V. L. Levin UDC 513.88+519.53

§1. Introduction

1.1. Let T and X be nonempty sets. The many-valued map $\Gamma: T \to 2^X$ will be identified with its graph in $T \times X$,

$$\vec{\Gamma}(t) = \{x \in X : (t, x) \in \Gamma\} \ \forall t \in T.$$

The map $\varphi: T \to X$ is called a section or a selector of Γ if $\varphi(t) \in \Gamma(t)$ for all $t \in T$.

- 1.2. Let X be a topological space,* (T, \mathscr{A}) be a measurable space. The map $\varphi: T \to X$ is said to be measurable if $\varphi^{-1}(F) \in \mathscr{A}$ for every closed set $F \subset X$. If (T, \mathscr{A}) is a topological space with a Borel σ -algebra, then the measurable map $\varphi: T \to X$ is named Borel.
- 1.3. From the Lusin Yankov theorem [1, 2] follows the existence of a measurable section when T and X are Borel sets in Polish spaces,† Γ is a Souslin set, Γ (t) is nonempty for all $t \in T$, and the σ -algebra $\mathscr A$ is generated by Souslin sets. We recall that a continuous image of a Polish space is called a Souslin set (Souslin sets are also called analytic or A-sets). Various variants and generalization of the theorem mentioned are known; certain new results of similar type have been obtained in [3, 4]. However, from these theorems it is not possible to extract the existence of Borel sections.
- 1.4. In 1939 Novikov [5] proved that if Γ is a Polish Borel set, then the points t for which $\Gamma(t)$ is non-empty and closed form a set that is the complement of a Souslin set (CA-set). Two important corollaries stem from this result.

COROLLARY A [5]. If Γ is a Borel set and all Γ (t) are closed, then the projection of Γ onto T is a Borel set.

COROLLARY B [5].‡ We assume that all $\Gamma(t)$ are nonempty and closed. Then the following statements are equivalent: 1) Γ is a Borel set; 2) a denumerable family of Borel sections $\varphi_n : T \to X$, $n = 1, 2, \ldots$, exists such that $\{\varphi_n(t) : n = 1, 2, \ldots\}$ is dense in $\Gamma(t)$ for each $t \in T$.

- 1.5. It is very well known that Novikov's theorem does not carry over to the case when T and X are arbitrary Polish spaces. As a matter of fact, let T = [0, 1], X be a Baer space, ** $f: X \to T$ be a continuous map, and f(X) be a Souslin but not Borel set in T. Then $\Gamma = f^{-1}$ is closed in $T \times X$; consequently, all $\Gamma(t)$ are closed in X, but the projection of Γ onto T is not a Borel set.
- 1.6. Another approach exists to the investigation of measurable (and, in particular, Borel) sections of many-valued maps. For every $B \subset X$ we set

$$\Gamma^{-1}(B) = \{t \in T : \Gamma(t) \cap B \neq \emptyset\}.$$

Rokhlin [7] showed that if (T, \mathcal{A}) is a measurable space, X is a complete separable metric space, $\Gamma(t)$ is non-empty and closed for all $t \in T$, and $\Gamma^{-1}(G) \in \mathcal{A}$ for every open set $G \subset X$, then a measurable section exists for Γ . Analogous results were obtained later by Sion [8], Kuratowski and Ryll-Nardzewski [9], and Castaing [10].

1.7. Now let the the σ -algebra $\mathscr A$ be complete relative to some σ -finite measure and X be a complete separable metric space with metric ρ and let all $\Gamma(t)$ be nonempty and closed. In this case Castaing [10, 11], using a result of Debreu [12], established the equivalence of the following statements: (a) $\Gamma \in \mathscr A \otimes \mathscr B$, where $\mathscr B$

^{*}The topological spaces being considered in the paper are assumed to be Hausdorff.

[†]A topological space homeomorphic to a complete separable metric space is called a Polish space.

[‡] See [6, p. 94] for the proof of this result of Novikov.

^{**}See survey [6], e.g., about Baer space.

