,24] for a general 
reference). Its relevance to the numerical solution of  global optimization problems, 
first stressed in [49,50], has been subsequently substantiated by a number of highly 
successful implementations, of  which we quote [15]. In the following, we shall briefly 
outline a possible way of  performing the basic steps in the application of a clustering 
procedure to global optimization problems. 

The original sample {xj} ,  ] = 1 . . . . .  q is modified, discarding those points 
whose function value is larger than (1 - 7)fQ + 7 f . ,  where 0 ~< ~, ~< 1 and:~ a n d f .  
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are, respectively, the smallest and largest observed value of  the objective function. 
Let {y j} , / '  = 1 . . . . .  p be the new sample. Let Y be a random variable uni- 

fomaly distributed in /~  = {x E K : f ( x )  < (1 - 7)fQ + 3'fu},l Yj} is a sample of  Y: 
clusters can now be associated to subsets of  K where the distribution of  Y is uniform, 
i.e. to the connected components of  the support of  the density function of  Y. 

By means of  clustering techniques it is then possible to allocate the points 
{yj } to different clusters in such a way that the points in the region of  attraction of  
the same local minimum are assigned to the same cluster. 

Now we briefly mention a clustering technique as it has recently been imple- 
mented in [19] which blends the positive features of the two main approaches known 
in the literature, namely density and single-linkage clustering. 

Clusters are grown around a center ~, called seed point. The control of  the 
growth of  the cluster is based upon the following result. 

Let { xj},  f = 1 . . . .  ,q be uniformly distributed in K;  let also x E K be a 
given point and pj be the distance between xj and x. Then it can be shown that 

where X(q) = ~rN/2q/(m(K). F ( ~ N  + 1)) is the expected number of  points in { xj }, 
j = 1 . . . . .  q falling in the unit N-dimensional hypersphere, and O(k) is the kth order 
statistics from I Pj }, j = 1 . . . . .  q. 

Therefore, given a probability level 1 - e, we can compute r(k ) such that 
P{O(k) <~ r(k)} ~> 1 - e. A cluster is built including those points of  the sample 
{y/.} belonging to Dk\D k _ 1 (Do = ~b), where D k is the hypersphere centered in V 
with radius r(k ). When no more points can be added in this way, i.e. the set 
(D~ § 1 \D~) n lYj } = ~b, the same clusteris enlarged by restarting the procedure from 
each point in DQ\D~_I. 

This basic scheme can be improved by the use of  local searches along the 
clustering procedure. A termination criterion of  the whole clustering procedure can be 
naturally embedded in a scheme of  sequential sampling o f f :  

let X n - 1  = (Xl ,X2 . . . . .  Xn - 1  ) be the set of  local minima already found; 
~t 

when clusters have been grown around X n _ 1, a local search is applied to the un- 
clustered point with the least function value, yielding a local optimum Y. I f ~  E X* 

r t - - 1 ,  
�9 a cluster is grown around the starting point of  the last local search detecting Y; if 
x -~  X n - 1 ,  we set x n = Y, perform a new sample {Yj} and grow clusters around X n . 
When all points have been clustered, or the local search has been applied to all un- 
clustered points, the clustering procedure terminates. 
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(iii) STOPPING RULES 

A basic fact about global optimization algorithms which can now be properly 
understood after the discussion of the clustering approach, is that the global part of a 
successful algorithm, actually the probabilistic part of it, is connected not with the 
numerical approximation of the global optimum, which is far more effectively per- 
formed by local searches, but rather with the control of these local searches and the 
decision whether a local minimum can be accepted as the global one. This fact, clearly 
behind the computational success of the clustering approach, amounts to a recognition 
of the multimodal structure of the objective function. This fact is clearly recognized in 
the latest papers about global optimization, whose main concern is the development of 
proper stopping rules. The main alternative approaches so far suggested will be dealt 
with in the remainder of this section. An important step towards a precise mathe- 
matical formulation of the stopping problem has been taken in [56]. 

