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This paper serves as an introduction to a series of three papers which are directed 
to different aspects of DEA (Data Envelopment Analysis) as follows: (1) uses and 
extensions of 'window analyses' to study DEA efficiency measures with an illustra- 
tive applications to maintenance activities for U.S. Air Force fighter wings, (2) a 
comparison of DEA and regression approaches to identifying and estimating sources 
of inefficiency by means of artificially generated data, and (3) an extension of 
ordinary (linear programming) sensitivity analyses to deal with special features that 
require attention in DEA. Background is supplied in this introductory paper with 
accompanying proofs and explanations to facilitate understanding of what DEA 
provides in the way of underpinning for the papers that follow. An attempt is made 
to bring readers abreast of recent progress in DEA research and uses. A synoptic 
history is presented along with brief references to related work, and problems 
requiring attention are also indicated and possible research approaches also suggested. 
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1. Introduct ion  

This paper serves as an introduction to the three that follow. All are devoted to 
'Data Envelopment Analysis' (DEA), and directed to its uses in evaluating the ef- 
ficiency of not-for-profit entities. DEA arrives as these efficiency evaluations without 
requiring either an a priori choice of weights or explicit specification of functional 
relations between the multiple outputs and inputs. 

The next section of this introductory paper will provide the models and 
methods by which DEA accomplishes this. More than single scalar evaluations of 
efficiency are possible with DEA, however, and the papers that follow will also examine 
some of the additional possibilities. Extensions of currently available methods are also 
required for use in DEA and some of these topics, too, are developed in the papers 
that follow. 

The initial paper contains a study of the use of DEA in measuring the efficiency 
of aircraft maintenance operations of wings in the Tactical Air Command (TAC) of 
the U.S. Air Force. In this example, adapted from [24]*, each wing represents an 
entity to be evaluated, called a DMU (= Decision Malting Unit), although smaller 
entities such as squadrons or larger ones such as Numbered Air Force units might also 
have been chosen. 

An important technical consideration 
relates to the number of degrees of freedom 
relative to the number of outputs and inputs 

in choosing the units to serve as DMUs 
as determined by the number of DMUs 
to be included in a study. A variety of 

possibilities are available for augmenting the number of DMUs and one of these is 
provided by the 'window analysis' used in the first paper. In this approach, the number 
of DMUs is increased by treating each DMU as though it is a different (time labelled) 
DMU for each period in the window where it appears. As will be seen, this kind of 
window analysis also provides a number of additional insights that can be gained by 
studying trends of the behavior of each DMU over the time periods considered, along 
with stability and other properties of the efficiency measures. 

Using actual Air Force data (masked in this publication), the study reported 
in this first paper * was submitted to a review by U.S. Air Force personnel. More than 
overall (,scalar) evaluations of efficiency were required to facilitate these reviews and 
the ability of DEA to identify sources and estimate amounts of inefficiency in each 
of the multiple outputs and inputs at each DMU proved to be helpful in effecting the 
wanted reviews of the DEA efficiency ratings. 

*The numbers in square brackets are keyed to the references listed at the end of this series of papers. 
r details on this study may be found in [4?]. 
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The second paper compares DEA with alternative approaches such as regression 
estimation of sources and amounts of inefficiency. This is done by reference to a 
hypothetical example involving 15 'hospitals', each with 3 inputs and 3 outputs 
related by 3 independent linear equations which (uniquely) determine the efficient 
amounts of inputs needed to support whatever outputs might be specified.* Inef- 
ficiencies are introduced into the inputs':' at some of the hospitals (= DMUs) and 
regression approaches as well as DEA are examined for their ability to identify and 
estimate these inefficiencies. Commonly used regressions of cost against outputs are 
used and the results are compared to ratio analyses and other possibilities as well as 
DEA. 

Although these regressions do surprisingly well in their overall evaluations of 
efficiency for each DMU, they do not do as well as DEA. The performance of these 
regressions in identifying the underlying sources and amounts of inefficiencies, on the 
other hand, is poor and unreliable. DEA generally performs very well in identifying 
these sources and amounts in all except a very few cases where, it so happens, DEA 
also signals that something may be wrong with the efficiency characterizations that 
it has provided. 

It might be of help to note that these statistical regressions and DEA use 
different principles of optimization. Thus, in contrast to the one 'overall' optimiza- 
tion used in arriving at the regression estimates, DEA uses n optimizations - one for 
each DMU. To state the matter differently, DEA optimizes on each observation, 
whereas the usual statistical regression optimizes across all observations. Hence, as 
might be expected, DEA provides a better fit to each observation and a better basis for 
identifying and estimating the sources of inefficiency associated with the operations of 
each of the hospitals (= DMUs) included in this study. 