Translated from Sibirskii Matematicheskii Zhurnal, Vol. 19, No. 3, pp. 617-623, May-June, 1978. Original article submitted June 1, 1976.

denotes a Borel σ -algebra in X; (b) $\Gamma^{-1}(F) \in \mathcal{A}$ for all closed $F \subset X$; (c) $\Gamma^{-1}(G) \in \mathcal{A}$ for all open $G \in X$; (d) $\Gamma^{-1}(B) \in \mathcal{A}$ for all $B \in \mathcal{B}$; (e) the function $t \to \rho(x, \Gamma(t)) = \inf\{\rho(x, y) : y \in \Gamma(t)\}$ is measurable for every $x \in X$; (f) Γ possesses a denumerable family of measurable sections $\varphi_n : T \to X$ (n = 1, 2,...) such that $\{\varphi_n(t) : n = 1, 2, \ldots\}$ is dense in $\Gamma(t)$ for all $t \in T$. The condition of denseness of \mathcal{A} is essential here.

1.8. In \$2 we obtain a Borel analog of this theorem in the case when T is a Borel set in a Polish space and X is a metric space being the union of a denumerable set of compacta. This result is a corollary of Novikov's theorem and is proved with the help of assertion A.

The main result of the paper is the theorem in §3, stating that if $\Gamma(t)$ are convex metrizable compacta in a locally convex space, contained in set X, while Γ is a Borel set in $T \times X$, then under certain conditions on X the set $\{(t, x) : x \text{ is an extreme point of } \Gamma(t)\}$ is Borel too.

§2. Borel Sections

2.1. We shall say that a topological space X enters into class σMK if it is representable in the form $X = \bigcup_{n=1}^{\infty} K_n$, where all K_n are metrizable compacta. It is easy to see that $X \in \sigma MK$ if and only if X is a con-

tinuous image of a closed subset of the real line. (As a matter of fact, the sufficiency of this condition is obvious, while the necessity follows from the fact that every metrizable compactum is a continuous image of a Cantor set.) Into class σMK enter, in particular, separable metrizable locally compact spaces and weak adjoints to separable metrizable locally convex spaces.

2.2. LEMMA (on Projection). Let T be a Borel set in a Polish space and let $X \in \sigma MK$. If a set $\Gamma \subset T \times X$ is Borel and $\Gamma(t)$ is closed for every $t \in T$, then the projection $\pi(\Gamma)$ of set Γ onto T is a Borel set.

<u>Proof.</u> We have $X = f(X_1)$, where X_1 is a closed subset of the real line and the map $f: X_1 \to X$ is continuous. Further, T is Borel isomorphic to some Borel set $T_1 \subset [0, 1]$, i.e., $T = g(T_1)$, where $g: T_1 \to T$ is a one-to-one Borel map, and the map g^{-1} is Borel too (see §37 in [13]). Then $g \otimes f: T_1 \times X_1 \to T \times X$ is a Borel map; consequently, $\Gamma_1 = (g \otimes f)^{-1}(\Gamma)$ is a Borel set in $T_1 \times X_1$. In addition,

$$\Gamma_1(t_1) = f^{-1}[\Gamma(f(t_1))] \quad \forall t_1 \in T_1,$$

and from the continuity of f it follows that all the sets $\Gamma_1(t_1)$, $t_1 \in T_1$, are closed in X_1 . According to statement A the projection $\pi_1(\Gamma_1)$ of set Γ_1 onto T_1 is a Borel set, but $\pi(\Gamma) = g(\pi_1(\Gamma_1))$. This completes the proof since g is a Borel isomorphism.

- 2.3. Proposition. Let T be a Borel set in a Polish space, X be a metric space with metric ρ , being the union of a denumerable set of compacta, and all $\Gamma(t)$ be nonempty and closed. Then the following statements are equivalent:
 - (a) Γ is a Borel set;
 - (b) $\Gamma^{-1}(F)$ is a Borel set for every closed $F \subset X$;
 - (c) $\Gamma^{-1}(K)$ is a Borel set for every compactum $K \subset X$;
 - (d) $\Gamma^{-1}(G)$ is a Borel set for every open $G \subset X$:
 - (e) $t \to \rho(x, \Gamma(t)) = \inf \{ \rho(x, y) : y \in \Gamma(t) \}$ is a Borel function on T for every $x \in X$:
 - (f) $(t, x) \rightarrow \rho(x, \Gamma(t))$ is a Borel function on $T \times X$;
 - (g) there exists a denumerable family $\varphi_n: T \to X$ (n = 1, 2,...) of Borel sections of Γ such that $\{\varphi_n(t): n = 1, 2, ...\}$ is dense in $\Gamma(t)$ for all $t \in T$.