Let  X k = (x 1, x 2 . . . . .  X k) be the set of local minima of f i n  K and L : K - - X ~ .  
~r 

be an operator defined by L ( x )  E X i , which can be naturally interpreted as the appli- 
cation of alocal search starting in x and converging to that local minimum x~' in whose 
region of attraction x lies. 

*k 

Let A i = {x  E K:  L ( x )  = xT} , i = 1 . . . . .  k and Oi = m ( A T  ) / m ( K ) .  The 
normalization condition 2;k= 1 re (AT)  = re(K) holds and the value 0 i will be called 
the 'share' of the ith local minimum. 

By solution of a global optimization problem we mean, in this context, the 
determination of the values k and {Oi,x i }, i = 1 . . . . .  k. AMonte Carlo method for 
finding this solution can be set up computing from the original sample { x j  }, j = 1 , . . . ,  q 
the values L ( x / ) :  let Qi be the cardinality of the set L-1 (x~.) 71 {x/}7= 1" 

Then the random variable (Q1, Q2 . . . . .  Qk)  has the multinomial distribution: 

Prob{Q1 = q l ' Q 2  = q2 . . . . .  Qk = qk}  

ql  2 qk 
= 01 0 . . . . .  O k 

q l '  q2 . . . . .  qk 

Hence, a set of local extrema obtained by performing a number of local 
searches from uniformly distributed starting points can be interpreted as a sample 
drawn from this multin.omial distribution. If the value k is known in advance, then 
the random vector (Q1/q ,  Q 2 / q  . . . . .  Q k / q )  is the standard minimum variance un- 
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biased estimator of  ('01,02 . . . .  , Ok}. If an upper bound U o f k  is known, we can still 
apply the above estimator and compute the probabili ty for each k ~< U of being the 
true number of  local minima. 

If nothing can be said a priori about k, a Bayesian framework is required, 
after which an a priori distribution is given on the set 19 = { 01,02 . . . .  , O k ; k = 1 , . . . ,  oo 
0 <~ 0 i <~ 1, Ek=_ 10i = 1 } and after a suitable loss function has been defined, the opti- 
mal decision can be made about the value k and the share of the local minima. 

Therefore, as in [16], the a posteriori probabili ty can be computed that 
another local search will lead to the identification of  a new local minimum. This in- 
formation can be used to determine optimal Bayesian stopping rules to balance the 
costs of  premature termination and that of  further sampling. 

Let us now reformulate the global optimization problem as that  of  finding 
the essential infimum of f i n  the compact  set K :  

f*  = m a x { t : m ( x ~  K: f (x )  <~ t ) /m(K)  = 0 } .  

The above definition makes sense if  f is Lebesgue measurable; if f ~ C (K), 
the essential infimum coincides with the global opt imum of  definition (1.2). Thus, 
apart from pathological cases of no computat ional  interest, the two definitions can be 
regarded as equivalent. 

The interest of  this new definition is that it is more sensible from a proba- 
bilistic viewpoint - functions which differ on a set of measure zero are indistinguish- 
able by a random sampling process; thus, it  will be used to introduce the main ap- 
proaches to the inferential process about the objective function and, more specifical- 
ly, about  its global optimum. 

Let: 

r  = m l x ~  g : f ( x )  <<. t}l/m(K)},  

which is defined if f is Lebesgue measurable. It is possible to prove that 

(i) ~ is non-decreasing. 
(ii) ~ is a.e. differentiable. 
(iii) ~ is continuous in R, provided that no set H _C K exists such that 
re(H) > 0 and f{x) = constant on H. 

The essential infimum f *  of  f can thus be characterized by the condition 

f *  = max l t :~ ( t )  = 0 } .  
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We define the c-approximation f [  to f *  as: 

jr* = max{ t : th( t )  <<. e} , 

and accept f c as an approxim{ation to f *  within an 'accuracy'  e if: 

fc < fc*, i.e. r  < e , (4.1) 

since $ is a non-decreasing function of t. 
Condition (4.1) bears no implication about the value of the error fc - f * :  

it only implies that the probability of  finding, by further uniform samples, a function 
value lower than f is smaller than e and thus makes for a sensible stopping criterion 
for an algorithm based on random sampling. 

