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§1. Introduction

1.1. Let T and X be nonempty sets. The many-valued map I': T — 2X will be identified with its graph
in T XX,

I'(t)={z=X: (§, )} Viel.
The map ¢: T — X is called a section or a selector of T' if ¢(¢)I'(t) for all 1eT.

1.2. Let X be a topological space,* (T, s£) be a measurable space. The map ¢:T — X is said to be
measurable if ¢"!(F)=s£ for every closed set F=X. If (T, s¢) is a topological space with a Borel o-algebra,
then the measurable map ¢: T — X is named Borel.

1.3. From the Lusin— Yankov theorem [1, 2] follows the existence of a measurable section when T and
X are Borel sets in Polish spaces,t T is a Souslin set, I'(t) is nonempty for all t<7, and the o-algebra S is:
generated by Souslin sets. We recall that a continuous image of a Polish space is called a Souslin set (Souslin
sets are also called analytic or A-sets). Various variants and generalization of the theorem mentioned are
known; certain new results of similar type have been obtained in 3, 4]. However, from these theorems it is
not possible to extract the existence of Borel sections.

1.4. In 1939 Novikov [5] proved that if I" is a Polish Borel set, then the points t for which I'(t) is non-
empty and closed form a set that is the complement of a Souslin set (CA-set). Two important corollaries
stem from this result.

COROLLARY A [5]. If T is a Borel set and all I'(t) are closed, then the projection of I"'onto T is a
Borel set.

COROLLARY B [5].f We assume that all I'(t) are nonempty and closed. Then the following statements
are equivalent: 1) I is a Borel set; 2) a denumerable family of Borel sections ¢pn: T — X, n = 1, 2,...,
exists such that {ppt):n=1,2,.. .} is dense in I'(t) for each t=T.

1.5. It is very well known that Novikov's theorem does not carry over to the case when T and X are
arbitrary Polish spaces. As a matter of fact, let T = [0, 1], X be a Baer space,** f: X — T be a continuous
map, and £(X) be a Souslin but not Borel set in T. Then I' = ! is closed in T XX; consequently, all I'(¢t) are
closed in X, but the projection of I onto T is not a Borel set.

1.6, Another approach exists to the investigation of measurable (and, in particular, Borel) sections of
many-valued maps. For every B<X we set

"B ={te7:THNB+I}

Rokhlin [7] showed that if (7, s£) is a measurable space, X is a complete separable metric space, I'(t) is non~
empty and closed for all t<7, and I'"Y(G)=sf for every open set GcX, then a measurable section exists for
T'. Analogous results were obtained later by Sion (8], Kuratowski and Ryll-Nardzewski [9], and Castaing [10].

1.7. Now let the the o-algebra & be complete relative to some o-finite measure and X be a complete
separable metric space with metric p and let all T'(t) be nonempty and closed. In this case Castaing [10, 11],
using a result of Debreu [12], established the equivalence of the following statements: (a) TeARH, where #

* The topological spaces being considered in the paper are assumed to be Hausdorff.
tA topological space homeomorphic to a complete separable metric space is called a Polish space.
1 See [6, p. 94] for the proof of this result of Novikov.

**See survey [6], e.g., about Baer space.
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denotes a Borel c-algebra in X; (b) I"'(Fles for all closed FcX; (¢) I(G)= for all open GeX;

(d) I'"Y(B)est for all Bed; (e) the function t->o(z, T(t))=inf{p(z, ¥):y<=I(t)} is measurable for every
r&X; (f) T possesses a denumerable family of measurable sections ¢,: T ~X (n =1, 2,...) such that {q)n(t):
n=1,2,...}is dense in T'(t) for all t=7T. The condition of denseness of ¢ is essential here.

1.8. 1In §2 we obtain a Borel analog of this theorem in the case when T is a Borel set in a Polish space
and X is a metric space being the union of a denumerable set of compacta. This result is a corollary of
Novikov's theorem and is proved with the help of assertion A.

The main result of the paper is the theorem in §3, stating that if I'(t) are convex metrizable compacta
in a locally convex space, contained in set X, while I" is a Borel set in T XX, then under certain conditions
on X the set {t, x):x is an extreme point of I'(t)} is Borel too.

§2. Borel Sections

2.1. We shall say that a topological space X enters into class oMK if it is representable in the form

X = G K,, where all K, are metrizable compacta., It is easy to see that XeoMXK if and only if X is a con-~

n=1

tinuous image of a closed subset of the real line. (As a matter of fact, the sufficiency of this condition is
obvious, while the necessity follows from the fact that every metrizable compactum is a continuous image of
a Cantor set.) Into class oMK enter, in particular, separable metrizable locally compact spaces and weak
adjoints to separable metrizable locally convex spaces.