For $X = \mathbb{R}^n$ this proposition was proved as Theorem 1.6 in [14].

<u>Proof.</u> (a) \Rightarrow (b). $\Gamma^{-1}(F)$ is a projection onto T of the set $\Gamma' = (T \times F) \cap \Gamma$ and, since $\Gamma'(t) = F \cap \Gamma(t)$ is closed, it remains to apply the lemma.

- (b) \Rightarrow (c). Obvious.
- (c) \Rightarrow (d). This follows from the fact that an open set in X is representable as a union of a denumerable set of compacta and

$$\Gamma^{-1}\left(\bigcup_{h=1}^{\infty}B_{h}\right)=\bigcup_{h=1}^{\infty}\Gamma^{-1}(B_{h}).$$

- (d) \Rightarrow (e). We have $\{t: \rho(x, \Gamma(t)) < \alpha\} = \Gamma^{-1}(U(x, \alpha))$ for every $\alpha > 0$, where $U(x, \alpha)$ is an open ball of radius α with center at x.
 - (e) \Rightarrow (f). This follows from the equality

$$\rho(x, \Gamma(t)) = \inf_{n} (\rho(x, x_n) + \rho(x_n, \Gamma(t))),$$

where the sequence $\{x_n\}$ is everywhere dense in X.

(f) \Rightarrow (a). We have $\Gamma = \{(t, x) : \rho(x, \Gamma(t)) = 0\}$.

Thus, we have verified the equivalence of statements (a)-(f).

- (g) \Rightarrow (d). This follows from the obvious equality $\Gamma^{-1}(G) = \bigcup_{n=1}^{\infty} \varphi_n^{-1}(G)$.
- (a) \Rightarrow (g). Let $X = \bigcup_{i=1}^{\infty} K_i$, where the K_i are compacta. We set $\Gamma_i = \Gamma \cap (T \times K_i)$ and by T_i we denote the projection of Γ_i onto T. We have $\Gamma = \bigcup_{i=1}^{\infty} \Gamma_i$, $T = \bigcup_{i=1}^{\infty} T_i$. Further, $T_i = \Gamma^{-1}(K_i)$, consequently, T_i is a Borel

set. We consider Γ_i as the many-valued map $T_i \to 2^{K_i}$. We wish to show that statement (g) is valid for Γ_i . Let us assume that this has already been proved, i.e., there exists a sequence $\varphi_{in}: T_i \to K_i$ (n = 1, 2,...) of Borel sections of Γ_i such that $\{\varphi_{in}(t): n=1, 2, \ldots\}$ is dense in $\Gamma_i(t)$ for all $t \in T_i$. Then the family of maps

$$\varphi_n(t) = \begin{cases} \varphi_{1n}(t) & \text{for } t \in T_1, \\ \varphi_{2n}(t) & \text{for } t \in T_2 \setminus T_1, \\ \vdots & \vdots & \ddots & \vdots \\ \varphi_{in}(t) & \text{for } t \in T_i \setminus (T_1 \cup \ldots \cup T_{i-1}), \end{cases}$$

satisfies the conditions of statement (g) for Γ . Thus, it remains to verify that (g) holds for Γ_i , but this follows easily from the cited result of Rokhlin. The proposition has been proved completely.