Should ~b(t) be known, then the validation o f f  c could be solved; but this is 
not the case, apart from some trivial cases. The first idea which has been explored in 
this framework was of deriving an analytical approximation to $, based on random 
sampling. 

Let Z be a random n-dimensional vector uniformly distributed in K. If 
P(I) = Prob { fl'Z) <- t} is the probability of hitting the set E(t)  = {x E K : f ( x )  <- t }, 
then the uniformity of  the distribution of Z implies $ = P. Thus, q; is also the distri- 
bution function of the random variable f(Z). 

Given a value t- and a sample Sq = { f (z j )  }, j = 1 . . . . .  q, where zj are samples 
from Z, if p is the number of  points hitt ingE(t),  then p/q is an.unbiased estimator of  
~(t). One can construct a least squares spline approximation q; to the data thus ob- 
tained, for different values of  t, update the approximation $ as new samples aregen- 
erated, and show that this regression function converges uniformly to q;. Once q; can 
be regarded as a satisfactory approximation it can be used to control whether q; (fc) ~ e. 

Even if this approach is sensible and performs reasonably well on the usual 
test problems, still it has two main drawbacks: 

(1) no statistical measure of  the confidence one can place in the result can 
be derived; 

(2) the choice of  the approximation model is quite arbitrary. 

A major step towards obtaining a simpler, more general and statistically 
meaningful procedure has recently been taken by Betr6 [ 12,13]. 

As q; is the probability distribution function of f(Z),  then the e-approxi- 
mation f *  is its quantile of order e. Thus, testing whether f c <~ f *  is a problem of test- 
ing about a quantile of  an unknown distribution function. The approach is based on 
the idea of modelling the distribution of the sampled values by a suitable family of  
random distribution functions. These distribution functions are the sample paths of  
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a suitable stochastic process and allow the making of  inferences about the unknown 
distribution on the basis of  the sampled values. The family considered in [13,14] is 
that of  neutral to the right random probabilities, which enjoys the properties of be- 
ing 'wide enough',  closed under conditioning on the observed values and computa- 
tionally manageable. The test in (4.1) is then formulated as a problem of optimal 
decision: let d o denote the decision of accepting the hypotheses fc <" f*  and d 1 the 
decision of rejecting it; let the losses connected with the wrong decisions be meas- 
ured by two positive constants w 0 and w 1. Then the optimal decision, i.e. the one 
which minimizes the expected loss, is: 

d OwhenP(f  c < fe*j >~ Wo/(W 0 + w 1 , 

d 1 otherwise. 

This approach has been implemented m connection with a clustering tech- 
nique and has proven extremely successful [14]. 

Another approach employs tools from order statistics [20.5,21,15]. Let 
{xj }, ] = 1 . . . . .  q be uniformly distributed points in K:  fc = rain f / i s  a random 
variable whose distribution is given by: J = 1 ,q 

Gq(t) = 1 - [ 1 - ~ ( t ) }  q 

For large values of q, Gq(t) takes the following asymptotic form 

Gq(t) = 

0 t < f *  

exp(1 - { t  - f * )a /aq )  t >~f*  

(4.2) 

where the influence of  ~(t) is expressed by 3 parameters. It is possible to identify a 
wide class of functions which this result applies to and to compute for those functions 
the value a.  The other unknown parameters can be estimated by a sequential 
sampling process. Once Gq is fully identified, it can in principle be used to provide 
confidence statements, at different levels of probability, for the estimate to the 
global optimum approximation as yet obtained. A main difficulty connected with the 
use of  order statistics is that an exceedingly large sample is required to test that the 
distribution of  the extremum can be modelled by the asymptotic expression (4.2). 
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5. R a n d o m  search  m e t h o d s  

The basic structure of  these methods can be simply outlined by the following 
iterative fonnula: 

~k = Xk + ~k 

X k + l  

r? k 

x k 

if fir?k) < f ( x k )  

otherwise. 