2.2. LEMMA (on Projection), Let T be a Borel set in a Polish space and let XeoMK. If a set PI'XX
is Borel and I'(t) is closed for every t=7, then the projection 7 (I') of set I" onto T is a Borel set,

Proof. We have X = {(X;), where X, is a closed subset of the real line and the map f: X; — X is con~
tinuous. Further, T is Borel isomorphic to some Borel set I'< [0, 1], i.e., T =g(Ty), whereg:T; -~ T is
a one-to-one Borel map, and the map g~} is Borel too (see §37 in [13]). Then g®f:7:XX;~TXX is a Borel
map; consequently, I''==(g®f)~'(I') is a Borel set in T; XxX;. In addition,

Tyt =T (f())] vueT,

and from the continuity of { it follows that all the sets T',(¢)), ti<T71, are closed in X{. According to statement
A the projection 7 (Ty) of set I'y onto Ty is a Borel set, but #(I'} = g(r¢(Ty)). This completes the proof since
g is a Borel isomorphism,

2.3. Proposition. Let T be a Borel set in a Polish space, X be a metric space with metric p, being the

union of a denumerable set of compacta, and all I'(t) be nonempty and closed. Then the following statements
are equivalent:

(a) I is a Borel set;

®) I"YF) is a Borel set for every closed F&X;

¢} I YK) is a Borel set for every compactum KcX;

(@ T~Y(G) is a Borel set for every open GcX:

(e) t—o(x, T'(¢))=inf{p(z, y):y<I'(#)} is a Borel function on T for every z=X;
) &, x) —px, T'(t)) is a Borel function on T X X;

(g) there exists a denumerable family ¢p: T —X (@ =1, 2,...) of Borel sections of I" such that {g,(t):
n=1,2,...}is dense in I'(t) for all tT.

For X =R this proposition was proved as Theorem 1.6 in [14].

Proof. (@) = (b). I'"!(F)isaprojectiononto T of the set I’ — (TxFYNT and, since IV {5) = FNT(?) is closed,
it remains to apply the lemma.

(b) = (c). Obvious.

(c) = (d). This follows from the fact that an open set in X is representable as a union of a denumerable
set of compacta and

r(§ 5= 0 o,
B B=1
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(d) = (). We have {t:p(x, I'®)) < a} = I'MU, a)) for every @ > 0, where U(x, o) is an open ball of
radius a with center at x.

{e) = (f). This follows from the equality
p(z, T(8) =inf(p(z, &) +p(am T(1))),
where the sequence {x,} is everywhere dense in X.
) = (@). We have T = {(t, x): px, T'(t)) = 0}.
Thus, we have verified the equivalence of statements (a)~(f).

(8) = (). This follows from the obvious equality I'™'(G) = U on H(G).
(@) > (g). Let X = .gi K;, where the K are compacta. We set I'i =T (7 X X,) and by Tj we denote the

T;. Further, Tj = 1 (Ki), consequently, Tj is a Borel

projection of T'j onto T, We havé = Doi T,, T'=
i= 1

g

i
set. We consider I'; as the many-valued map T; — 2Ki, We wish to show that statement (g) is valid for Tj.
Let us assume that this has already been proved, i.e., there exists a sequence ¢jp:T; K@ =1, 2,...) of
Borel sections of T such that {pip(t):n =1, 2,...} is dense in Tj(t) for all t<T. Then the family of maps

P1n{t) for te= Ty,
(P2n (t) fOl' tE T&!\Tls
©n (t) = , ...........
Qinlt) for teTN\(TLU.. . UTi—y),

satisfies the _conditions of statement (g) for I'. Thus, it remains to verify that (g) holds for I'j, but this fol-
lows easily from the cited result of Rokhlin. The proposition has been proved completely.

2.4. Remarks. 1° The implication (8) = (g) holds for an arbitrary XeocMK. As a matter of fact, if
X =Tj K;, where the K; are metrizable compacts, then I'; =T'(}(7 X K;) and its projection Tj onto T is a Borel

i=1
set and everything is derivable from the proposition as applied to the map I'j: T} — 2Ki. We need this fact
later on.

2°. From the statements in the proposition it does not follow that I'"!(B) is a Borel set for every Borel
BcX. We present a counterexample. Let X =T XY, where T =Y =[0, 1], B is a Borel set (of type G) in X,
but its projection 7 (B) onto T is not a Borel set. The set I'={(¢, z) :z= (¢, y), teT, yY} is Borel and T'(t) =
{t} XY is closed in X for every t=T. At the same time, I'"!(B)={¢:(t. yj<B for some y=Y¥}=n(B).

§3. Maps with Values in Convex Compacta and Extreme Points

3.1. Let X be a subset of a locally convex space (LCS) ¥, provided with an induced topology We shall
examine sets X having the following properties.

1°. XeoMK, and there exists a sequence of metrizable compacta K; such that X = ~U1 K;: every convex

metrizable compactum in X is contained in one of the Kj.

2°, On X there exists a Borel function p whose restriction piK on every convex metrizable compactum
KcX is a continuous strictly convex function on K.