The differences in optimizing principles used in DEA and ordinary statistical 
(least squares) regression estimates suggest that one might be preferred to the other 
for uses in certain contexts and problems. For instance, the usual least squares re- 
gression might be used when general characterizations are of interest for purposes of 
policy analysis and prediction of future behavior of the entire ensemble of observa- 
tions. DEA might then be used when interest centers on individual observations and 
the institutions (= DMUs) to which they relate. It might also be favored when it is 
reasonable to suppose that identified inefficiencies can be eliminated, while statistical 
regression might be used when it is assumed that these inefficiencies cannot be re- 
moved and will continue into the future. 

*The model was used as a further check on results secured in a study of Massachusetts hospitals 
where, as reported in [761, all results were reviewed by a committee of experienced hospital ad- 
ministrators, physicians, surgeons and state regulators. 

'~A statistically designed study based on underlying translog and piecewise Cobb-Douglas tech- 
nologies with inefficiencies only in the outputs is reported in [10]. 
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Other criteria for choosing between regression and DEA are also possible and 
the two approaches may also be used together as when DEA is used to adjust or refine 
the data prior to forming regression estimates. This kind of usage is not confined to 
least squares regression estimation. Schinnar in [72], for example, used DEA to arrive 
at estimates of 'efficient' input-output coefficients for use in place of the 'averages' 
that are usual in Leontieff-type 'inter-industry analyses'. Evidently, additional alter- 
natives are also possible, up to and including the use of DEA to obtain entire efficiency 
frontiers and to supply 'dual variable' values by means of which tradeoffs and adjust- 
ments may be affected along these frontiers*. 

As will be seen in the next section, DEA can be given a linear programming 
formulation with accompanying powers of computation and interpretation. Computer 
codes for ordinary linear programming (simplex) computations can thus be used, but 
more efficient codes are available for dealing with the n optimizations involved in 
DEA. One such code developed by I. Ali, D. Divine and J. Stutz is available from the 
Center for Cybernetic Studies at the University of Texas at Austin. As seen in table 7 
of the first paper, this code provides printouts with supplemental information for 
interpreting the results for each DMU. 

Theoretical and methodological extensions are also required for particular 
uses of DEA. One such extension revolves around the topic of sensitivity analysis. As 
noted in the third paper, variations in the data of the DMU being evaluated are associ- 
ated with variations in one of the basis vectors. Hence it is not possible to use ordinary 
sensitivity analyses which proceed on the assumption that the data variations being 
studied do not affect elements of the basis inverse. 

This extension of sensitivity analysis can have other uses as well. For instance, 
as reported in [16], it was desired to use DEA as a guide for effecting changes in the 
individual program units (= DMUs) in San Antonio's (20 000 student) community 
college. Such changes could have effects on the efficiency evaluations of other DMUs. 
For purposes like these it is also desirable to have efficient means for sensitivity 
analyses along with other aspects of the procedures described in the 3rd paper. 

All three papers provide numerical examples which are intended to help ex- 
plain and illustrate what is occurring. They can also be helpful in other ways. For 
instance, we have used the data in paper number two for checking proposed alterna- 
tives and extensions to DEA. Others may find it similarly useful ~ and undoubtedly 
other uses of  the data in this and the other two papers are also possible. 

*See [361 for a detailed mathematical development. 
~See the discussion in Bowlin [191. 
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2. Models and notation* 

We now formally introduce DEA via the following model and its associated 
extremal principles which, as noted in [41], extend the usual single output to single 
input efficiency definitions employed in the natural sciences: 

Maximize hjo 

d~ 

ur Y q o 
r = l  

m 

7 ,  v ix6  o 
i = 1  

Subject to'  

s 

UrYrj 
r = l  

m 

Z ~  
i = 1  

~< 1; j = l , 2  . . . . .  Jo . . . . .  n 

u r > 0; r = l , . . . , s ,  

v i > 0; i = l , . . . , m  , (1) 

where xii  = the observed amount of input of  the ith type for the j th  DMU 
(i = 1, 2, . . . , m;  j = 1 , 2 , . . . ,  n )  and Yri = the observed amount of  output of the rth 
type for the j th  DMU (r = 1 , 2 , . . .  , s ; j =  1, 2 , . . .  ,n ) .  

The Joth unit being evaluated in the objective is also part of the constraint 
set so that 0 ~< hio ~< 1 with existence of solutions assured for any (or all)Io for 

which an evaluation is sought. The u r and v i values are determined directly from the 
data via the above model with its associated extremal principle as each j = lo designates 
a DMU]o to be inserted in the functional. Evidently, max h]o = h~ = 1 is required for 

*The developments in this section are drawn from the original version of [38], which was edited 
to form the third paper in the sequence that follows. 
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efficiency so h/o < 1 means efficiency has not been achieved. The value of hio is 
independent of the units in which the observed inputs and outputs are stated. This is 
formalized and proved as follows :* 

THEOREM 1 (units invariance): 

The optimal h/o = h/o is independent of the units in which the observed inputs 
and outputs are measured so long as the units are the same for every DMU. 