Here ~k is drawn from some probability distribution ~t k given in K. Different 
random search techniques depend on the choice of/1 k : it is natural to allow ~k to be 
dependent on x l , x  2 . . . . .  x k and f ( x l  ) , f(x2 ) . . . . .  f ( x k )  obtaining an adaptive 
random search [44]. These features can make random search techniques of some 
computational interest in some instances of  large scale nonlinear programming [4] 
where we trade the typically slow convergence of random search techniques for their 
reduced requirements of  computer storage, in stochastic optimization [22,42], where 
we capitalize on their robustness, and in some instances of global optimization prob- 
lems, where the random nature of the search allows us to jump over local minima, 
converging, albeit very slowly, to the global one [38]. General convergence conditions, 
as well as computational results of  specific choices of/1 k, are reported in [46]. 

Some instances of  random search techniques can be viewed as stochastic 
gradient techniques (see [23] for a general survey on the use of  stochastic gradient 
methods in systems optimization), and sensibly analyzed within the framework of the 
properties of  convolution operators, which can be shown to smooth out the local 
minima of f for suitable choices of the kernel of the convolution and its parameters 
[4 1. 

6. M e t h o d s  b a s e d  o n  a s t o c h a s t i c  m o d e l  o f  the  ob jec t ive  f u n c t i o n  

The basic idea of the methods considered in this section is to model the 
objective function f as a sample path of  a stochastic process ~{x, c~) - the stochastic 
model of f - where co is an unknown index which belongs to some sample space ~2. A 
probability distribution on ~ is given by means of  the finite dimensional joint distri- 
butions 

P x l , x  2 . . . . .  xn (Y1  ' Y2 . . . . .  Yn)  

= Plco:(o(x/,co) <~ y], ] = 1  . . . . .  n } V n >  O; Xl x 2 . . . . .  x n E K .  
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This amounts to giving a probabili ty distribution on the instances of global 
optimization problems. Thus in this scheme, which was first suggested in [31.33], we 
can, at least in principle, move from worst case analysis to average case analysis, com- 
puting the a posteriori  expected performance of algorithms (e.g. of space covering 
techniques), and we can design algorithms on the basis of average, rather than guaran- 
teed accuracy. A consequence of modelling the objective function as a sanlple path 
of a stochastic process is that probabilistic bounds for the error f *  _ j r ,  can, at least in 
principle, be computed. 

Algorithms in this framework can be developed according to two criteria. Let 
us assume that we can evaluate the objective function in n points; after the first 
criterion the points are chosen in such a way as to minimize the expected value of the 
objective function f ;  after the second scheme, evaluation points are chosen in such a 
way as to minimize the probabili ty that the final error exceeds a prefixed quantity e. 
In this framework algorithms, or strategies (borrowing the notation of space-covering 
techniques), can be considered vectors dl ,  d 2 . . . . .  d n, such that d], j = 1 . . . . .  n' is a 
measurable function of d 1, d 2 . . . . .  @ - 1 and maps (K • R )  I into K. An n-step 
strategy d, when applied to a function f, produces an n-tuple 

d = d n ( X l , f ( x l ) ,  X n _ l , f ( X n _ l )  ) xdl,xd2 = d 2 ( X l , f ( X l ) )  . . . . .  x n . . . . .  

We know that E ( f ( x ) I f ( x  1), f { x 2 )  . . . . .  f ( X n ) )  is the least squares approximation to 
f ( x )  given the observations f ( x  1 ) , f ( x 2 )  . . . . .  f { x  n).  Then we can proceed, following 
a dynamic programming scheme, by first computing 

u = rain 
/ l  

x n ~ K  
E'( f (x  n J ],f(X 1 j . . . . .  f ( x n  - 1 ")') ' 

d n = arg rain 

x n ~ K  
E ( f ( x  n)  I f ( x  1 ) . . . . .  f ( x  n - 1  )) . 