- 2.4. Remarks. 1°. The implication (a) \Rightarrow (g) holds for an arbitrary $X \in \sigma MK$. As a matter of fact, if $X = \bigcup\limits_{i=1}^{\infty} K_i$, where the K_i are metrizable compacts, then $\Gamma_i = \Gamma \cap (T \times K_i)$ and its projection T_i onto T is a Borel set and everything is derivable from the proposition as applied to the map $\Gamma_i : T_i \to 2^{K_i}$. We need this fact later on.
- 2°. From the statements in the proposition it does not follow that $\Gamma^{-1}(B)$ is a Borel set for every Borel $B \subset X$. We present a counterexample. Let $X = T \times Y$, where T = Y = [0, 1], B is a Borel set (of type G_{δ}) in X, but its projection $\pi(B)$ onto T is not a Borel set. The set $\Gamma = \{(t, x) : x = (t, y), t \in T, y \in Y\}$ is Borel and $\Gamma(t) = \{t\} \times Y$ is closed in X for every $t \in T$. At the same time, $\Gamma^{-1}(B) = \{t : (t, y) \in B \text{ for some } y \in Y\} = \pi(B)$.

§3. Maps with Values in Convex Compacta and Extreme Points

- 3.1. Let X be a subset of a locally convex space (LCS) \mathfrak{X} , provided with an induced topology. We shall examine sets X having the following properties.
- 1°. $X \in \sigma MK$, and there exists a sequence of metrizable compacta K_i such that $X = \bigcup_{i=1}^{\infty} K_i$; every convex metrizable compactum in X is contained in one of the K_i .
- 2°. On X there exists a Borel function p whose restriction p|K on every convex metrizable compactum $K \subset X$ is a continuous strictly convex function on K.

Examples of such X are a metrizable compactum in an arbitrary LCS \mathcal{X} , as well as the whole space \mathcal{X} , when \mathcal{X} is a weak adjoint to a separable metrizable LCS E. In the first case

$$p(x) = \sum_{n=1}^{\infty} 2^{-n} \frac{\langle x, x'_n \rangle^2}{1 + q(x'_n)},$$

where the sequence $\{x_n'\} \subset \mathcal{X}^*$ separates the points of X, $q(x^1) = \max\{|\langle x, x'\rangle| : x \in X\}$. In the second case we can take

$$p(x) = \sum_{n=1}^{\infty} 2^{-n} \frac{\langle e_n, x \rangle^2}{1 + q_n(e_n)},$$

where the sequence $\{e_n\}$ is dense in E, $q_1 \leq q_2 \leq \ldots$ is a sequence of prenorms defining the topology in E.

3.2. By ex K we denote the set of extreme points of a convex compactum K.

THEOREM (on Extreme Points). Let T be a Borel set in a Polish space, X be a set in a LCS \hat{x} , possessing properties 1° and 2°, Γ be a Borel set in T \times X, and Γ (t) is a nonempty convex metrizable compactum for every $t \in T$. Then the set $\Gamma_{\text{ex}} = \{(t, x) \in T \times X : x \in \text{ex } \Gamma(t)\}$ is Borel too.

This theorem generalizes Theorem 1.7 in [14] in which $X = \bar{x} = \mathbb{R}^n$. Closely related questions were studied in [15, 16].

3.3. Proof. We consider a linear space $\mathscr E$ of real functions ξ on X, whose restrictions $\xi \mid K_i$ are continuous functions on K_i . In $\mathscr E$ we introduce the topology of uniform convergence on compacta K_i ($i=1,2,\ldots$), defined by the sequence of prenorms $\|\xi\|_i = \max\{|\xi(x)|: x \in K_i\}$. It is easy to see that $\mathscr E$ is complete. Let us show that it is separable. For each i there exists a denumerable family Φ_i of continuous functions on K_i , everywhere dense in $C(K_i)$. From the Titze-Uryson lemma it follows that every function from Φ_i can be continued up to some function $\xi \in \mathscr E$. The union over i of all thus-obtained denumerable families of functions on K_i is everywhere dense in $\mathscr E$. Thus $\mathscr E$ is a Polish space.