Proof."* 
"A" a i r  

Let an optimal solution to (1) be given by hio, Ur , v*. Then replace the original 
y,./, x i / b y  PrYri, 6 i x i / >  0 with PrYr! = Yr] and 6ixii  =xi /  for those r and i where no 
change is made. Choosing u r = u r /Pr  and o i = o i / ~ i ,  we have h/o >7 h/o. Suppose we 

'* '* = o~* 5 i satisfy the original con- could have h/o > h~o. However, u r = u r Pr and v i 
straints and this contradicts the assumed optimality of h/o, u r , v i . Thus the assump- 

t ~  ~ air . . . .  l l lr i tion h/o h/o leads to a contradiction. The only remaining posslblhty is hjo = hjo , as 
asserted in the theorem. Q.E.D. 

The formulation in (1) is a nonlinear-nonconvex problem involving a linear 
fractional functional with linear fractional constraints. As shown in [41], it can be 
replaced by what looks like an ordinary linear programming problem (ignoring the 
required positivity of the variables) and associated with common methods of solution 
(e.g. the simplex method) which provide optimal bases of 'efficient DMUs' for effect- 
ing the evaluation of the /0 th  DMU. The number of times the model must be solved 
can be reduced, since each such solution locates a subset of efficient DMUs as a by- 
product of the computations. It also provides a basis for assessing the sources of in- 
efficiency (if any) in the DMU being evaluated along with optimal values of the 
associated dual variables that can be used to determine tradeoffpossibilities along the 
efficiency frontier. 

We have indicated how (1) generalizes the concept of efficiency (single output 
to single input ratio form) that is used in the natural sciences. By moving to the 
corresponding linear programming form, we can relate it to the concept of 'Pareto 
efficiency' or 'Pareto-Koopmans efficiency ' t  by taking account of any non-zero 
slack that may be present in the optimal solutions. 

Using vector notation, we therefore now replace (1) with a reciprocal 'in- 
efficiency' ratio form, namely: 

*Other invariance properties are given in [691. 
*An alternative proof is given in [30]. 
tSee chapter IX of [28]. 
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Minimize h 0 
O TX 0 

UT Yo 

subject to 

vTx i 

uTg/ - -  ~> 1, j = l , 2 , . . . , n  

(UTYo) -1 V T ~ e , e  T > 0 ,  

(HTY0) -1 U T ~ e - e  T > 0 .  (2) 

Since we shall have 

UTYo > 0 ,  

we can achieve the new linear programming form via (2) ft. in what follows. Thus 
we can proceed to relate this to (1) by observing that Yo and X o contain as com- 
ponents the Yrj 0 and Xrjo that appear in the functional of (1). Similarily, the X i and 
Y] vectors contain the same xij and Yri data as in (1) for each j = 1 , . . .  ,n. The com- 
ponents of the row vectors uT and uT are to be determined via the indicated opti- 
mization to obtain the u* and v* values which are wanted. Finally, e T is the transpose 
of the column vector e which has all of its elements equal to unity*. 

The symbol e represents the infinitesimal we use to generate the non-Archi- 
medean ordered extension field we shall use. In this extension field, e is less than 
every positive number in our base field but greater than zero. Its usage guarantees 
that optimal solutions to the new (extended field) linear programming problems are 
at finite non-zero extremal points. 

To transform the ratio problem of (2) to a linear programming form, we make 
the change of variables: 

1 
t -  

uT Yo 

69 T = t o  T ,  12 T = t u  T " (3) 

*To avoid still further notation, we shall use the same symbol e for vectors of different length. 
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Then multiplying numerators and denominators in (2) by t and adding the consistency 
condition, tuTy o = 1, problem (2) becomes 

min 6jTXo 

subject to 

_ # T y .  /> O, r x j  I 

~TY 0 = 1, 

coT ~ 6e T, 

#T ~ ce T. 

j =  1 , 2 , . . . , n  

(4) 

The linear programming dual to (4) is: 

max (z o + eeTs - + eeTs +) 

subject to 

~_~X/X i + s- = X o 
i 

Y o Z o - Z Y i X  i + s + = 0 
] 

X j, s § s- >1 O, (5) 

and z o unconstrained. 