Examples of such X are a metrizable compactum in an arbitrary LCS ¥, as well as the whole space £,
when ¥ is a weak adjoint to a separable metrizable LCS E. In the first case

S gn_(% 7Y
(I = 2 T AN
P ,21 t+4(z1)
where the sequence {z,} < £* separates the points of X, q(x') ==max{|{z, z')|:z&X}. In the second case we can
take

- <n’x\
Pl = 2 T 0

where the sequence {en} is dense in E, q; =g, = ... is a sequence of prenorms defining the topology in E.
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3.2. By exK we denote the set of extreme points of a convex compactum K.

THEOREM (on Extreme Points). Let T be a Borel set in a Polish space, X be a set in a LCS &, pos-
sessing properties 1°and 2° T be a Borel set in T XX, and I'(t) is a nonempty convex metrizable compactum
for every t=T. Then the set I',={(f,z)e I'XX:x=exI'(t)}is Borel too.

This theorem generalizes Theorem 1.7 in [14] in which X=%=R". Closely related questions were
studied in [15, 16].

3.3. Proof. We consider a linear space & of real functions £ on X, whose restrictions {1Kj are con~
tinuous functions on K;. In & we introduce the topology of uniform convergence on compacta Kj (i =1, 2,...1,
defined by the sequence of prenorms [iEl;=max{|E(z)|:z=K}. It is easy to see that & is complete. Let us
show that it is separable. For each i there exists a denumerable family &; of continuous functions on Kj,
everywhere dense in C(Kj). From the Titze — Uryson lemma it follows that every function from &; can be con-
tinued up to some function §&=&. The union over i of all thus-obtained denumerable families of functions on
X is everywhere dense in & Thus & is a Polish space.

As is well known (see [17], for example), for every metrizable convex compactum K
| exK= {z&=K:px(z) =px(z)},

where pg is an arbitrary continuous strictly convex function on K, ;Agx(x)=inf{h(x) theH(K)YY; H(K)is a set of
continuous affine functions on K, majorizing pg. From the Titze — Uryson lemma and property 1° of space X
it follows easily that every continuous function on K can be continued up to some function ¢=&. Therefore,

exI'(t)={zsT'(t) : p(x) =p(t, 2)} Yi=T,

where p(t, z)=inf{E(z) k=B (1)} V(t, sy, F={(t, §):5|T'(¢) is an affine function and §(z) = p(x} Vze=
M) }=TX&.

Let {¢,} be a denumerable family of Borel sections of I and let {py(t):n =1, 2, ...} be dense in I'(t) for
all t<T (see Remark 1° in §2). For any positive integers m and n and for any rational number r, 0 = r= 1,
we define the set

Hornr={(t, ) ETXE E(rem (1) +(1—)9a (1)) =1E (@ (2)) +(1—1)E(@n(2)), E(@a(8)) =D (3 (D))}.

It is easy to see that % = m.Q'r%m"” Let us show that ... is a Borel set in I'X&. It is evident that for this
it is sufficient to verify that F, £) = £(@(t)) is a Borel function on T'X& for any Borel map ¢ : T — X. We have
F = Fy°Fy, where the maps F:TX& —XX& and F,: XX& --R are given by the equalities Fy(t, £) = (¢{t), £) and
Fo(x, £) = £(x). The map Fy is obviously Borel. Further, the restriction of F, on set X X& is continuous. As
a matter of fact, if (2, &)< K. X& and (xg, ék) — (%, &), then &(xx) — £(x), since ¢1K; is continuous and, con-
sequently,

[Bala) —E (@) | < [&:(@) —E(m) [+ |E(m) ~8(2) [< la—Elt|E (@) —E(2) | >0

as k —~ <. Then F, is a Borel function on XX&,and F is a Borel function on TX&. Thus, #... is a Borel set
and, consequently, 7 is a Borel set as well.

The set

F={(1, z, t):ze=T(t), t=H (1)} =TXXXE
is Borel since it is homeomorphic to the Borel set

{(t1, T, ts, B)ETXH 1, =1} = (TXX)X(TXE).
The sets

Zr=2 Ntz 8t —plyLin} (n=1,2..)
are Borel too; :onsequently, their projections = (Z.) onto T XX are Souslin sets.* Then Tax too is a Souslin
set since Ie= 721 %(%,). On the other hand, '\ I'ex is a Souslin set, being the image of the Borel set
H={(1, z, y) 2=l (1), yT ), 27y} =TXXXX

relative to the continuous map ¢, x, y) — &, (x + y}/2).

*This follows from the fact that X=o X and from the corresponding result for Polish spaces [13].
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Thus, T'ex and its complement I'\I'ex are Souslin sets. We setI'; =I'(I'XK;). Then T;N T and
T \Tex = T; N{I\Tex) are Souslin sets without points in common and, since their union I'j is a Borel set in a

Polish space, I';NTex is a Borel set. Since this is true for each i, the set I'gex = i:Lji (T';NTe) also is Borel.
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