Further steps backward lead to the determination of  

u = rain 
n - 1 

X n _  1 ~ K  
E(U n (X 1' f ( X l  ) . . . . .  Xn - 1' f ( x n  - 1 )) ] 

f ( x  1 ) . . . . .  B x ~  - 2 7 )  , 
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d n _  1 = arg rain E(un{Xl . f (x  1) . . . . .  X n _ 1 . f ( X n _ l ) } l  
Xn_ 1 ~= K 

f ( x  1 ) . . . . .  f i x . _ 2 ) )  , 

until the first evaluation point x 7 = d 1 is found. The points xd'  " ' " n X d  are then found 
by substitution in: 

x / =  . . . . .  . . . . .  , ,  

It is easy to show that this strategy d is such that 

27 

where c)- ranges over all n-step strategies. 
One can show, under wide conditions [10], that E(f(x  d) - f * )  -+ 0 for 

n -+ ~ and that J'(x d) -+ J* in probability as n grows to infinity. In particular, 
P l f ( x d ) - f  * > e} >~ Inf P { J ' ( x d ) - f  * > e}. 

If a strategy d exists for which the lnf is attained, then d is termed P-optimal 
(optimal in probabi l i ty) :  P-optimal strategies can be computed by a recursive scheme 
analogous to that of  E-optimal ones. 

It should be clear that these optimali ty schemes do not lend themselves 
easily to the design of actual optimization algorithms, which should rather use the 
common one-step approximations,  after which each point is chosen as it should be if 

it were the last one. After this framework, the scheme for the choice of the next 
point,  corresponding to E-optimal schemes, can be defined as follows: 

xi+ 1 = arg rain E(J'{x} [ f (x l ) ,  f (x2)  . . . . .  f (x i ) )  
x ~ K  

and analogously for the P-optimal scheme. 
Let us first consider the case N = 1, where one can take full advantage of  the 

characteristic properties of these schemes. Let K = [Xo,Y]: as a stochastic model for 
f,  the Wiener process is assumed for which 
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f(Xo) = ~ , 

f ix}  - f l y )  ~ N(0, o 2 I x - y l )  V x , y  E K .  

This choice is sensible for the following reasons: 

(1) it is a goodmodel of the global behaviour o f f  and its goodness of fit can 
be easily checked by testing the randonmess and the normality of a sample of size 
of values of the objective function. These statistical tests lead to the rejection of the 
Wiener model when the sample size N exceeds some value N:  the rejection of the 
Wiener process can be easily explained: when the number of observations is large, the 
local feature o f f  becomes noticeable and the sample paths of the Wiener process, due 
to its a.e. non-differentiability, are a very crude model of the local behaviour of a 

smooth objective function: 
(2) the following simple formulae hold: let 

Z n = { f ( x / ) ,  / = 1  . . . .  ,n},  x ~  A i = [xi ,xi+l],  i = 0 , . . . , n - 1 ,  

~(x) = E ( f ( x ) [ Z  n) = f i (x i+ i - x ) / ( x i +  1 - x i )  + fi+ 1 (x - x i J / { x i +  1 - x i J '  

o2(x) = var ( f ( x ) I Z  n} = o2(x - x i ] ( x i +  i - x J / ( x i +  1 - x i )  ' 

while, for i = n and x E A n = [Xn,X ] we have: 

Ulx} = E( f (x )  IZ n) = f l X n ) ,  

o2(x) = var i f ( x ) I N n )  = o 2 ( X -  X n) . 

The following result can be shown to hold: let f ix) ,  x E [a, b] be a Wiener 
process such that f (a)  = fa and consider the distribution 

F(z)  = P{ min f i t )  <~ z l f ( b )  = f b ]  
a <~ x <~ b 

Then: 

f ( z )  = 

1 i f  

exp( - 2(f  a - z}(fb - z ) / (o2(b - a)) 

z min{  

z <  mi f l { fa  fb } . 
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An effective one-dimensional algorithm can be designed which exploits 
naturally the above formula [9]. 

The same approach could be extended to multivariable functions (N > 1) 
considering gaussian random fields as stochastic models. The application of two such 
models is reported in [34,401: their numerical usefulness is severely limited by the 
significant computational overhead connected with the updating of the inverse of the 
covariance matrix. 

A radical alternative for avoiding the large amount of  computation required 
to update the model is to use simplified models, based on heuristic considerations 
rather than derived from a general random function [8,35,36]. 