As is well known (see [17], for example), for every metrizable convex compactum K

$$\operatorname{ex} K = \{x \in K : p_K(x) = \widehat{p_K}(x)\},\$$

where p_K is an arbitrary continuous strictly convex function on K, $\widehat{p}_K(x) = \inf\{h(x): h \in H(K)\}$; H(K) is a set of continuous affine functions on K, majorizing p_K . From the Titze – Uryson lemma and property 1° of space X it follows easily that every continuous function on K can be continued up to some function $\xi \in \mathcal{E}$. Therefore,

ex
$$\Gamma(t) = \{x \in \Gamma(t) : p(x) = \widehat{p}(t, x)\}$$
 $\forall t \in T$,

where $\hat{p}(t, x) = \inf\{\xi(x): \xi \in \mathcal{H}(t)\}$ $\forall (t, x) \in \Gamma$, $\mathcal{H} = \{(t, \xi): \xi \mid \Gamma(t) \text{ is an affine function and } \xi(x) \ge p(x) \quad \forall x \in \Gamma(t)\} \subset T \times \mathcal{E}$.

Let $\{\varphi_n\}$ be a denumerable family of Borel sections of Γ and let $\{\varphi_n(t): n=1, 2, \ldots\}$ be dense in $\Gamma(t)$ for all $t \in T$ (see Remark 1° in §2). For any positive integers m and n and for any rational number r, $0 \le r \le 1$, we define the set

$$\mathcal{H}_{mnr} = \{(t, \xi) \in T \times \mathcal{E} : \xi(r\varphi_m(t) + (1-r)\varphi_n(t)) = r\xi(\varphi_m(t)) + (1-r)\xi(\varphi_n(t)), \ \xi(\varphi_n(t)) \geqslant p(\varphi_n(t))\}.$$

It is easy to see that $\mathscr{H} = \bigcap_{m,n,r} \mathscr{H}_{mnr}$. Let us show that \mathscr{H}_{mnr} is a Borel set in $T \times \mathscr{E}$. It is evident that for this it is sufficient to verify that $F(t, \xi) = \xi(\varphi(t))$ is a Borel function on $T \times \mathscr{E}$ for any Borel map $\varphi: T \to X$. We have $F = F_2 \circ F_1$, where the maps $F_1: T \times \mathscr{E} \to X \times \mathscr{E}$ and $F_2: X \times \mathscr{E} \to R$ are given by the equalities $F_1(t, \xi) = (\varphi(t), \xi)$ and $F_2(x, \xi) = \xi(x)$. The map F_1 is obviously Borel. Further, the restriction of F_2 on set $K_i \times \mathscr{E}$ is continuous. As a matter of fact, if $(x_k, \xi_k) \subset K_i \times \mathscr{E}$ and $(x_k, \xi_k) \to (x, \xi)$, then $\xi(x_k) \to \xi(x)$, since $\xi \mid K_1$ is continuous and, consequently,

$$|\xi_h(x_h) - \xi(x)| \le |\xi_h(x_h) - \xi(x_h)| + |\xi(x_h) - \xi(x)| \le ||\xi_h - \xi|| + |\xi(x_h) - \xi(x)| \to 0$$

as $k \to \infty$. Then F_2 is a Borel function on $X \times \mathcal{E}$, and F is a Borel function on $T \times \mathcal{E}$. Thus, \mathcal{H}_{mnr} is a Borel set and, consequently, \mathcal{H} is a Borel set as well.

The set

$$\mathcal{L} = \{(t, x, \xi) : x \in \Gamma(t), \xi \in \mathcal{H}(t)\} \subset T \times X \times \mathcal{E}$$

is Borel since it is homeomorphic to the Borel set

$$\{(t_1, x, t_2, \xi) \in \Gamma \times \mathcal{H} : t_1 = t_2\} \subset (T \times X) \times (T \times \mathcal{E}).$$

The sets

$$\mathcal{L}_n = \mathcal{L} \cap \{(t, x, \xi) : \xi(x) - p(x) \leqslant 1/n\} \quad (n = 1, 2, \ldots)$$

are Borel too; consequently, their projections $\varkappa(\mathscr{L}_n)$ onto $T\times X$ are Souslin sets.* Then Γ_{eX} too is a Souslin set since $\Gamma_{eX}=\bigcap_{n=1}^{\infty}\varkappa(\mathscr{L}_n)$. On the other hand, $\Gamma\setminus\Gamma_{eX}$ is a Souslin set, being the image of the Borel set

$$\mathcal{M} = \{(t, x, y) : x \in \Gamma(t), y \in \Gamma(t), x \neq y\} \subset T \times X \times X$$

relative to the continuous map $(t, x, y) \rightarrow (t, (x + y)/2)$.