We may note that (5) can be interpreted as a problem in which one maximizes 
the 'intensity' z o of the output vector Yo subject to envelopement from above and 
below. The envelopment from above is by reference to the outputs and the envelop- 
ment from below is by reference to the inputs of DMU o, as can be seen by rewriting 
the expressions for (5) in equivalent inequality form. The envelopment is tightened 
to the maximal extent possible via max z o = Zo, with, as we shall see, z o ~> 1 and 
z o = 1 occurring only when DMU o is efficient. 
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Before proceeding to a proof  of  this last statement, we might observe that the 
name 'Data Envelopment Analysis' derives from what has just been described, but is 
intended to cover this kind of  'envelopment process' in other situations where such 
inequality representations and extremal principles are employed for analogous pur- 
poses. 

We now prove what we shall refer to as the Non-Archimedean Efficiency 
The orem :* 

THEOREM 2 : 

DMU o is efficient in (4) if  and only if  

* = = S  = 0 ,  z o 1 and s § -* 

i.e. the intensity is unity and all slacks equal to zero, where an optimal solution to 
(5) is denoted by the vector (X*, z o, s-*, s+*). 

Proof: 

DMU o is efficient if  and only if co*TXo = 1 in (4). By equality of the dual 
functionals at an optimum, 1 = co* TXo = z o + eeTs -* + eeTs +*. 

Since the constraint system of  (5) contains no non-Archimedean quantities, 
it follows that no basic solution can contain non-Archimedean quantities. But 

1 = z o + e e T ( s  +* + s - * )  

if and only if the coefficients of  e are all zero, since z o, s +*, and s-* do not contain 
e. O.E.D. 

The introduction of  a non-Archimedean infinitesimal has thus provided access 
to a simple but rigorous linear programming model having the required positivity of 
the u T and v T. The theorem also shows why, in addition to z o = 1, the slacks s § and 
s must equal zero. Notice further that it is precisely the tagging of the slack in (5) 
with this infinitesimal which allows us to recover the effects of any positivity require- 
ments on the u T and v "r in (2). Concomitantly,  any u T or v T component  in (2) which 
has this non-Archimedean infinitesimal involved in its value will be uniquely identified 
with a slack which is positive in (5). Thus each slack value in (5) is unambiguously 

*See [3 8] for further discussions and interpretations. 
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related to the appearance of  a non-Archimedean infinitesimal in (2). The slack which 
is apparent in (2), but not in (5), requires nothing further in the way of treatment or 
interpretation since it very naturally represents the complement of the corresponding 
efficiency or inefficiency value, i.e. the deviation from unity for this constraint, in 
each particular evaluation. 

it- ~r 
As already noted, the value of h o and hence the values of z o and co* TX o do 

not depend on the units in which the inputs and outputs are measured. The slacks do 
not have this same property and it is important to arrange computations so that their 
values will not affect the z o. This can be done by inserting an extra row in the simplex 
tableaus to accommodate the non-Archimedean infinitesimals, as described on page 
176 ff. in [28]. Alternatively, one may proceed in a two-phase manner by optimizing 
on Zo, in (5) say, and then maximizing the slack with z o fixed at the z o value achieved 
in the preceding phase. Other possibilities also exist, of course, but in any case 
efficiency requires that the slacks s +" and s-* must all be zero and this condition does 
not depend on the units of measure used. 

Drawing this all together, we have 

* * T  * h o = co X o = z o + eeTs  - *  + eeWs + " ,  (6) 

with Theorems 1 and 2 holding in all of these cases so that, in particular, if h o = 1, 
then non-Archimedean elements do not appear in the optimum value of (2). Any or 
all of these formulations may be used for computation or interpretation. Additional 
formulations are also possible. 

In (5), normalizing is applied to the outputs. We can supply normalizing to the 
inputs instead, as is done in the problem on the left in the following dual pair: 

m a x  NT Yo 

subject to 

vT X o  = 1 

l a T y  - v T x  <~ 0 

--]1 T < -  ee  T 

- vT <~-- ee  T 

min 0 - eeTs  + - e e T s  - 

subject to 

r x - s +  -- Yo 

OX o - X X  - s -  = 0  

X , s + , s  - >1 0 

(7) 
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Formally,  the model on the right is obtained from (5) by dividing all constraints by 

z 0 and reorienting the objective as indicated for the intensity (or scale) variable 

0 = 1/z o.* The symbols X and Y are the matrices X = [X 1 . . . . .  Xn ], Y = [ I"1 . . . . .  Yn ]" 
The problem on the right is in 'envelopment form' .  The problem on the left is in 

(normalized) 'p roduct ion '  or 'efficiency technology '  form where the objective is to 
maximize DMU 0's rate of  output ,* given the unit  rate of  input normalization in the 
first constraint,  subject to non-Arehimedean positivity and the 'efficiency technology '  
condit ion that outputs  cannot  exceed inputs in any of  the other  constraints. 