Let f ( x l ) , f ( x 2 )  . . . . .  f (xn} be the values o f f  in the po in t sx l ,x  2 . . . . .  xn ;  
after a simple heuristic model we can assume V x  E K,  x 4= x/, 1 = 1 . . . . .  n, that f (x)  
is a normal random variable with expected value 

n n 

#n(x) = ~ ( f ( x i ) / l l x - x i l l j /  ~ ( .1/ l lx-xi l l )  (6.1) 
i = 1  i = 1  

mad variance 

o2n(x) : o2 rain { l l x - x i l l  
i = 1,n 

(6.2) 

where 1[" 11 is the euclidean norm aald 02 is a parameter of  tile model. Even if (6.1) and 
(6.2) are not derived from a random function, but assumed only on heuristic grounds, 
we shall speak, allowing for some impropriety, of conditional probability of tile r.v. 
f(x), meaning the probability, computed under the normality assumption to f(x), and 
related through (6.1) and (6.2) to tile values o f f ( x )  already observed. A theoretical 
analysis of  simplified models has been developed in [57] ill tile framework of the 
theory of rational choice, 

The models considered in this last section have, at least in tile authors' 
opinion, two major drawbacks with negative computational implications: first, the 
complexity of these models grows with the dimension of the problem, while the 
statistical techniques outlined in sect. 4 are rather insensitive to the dimension of the 
problem. Moreover, tile design of the algorithms of this section is tuned to a reduction 
(either in expected value, or in probability) in the error in the approximation tof .  This 
seems to be much more effectively accomplished by means of local searches, and this 
fact is clearly recognized in the algorithms based on random sampling, where the proba- 
bilistic part of the algorithm performs the 'decisions' and local searches perform the 
approximation. 



108 F. Archetti and F. Schoen, A survey ol7 the global optimization problem 

References 

[1 ] R.L. Anderson, Recent advances in finding best operating conditions, J. Amer. Stat. Assoc. 

48(1953)80. 

[2] R.S. Anderssen, Global optimization, in: Anderssen, Jennings and Ryan, Optimization 

(University of Queensland Press, 1972) p. 26. 

[3] R.S. Anderssen and P. Bloomfield, Properties of the random search in global optimization, 

J.O.T.A. 16, no. 5/6 (1975)91. 

[4] F. Archetti, Evaluation of random gradient techniques for unconstrained optimization, 
Calcolo, Vol. XII, f.1 (1975)83. 

[5] F. Archetti, B. Betrd and S. Steff~, A theoretical framework for global optimization via 

random sampling, Quaderni del Dipartimento di Ricerca Operativa e Scienze Statistiche 
�9 . I . 

A - 2 5  (Umverslta dl Pisa, 1975). 

[6] F. Archetti and B. Betr(~, On the effectiveness of uniform random sampling in global optimi- 

zation problems, Quaderni del Dipartimento di Ricerca Operativa e Scienze Statistiche 
�9 . 1 . 

A - 3 2  (Umverslta dl Pisa, 1977). 

[7] F. Archetti and B. Betr~, A priori analysis of determinsitic strategies fol? global optimiza- 

tion problems, in: Towards Global Optimization 2, ed. L.C.W. Dixon and G.P. Szego 
(North-Holland, Amsterdam, 1978) p. 31. 

[8] F. Archetti, A stopping criterion for global optimization algorithms, Quaderni del Diparti- 

mento di Ricerca Operativa e Scienze Statistiche A - 6 1  (Universit~ di Pisa, 1979). 

[9] F. Archetti and B. Betr(~, A probabilistic algorithm for global optimization, Calcolo Vol. 
XVI, III (1979)335�9 

[10] F. Archetti and B. BerrY, Stochast'ic models and optimization, Bollettino della Unione 
Matematica Italiana 5, 1 7 - A  (1980) p. 295. 

[11 ] F. Archetti and F. Schoen, Asynchronous parallel search in global optimization problems, 

in: Proc. X IFIP Conf. on System Modeling and Optimization, Lecture Notes on Control 

and Information Sciences, Vol. 38 (Springer-Verlag, 1982) p. 500�9 
[12] B. Betr6, A Bayesian nonparametric approach to global optimization, Methods of operations 

research, ed. P.S. St~hly (Athen~ium Verlag, 1983) p. 45, 47. 