^{*}This follows from the fact that $X \in \sigma MK$ and from the corresponding result for Polish spaces [13].

Thus, Γ_{ex} and its complement $\Gamma \setminus \Gamma_{ex}$ are Souslin sets. We set $\Gamma_i = \Gamma \cap (T \times K_i)$. Then $\Gamma_i \cap \Gamma_{ex}$ and $\Gamma_i \setminus \Gamma_{ex} = \Gamma_i \cap (\Gamma \setminus \Gamma_{ex})$ are Souslin sets without points in common and, since their union Γ_i is a Borel set in a Polish space, $\Gamma_i \cap \Gamma_{ex}$ is a Borel set. Since this is true for each i, the set $\Gamma_{ex} = \bigcup_{i=1}^{\infty} (\Gamma_i \cap \Gamma_{ex})$ also is Borel.

LITERATURE CITED

- 1. N. Lusin, "Sur la problème de J. Hadamard d'uniformisation des ensembles," Mathematics (Cluj), 4, 54-66 (1930).
- 2. V. Yankov, "On the unification of A-sets," Dokl. Akad. Nauk SSSR, 30, No. 7, 591-592 (1941).
- 3. R. J. Aumann, "Measurable utility and measurable choice theorem," Proc. Colloq. Internat. CNRS "La Décision," Aix-en-Provence, 1967, Édition CNRS, Paris (1969), pp. 15-26.
- 4. M.-F. Sainte-Beuve, "On the extension of von Neumann-Aumann's theorem," J. Funct. Anal., 17, No. 1, 112-129 (1974).
- 5. P. S. Novikov, "On the projections of certain B-sets," Dokl. Akad. Nauk SSSR, 23, No. 9, 863-864 (1939).
- 6. V. Ya. Arsenin and A. A. Lyapunov, "Theory of A-sets," Usp. Mat. Nauk, 5, No. 5, 45-108 (1950).
- 7. V. A. Rokhlin, "Selected questions of the metric theory of dynamic systems," Usp. Mat. Nauk, 4, No. 2, 57-128 (1949).
- 8. M. Sion, "On the uniformization of sets in topological spaces," Trans. Am. Math, Soc., <u>96</u>, No. 2, 237-245 (1960).
- 9. K. Kuratowski and C. Ryll-Nardzewski, "A general theorem on selectors," Bull. Acad. Polon. Sci., Sér. Math., Astron., Phys., 13, No. 6, 397-403 (1965).
- 10. C. Castaing, "Sur les multi-applications mesurables," Rev. Inf. Rech. Oper., 1, 91-126 (1967).
- 11. C. Castaing, "Le théorème de Dunford Pettis généralisé," Publ. No. 43, Univ. de Montpellier (1968-1969).
- 12. G. Debreu, "Integration of correspondences," Proc. Fifth Berkeley Symp. Math. Statist. and Prob., Vol. 2, Pt. 1, Univ. Calif. Press (1966), pp. 351-372.
- 13. K. Kuratowski, Topology, Vol. I, Academic Press, New York London (1966).
- 14. V. I. Arkin and V. L. Levin, "Convexity of values of vector integrals, measurable choice theorems, and variational problems," Usp. Mat. Nauk, 27, No. 3, 21-77 (1972).
- 15. C. Castaing, "Sur la mesurabilité du profil d'un ensemble convexe compact variant de facon mesurable," Collège Scientifique Univ. de Perpignan (1968).
- 16. C. Castaing, "Compacité faible des sections d'une multi-application dans les espaces de Köthe généralisés. Étude des points extrémaux d'un convexe compact variable," C. R. Acad. Sci. Paris, 281, 333-335 (1975).
- 17. R. R. Phelps, Lectures on Choquet's Theorems, Van Nos Reinhold (1966).