We can do more than simply test for efficiency. We can also adjust the in- 
efficient operations by means of  formulae that we can develop as follows. 

�9 /r +~- -- 
Let 0" ,  kB, s B , sB* designate an optimal basic solution with an associated 

collection of  coefficient vectors and matrices from the problem on the right of  (7): 

I~ , I-':1 , I~ X o - X B - I B 

(8) 

From this, as the basis of  this optimal solution, we obtain the reduced system of  
equations: 

y B X ~  +* 
- -  S B  = Y O  

O*X o - X Bx* s - s  u-* = O. (9) 

If one replaces (X  o, Yo) by X~ : O*X o - sB* and Yo Yo + +* - ' = s s , t h e n 0 = l ,  

X = X s , s B = 0, s B = 0 is a feasible basic solution for (X  o, Yo) with this same DMU 
column basis. 

* T  * T  Now PB , UB are the dual evaluators for the old basis. Applying these to (9) 
we obtain 

* * T  . * T x r  t 

p * T v  - , *  * T  * - *  . * T v  t 
B A B A B  = PB ( 0  X B - s  B ) = u B A o  , (lO) 

*The variables in (5) can be related to those in (6) by writing the latter as ~. = k/z o and ~§ = s§ 
~- = s-/z o , but we do not do this in order to avoid additional notation. 

*The reference is to 'virtual' outputs and inputs as defined in the next section. 
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*T * But/A~TY B - V B X B = 0 for the dual inequalities designated by X B. Hence 

A*Txrt . * T v  "~* .*T.t,- "x* t 0 B /0  =btB 1B~'B = t"B ABAB = p * T x  ' (11) 

* T pB T i.e. the new inequality replacing /ATY o - uTx0 <~ 0 is also satisfied by /AB , �9 
Further 

( /ABTYO) / ( v*TX 'o )  = 1 .  (12) 

T h u s ~ T  *T *T t ~T  *T t /A B =IA s / (P  Xo) , v B = VB / (v*Tx '0)  is abasic feasible solution to the (X o, Yo) 
problem with functional value ~ T Y  o = 1 equal to the dual problem functional value 
0 = 1. Thus the project ion ' ,  which we refer to as the CCR projection,  

' O*Xo -*  X 0 -+ X 0 = - s  , 

Yo ~ Yo = Yo + s+* (13) 

t t 
is efficient. That is, the X o, Yo obtained in this manner  from the original X o, Yo is 
efficient and the differences 

1 

AX o = X o - X o , 

AYo = Yo - Yo ' (14) 

represent the estimated amoun t s  of  input and output  inefficiencies, respectively, in 

the X o, Yo observed for DMU o. 

*As published in [41 ] which was also the first work to associate an efficient ( 'Pareto efficient')  in- 
put-output vector with each given (X/,  I5/.) vector. See also the alternate development provided 
there. 
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3. A p p l i c a t i o n  a n d  i n t e r p r e t a t i o n s  

We now draw from the discussion of audit and evaluations of managerial 
performance on pp. 4 5 - 4 6  in [50] in order to distinguish activities in each of the 
following categories: 

(1) Propriety of 
(a) Objectives pursued 

(b) Methods used 

(2) Effectiveness in 
(a) Stating objectives 

(b) Attaining objectives 

(3) Efficiency of 
(a) Benefits achieved 

(b) Resources utilized 

Some managerial performance measures may comprehend more than one 
category. Profit, for example, may reflect the improved effectiveness achieved by a 
business firm in changing from producing steel to producing oil. It may also reflect 
the efficiency with which oil is produced. Hence, the total profit may include both 
efficiency and effectiveness quite apart from whether the change from steel to oil 
was a proper undertaking. 

Distinctions between effectiveness and efficiency need not be emphasized 
in evaluating private enterprise activities. They are of importance in gauging the 
activities of public enterprises where a change from one type of activity to another 
(i.e. a change in the direction of its activities) often requires specific legislation or 
voter approval. 

Our concern here, and in the papers that follow, is with efficiency. We lay 
aside the more difficult problem of effectiveness and assume that this has been decided 
in the choice of inputs (resources) to be used and outputs (benefits) to be achieved, 
as well as the ways in which the inputs and outputs are to be measured. Theorem 1 on 
'units invariance' provides a certain amount of latitude and other devices may also 
be used. Generally speaking, however, 'augmentation'  is the desired direction for 
outputs and 'diminution'  is the desired direction for inputs. 