[13] B. Betr6, Bayesian testing of nonparametric hypotheses and its application to global opti- 

mization problems, J.O.T.A. 42(1984)3 I. 

[14] B. Betr~ and R. Rotondi, A Bayesian algorithm for global optimization, Oper. Res. 1(1984) 111. 

[15] C.G.E. Boender, A.H.G. Rinnooy Kan, L. Stougie and G.T. Timmer, A stochastic method 

for global optimization, Math. Progr. 22(1982)125. 

[16] C.G.E. Boender and A.H.G. Rinnooy Kan, Optimal stopping rules for random sampling 

global optimization procedures, contributed talk at I.I.S.O. (1982). 

[17] F.H. Branin, jr. and S.K. Hoo, A method for finding multiple extrema of a function of N 

variables, in: Numerical Methods of Nonlinear Optimization (Academic Press, 1982). 

[18] F.H. Branin, jr., Widely convergent method for finding multiple solutions of simultane- 
ous nonlinear equations, IBM J. Res. Develop. (September, 1972) p. 504�9 



F. Archetti and F. Sehoen, A survey on the global optimization problem 109 

[19] P. Chiappa, G. Remotti and R. Rotondi, A clustering technique based on kth nearest neigh- 

bour distribution (1983), private communication. 
[20] D. Clough, An asymptotic extreme value sampling theory for estimation of global maxi- 

mum, Can. Oper. Res. Soc. J. (1969)102. 

[21] L. De Haan, Estimation of the minimum of a function using order statistics, Report 7902/S 

(Econometric Institute, Erasmus University, Rotterdam, 1979). 

[22] Yu. M. Ermoliev, On the stochastic quasi-gradient method and stochastic quasi-Feyer 

sequences, Kibernetika 3(1969)18. 

[23] Yu. M. Ermoliev, Stochastic quasi-gradient methods and their apphcation in systems opti- 

mization, Working Paper W P - 8 1 - 2 ,  I.I.A.S.A. (1981). 

[24] B. Everitt, Cluster Analysis (Heinemann, 1974). 

[25] Y.G. Evtushenko, Numerical methods for finding global extrema (Case of a non-uniform 

mesh), Zh. Vychisl. Mat. Fiz. 11,6(1971)1390. 

[26] J. Gomulka, Remarks on Branin's method for solving nonlinear equations, in: Towards 

Global Optimization, ed. L.C.W. Dixon and G.P. Szeg6 (North-Holland, Amsterdam, 1975) 

p. 96. 

[27] J. Gomulka, Two implementations of Branin's method: numerical experience, in: Towards 

Global Optimization 2, ed. L.C.W. Dixon and G.P. Szeg6 (North-Holland, Amsterdam, 

1978) p. 151. 

[28] A.O. Griewank, Generalized descent for global optimization, J.O.T.A. 34, n.1 (1981)11. 

[29] J.W. Hardy, An implemented extension of Branin's method, in: Towards Global Opti- 

mization, ed. L.C.W. Dixon and G.P. Szeg6 (North-Holland, Amsterdam, 1975) p. 117. 

[30] J. Hartigan, Clustering Algorithms (Wiley, 1975). 

[31] M.J. Kushner, A new method for locating the maximum point of an arbitrary multipeak 

curve in presence of noise, J. Basic Engineering (1964) 97. 

[32] J.J. McKeown, Aspects of parallel computation in numerical optimization, in: Numerical 

Techniques for Stochastic Systems, ed. F. Archetti and M. Cugiani (North-Holland, Amster- 

dam, 1980) p.297. 

[33] J. Mockus, On a method for allocation of observations for the solution of extremal prob- 

lems, USSR Comp. Mat. and Mat. Fiz. 2(1964)103. 

[34] J. Mockus, V. Tiesis and A. ~ilinskas, The application of Bayesian method for seeking the 
extremum, in: Towards Global Optimization 2, ed. L.C.W. Dixon and G.P. Szeg6 (North- 

Holland, Amsterdam, 1978) p. 117. 