Flexible uses of these definitions are possible. For instance, the reciprocal 
of  an input amount may be formalized as ~ output  and placed in the numerator 
rather than the denominator (along with other inputs) in (1). Flexibility is also allowed 
in the choice of DMUs. These choices are of basic importance, however, and so a 
certain amount of checking is always advisable. 
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We may now formalize our definition of efficiency as follows: 

100% efficiency is attained for any DMU only when 

(a) None of its outputs can be increased without either 

(i) increasing one or more of its inputs or 
(ii) decreasing some of its other outputs. 

(b) None of its inputs can be decreased without either 

(i) decreasing some of its outputs or 
(ii) increasing some of its other inputs. 

Thus efficiency is represented by the attainment of Pareto optimality* and conversely. 
Output or input inefficiency corrections are allowed under this definition without 
worsening any other input or output and the need for assigning measures of relative 
importance to the different inputs and outputs is thereby avoided. 

The above definition is formulated so that efficiency may be determined 
relative to prior theoretical knowledge. That is, such knowledge may be available by 
reference to available theory as in parts of the natural sciences. It can also be arranged 
artificially, by design, for testing DEA and other approaches to efficiency measure- 
ment, as is done by reference to the underlying models in the second of the three 
papers that follow. Such knowledge of true or theoretical efficiency is not available 
for other situations, however, as in the Air Force applications reported in the first 
paper. For such uses, we need to extend the above definition to one which involves 
only relative efficiency as determined from the kind of data that are likely to be 
available. 

100% relative efficiency is attained by any DMU only when com- 
parisons with other relevant DMUs do not provide evidence of 
inefficiency in the use of any input or output. 

Via this characterization, the preceding definition is adjusted for immediate applica- 
tion to data of the kind we shall be considering. We should also note, however, that 
other combinations of the above definitions are also possible so that, in addition, 
pertinent aspects of any theoretically grounded norms or other types of available 
knowledge may also be used in common with other data when required. 

*Also called Pareto-Koopmans optimality in chapter IX of [28]. 
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All of the observed outputs Yr/, and all of the observed inputs xi/are assumed 
to be available as known positive constants~* That is, each of the ] = 1, 2 , . . . ,  n DMUs 
are assumed to have used positive amounts of each pertinent input and to have pro- 
duced positive amounts of each pertinent output. 

Some of the inputs may be varied at the discretion of a manager and some 
may not. An example of a 'non-discretionary' input is provided by the weather, which 
can affect the performance of Air Force wings. We do not deal with this topic in the 
papers that follow, but it is evident that 'better' and 'worse' weather at different 
bases should be taken into account along with other inputs and outputs that are 
pertinent to performance efficiency. ~ Thus, both discretionary and non-discretionary 
inputs were used in the DEA study of Air Force wings, along with a mix of various 
types of wings (training and operational) which also used different types of aircraft 
with relatively satisfactory results in all cases. 

The optimal ur* and v; as determined from (I) and (2) ft. have a variety of 
uses in their own right as when, for instance, they are employed to determine further 
tradeoff possibilities after efficiency has been attained. They are also called 'virtual 
rates of transformation '. More generally, the u r, o i define a 'virtual output '  

Yo = ~.  UrYrO, (15) 
r = l  

and a 'virtual input' 

m 

X 0 = Z OiXio'  ( 1 6 )  
i = 1  

so that also 

h o = Y o / X o ,  (17) 

*Methods for relaxing this positivity requirement for the observed inputs and outputs in every 
DMU are described in [46]. 

eBanker and Morey [14] provide detailed models and methods for treating non-discretionary in- 
puts and report a test in which the economics of scale effects were reversed by their treatment. 
See also Bowfin [19] for an application of DEA to Air Force base maintainance activities in which 
the use of the Banker-Morey models had no substantial effects. 
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with 

h o = Yo/Xo (18) 

when an optimum is achieved. In other words, our definitions as given above were 
motivated by the classical ratio definitions of efficiency in engineering, physics (and 
other fields), while accommodating multiple output and multiple input situations. The 
definitions are arranged so that they also make contact with the definitions of Pareto 
efficiency in economics and, as illustrated in the papers that follow, we can move 
from an overall (scalar) evaluation of efficiency and track the sources and amounts of 
inefficiency into the underlying components. Finally, if wanted, we can also construct 
the entire efficiency surface and arrange to determine the tradeoff possibilities that 
are associated with movement along these efficiency surfaces. See [36] for a rigorous 
development by means of which the production function (efficiency) surfaces may be 
constructed (and validated) empirically. 