[35] J. Mockus, The simple Bayesian algorithm for multidimensional Bayesian optimization, 

in: Numerical Techniques for Stochastic Systems, ed. F. Archetti and M. Cugiani (North- 

Holland, Amsterdam, 1980) p. 369. 

[36] J. Mockus, The Bayesian approach to global optimization, in: Proc. 10th IFIP Conf. on 

System Modeling and Optimization (Springer, 1981) p. 473. 
[37] K.D. Patel, Parallel computations and numerical optimization. Oper. Res. 1(1984)135. 

[38] J. Pinter, Sztochastikus modszerek optimalizalasi feladatok megoldasara, Alkalmazott 

Matematikai Lapok 7(1981)217. 



110 F. Archetti and F. Schoen, A sun,ey on the global optimization problem 

[39] L.A. Rastrigin, The convergence of the random search method in the extremal control 

of a many parameter system, Automat. Remote Control 24(1963)216. 

[40] R. Rotondi, Valutazione numerica di un algoritmo probabilistico di ottimizzazione globale, 

Rendiconti dell'Istituto Lombardo di Scienze e Lettere (1983) to appear. 

[41] R.Y. Rubinstein, Simulation and the Monte Carlo method (Wiley, 1981). 

[42] R.Y. Rubinstein and G. Samorodnitsky, Efficiency of the random search method, Math. 

and Comp. in Sire. 24(1982)257. 

[43] F. Schoen, On a sequential search strategy in global optimization problems, Calcolo III 

(1982)321. 

[44] M.A. Schumer and K. Steiglitz, Adaptive step size random search. IEEE Transactions 

AC, Vol. A C -  13(1968)351. 

[45] B.O. Shubert, A sequential method seeking the global maximum of a function, SIAM J. 

Numer. Anal. 9:3(1972)379. 

[46] F.J. Solis and R.B. Wets, Minimization by random search techniques, Math. Oper. Res. 

no. 1 (1981)19. 

[47] A.G. Sukharev, Optimal strategies for the search of an extremum, Zh. Vychisl. Mat. Fiz. 
11, no. 4 (1971)910. 

[48] A.G. Sukharev, Best sequential strategies for finding an extremum, Zh. Vychisl. Mat. Fiz. 
18, no. 1 (1972)35. 

[49] A. Torn, Cluster analysis using seed points and density-determined hyperspheres with an 

application to global optimization, in: Proc. 3rd Int. Joint Cont. on Pattern Recognition 
(1976) p. 394. 

[50] A. Torn, Probabilistic global optimization, a cluster analysis approach, in: Proc. 2nd 

European Congress on Operations Research (North-Holland, Amsterdam, 1976) p. 521. 

[51] G. Treccani, A new strategy for global minimization, in: Towards Global Optimization, 

ed. L.C.W. Dixon and G.P. Szeg6 (North-Holland, Amsterdam, 1975) p. 143. 

[52] G. Treccani, On the convergence of Branin's method: a counter example, in: Towards 

Global Optimization, ed. L.C.W. Dixon and G.P. Szeg6 (North-Holland, Amsterdam, 1975) 
p. 107. 

[53] G. Treccani, A global descent optimization strategy, in: Towards Global Optimization 2, 
ed. L.C.W. Dixon and G.P. Szeg6 (North-Holland, Amsterdam, 1978) p. 165. 

[54] A. Velasco Levy and S. Gomez, The tunneling algorithm for the global optimization of 

constrained functions, IIMAS-UNAM Tech. Rep. no. 231 (1980). 

[55] A. Velsco Levy and A. Montalvo, A modification to the tunneling algorithm for finding 

the global minima of an arbitrary one-dimensional scalar function, IIMAS-UNAM Tech. 
Rep. no. 240 (1980). 

[56] R. Zielinski, A statistical estimate of the structure of multi-extremal problems, Math. 
Progr. 21(1981)348. 

[57] A. Zilinskas, Axiomatic approach to statistical models and their use in multimodal opti- 

mization theory, Math. Progr. 22(1982) 

[58] F. Zirilli. The use of stochastic differential equations in global optimization (1982), private 

communication. 