4. R e f i n e m e n t s  and  ex t ens ions  

To relate the foregoing definitions more specifically to DEA we refer to the 
problem on the right in (7) and say that a DMU = DMU o is 'DEA efficient' if and 
only if both of the following are satisfied' 

(i) min 0 = 0* -- 1, and 

(ii) s +* = s-* = Oin all alternative optima. (19) 

In addition to the positivity assured for the solution to the problem on the 
left in (7) by e > 0, we can now bring into view the role these constants play for the 
problem on the right. For any choice of 0, the problem on the right maximizes the 
sum of the slacks. Because of the non-Archimedean character of e > 0, achievement 
of min 0 = 0* with all slacks equal to zero ensures that the slacks must also be zero in 
all alternative optima. 

Figure 1 provides an illustration in which 4 DMUs are represented by points 
PI, P2, P3, P4 with inputs given by their coordinates (x 1, x2) T. All have produced one 
unit of output so inefficiencies, if any, are in the input amounts utilized. 
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Fig. 1. DEA efficiencies. 
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To evaluate P3, for example, we insert its coordinates in (7) to obtain 

min 0 - es- 1 - es~ 

subject to 

60  = 2?` 1 + 3X 2 + lX 3 + 6?` 4 + s~ 

40  = 2X I + 2?` 2 + 4X 3 + 4X 4 + S~ 

1 = ?'1 + ?'2 + ?'3 + ?'4 

?'l ,X2,?'3,X4,S1,  S2 > 1 0 .  

The coefficients in the first 2 constraints are obtained from the coordinates shown for 
the similarly indexed point in fig. 1. The third constraint represents the unit output  
that resulted from the inputs utilized by each DMU. For the single output  case, it is 
easy to show that s § = 0, which means that no  output  inefficiency is present in the 
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single output  case.* Hence, we have simply omitted the slack variable from the output  
constraint. 

The value min 0 = 0* = 1/2 in the above problem is compatible with )'1 = i 
and it is also compatible with )'2 = 1 and all other ) ' /=  0. The choice )'x = 1 is associ- 

* S - *  ated with s~ = 1, while )'2 = 1 has s 7 = s~ = 0. Hence, X 1 = 1, = 1 and all other 
variables at zero value are optimal and P3 fails to satisfy either of  the conditions for 
DEA efficiency in (19). 

To evaluate P2 we simply replace the 0 coefficients in the above problem with 
the P2 coordinates from fig. 1, i.e. we replace 60 with 30 and 40 with 20. The other 
parts of  the problem are not  altered. 

Carrying out the minimization for the thus altered problem, we obtain 0* = 1 
and this, too, is compatible with )'1 = 1 and )'2 -- 1. The second of these two choices 
has both slacks at zero, while the first has s 7 = 1. Hence the optimal choice is 0* = 1, 

"/r 
)'1 = 1, sl* = 1, and all other variables equal to zero. Thus (i) is satisfied for (18) but 
not  (ii), and DEA efficiency is not attained by P2- 

Continuing with similar 0-coefficient replacements for P1 and/ '4 ,  it is found 
that both are DEA efficient since the twin conditions in (19) are both satisfied for the 
DMUs associated with these points. To interpret these results, we may return to fig. 1 
and imagine that the solid line connecting P4 and P1 is part of a level line obtained by 
passing a plane through the three-dimensional production surface at unit output  level 
and projecting the results down into the two dimensions portrayed in fig. 1. The line 
connecting P1 and / ' 4  is then distinguished as the ' isoquant ' ,  i.e. the portion of the 
level line containing the combinations of (x 1, x2) that will produce one unit of  out- 
put with DEA efficiency. 

The point P3 as shown in fig. 1 is not efficient because it is not  on the level 
l i n e r  That is , / '3  is not a 'frontier point ' ,  which means that this point does not  lie 
on the 3-dimensional production surface. 

The property of being a frontier point is necessary but not  sufficient for DEA 
efficiency, as witness the situation for P 2  Even though P2 is a frontier point, it is 
possible to go from P2 to /'1 in a way that reduces one input (in the amount of 
Sl* -- 1) without increasing the other input and without decreasing the output.  Hence, 
P2 is not DEA efficient. 

*This is not true for extensions to the case of multiple outputs. See the discussion of K. Laitinen 
in the next section. 

~An alternative interpretation would make the broken line connecting P2 and P3 part of the level 
line which is on the 'wrong side' of the production surface and thus exhibit what Bymes, Ffire 
and Grosskopf [22] refer to as 'congestion'. As noted in [8], we prefer to describe these as 'mix 
inefficiencies' and reserve the term 'congestion' for use in situations where input reductions 
are associated with output increases. In any case, the segment from P1 to P2 is not part of an 
isoquant if that term connotes 'efficient production', as in the usual usages in economics. 
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The situation for the isoquant connecting P1 and P4 represents Pareto (or DEA) 
efficiency. It is not possible to go from one point to another along this line segment in 
order to decrement one input without also decrementing the output or incrementing 
the other input. Holding output constant at one unit, the rate at which x 1 and x 2 
must be (optimally) exchanged for each other is indicated by the isoquant connecting 
P1 and P4-* No such tradeoffis required in going from P2 to PI'  

We now write 

O* -* + s i*" i =1 ,m, (20) X i o  = X i o  , , . . .  

where Xio is an optimal convex combination of the xi/, i.e. 

with 

n 

- *  -- Z x . X :  
X io zj I ' 

j = l  

/ /  

Z X~. = I,X*. ~ 0a l l j .  
I 1 

j = l  

(21) 

A rearrangement of (20) then gives 

m ~ ,  - 'k 

O* - x i ~  + s i  , ( 2 2 )  

X i o  

and Xo, the vector with components Xio , will be a frontier point if and only if 0"= 1. 
We illustrate with our previous solution for P3 in fig. 1 where we have 0* = 1/2, 

* s;* X 1 =1 =1,  =0.  Thus 

1/2 - 
x l l  + sx 2 + 1 

X13 6 

where xl3 and x23 are the first and second components in X 0 fo rP  3. Evidently, P 3 is 
not on the frontier. The value 0* = 1/2, as is readily verified, represents the ratio of 

*These tradeoffs may be developed from the ratios of the dual variables as in [36 ]. 
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the Euclidean distances from the origin to P2 a n d / 3 ,  respectively. It brings P3 into P2 
with the latter expressed as the sum o f P  1 plus the slack vectors. 

Proceeding next to Pz we again utilize our previous solution O* = 1, ~'1 = 1, 

s 1 : 1,s 2 = 0 and obtain 

_ 

- ' / r  

X l l  + S1 2 + 1 

X12 3 

Although P2 is on the frontier, it is not efficient because of the presence of s~* = 1. 
Stated differently, the condition 0* = 1 is necessary but not sufficient for DEA 
efficiency. Output and input slacks must also all be zero, as noted in (19). Finally, we 
also note that / '2  cannot be part of an optimal basis because it is not efficient. Hence, 
it is P1 (which is efficient) rather than /'2 which is used in the optimal basis from 
which P3 is evaluated. Stated more generally, the fact that a structural vectori* like P1 
or P4, enters into an optimal basis suffices to identify it as efficient although, as we 
shall see in the first of the following three papers, further analyses may be required 
when it achieves this status by performing only as a 'self-evaluator' - i.e. appearing 
only in its own optimal basis, and no other - which can occur because of its being 
located in a part of the space where it cannot be represented as a non-negative com- 
bination of other P/s (cf. the situation for P4 in fig. 1). 

To refine these developments in a manner that extends the theory and inter- 
pretive power of DEA, we draw on Banker, Charnes and Cooper [9] and replace (7) by 

s S+ + 
min 0 - e r 

r =  i i = 1 

subject to 

n 

B S  + = Z Yrj~k] r Yro 
/=1  

/2 

Oxio - xi/ j = o 
/=1  

*We are using the terminology of [28]. 
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n 

Z X i = I  
j = l  

)'i' g7 ' g+r ~> 0 , (23) 

where] .= 1 , . . .  , n ; i =  1 , . . .  , m ; r =  1 . . . . .  s. 
The adjunction of the last constraint for the ~,j introduces a new variable in 

the dual to (23) which we represent by ~o in: 

m a x  

s 

Z gYro - ~o 
r = l  

subject to 

m 

~iXio = 1 
i - - I  

m s 

Z r + Z gYri - "o <" o 
i = 1 r = 1 

~r'~" >~ e > 0 V r , i .  (24) 

The new variable #o is not constrained in sign. Hence it may assume optimal 
values 

. ;  0. 

As shown in [9], the value/l o = 0 may be indentified with the property that returns 
to scale are locally constant for DMU o, while ~o < 0 and/'to > 0 if returns to scale 
are locally increasing or decreasing, respectively. 

To relate these properties to the DEA efficiency conditions of (19) we utilize 
(13) and bring the observed inputs and outputs for any DMU o onto the efficiency 
frontier. We will then have 
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s 

Z g ro - .o 
r = l  

t n  

i = 1  

= 1, 

where fro, Xio represent the thus adjusted values of the observed outputs and inputs. 
We can also write this as 

S n7 
Z . ^ _ * * 

lit Yro Z ui Xio - t'to = O, 
r =  1 i =  1 

which is the equation of a hyperplane with 'intercept'/a o. It is in fact a supporting 
hyperplane at the point (filo . . . . .  .;so, 21o . . . . .  Xm o)" 

All points in the same facet as the one used to evaluate (and adjust) DMU o 
will have the same or alternate optimum bases. They will therefore have the same 
optimal dual variable values. Hence they will also satisfy (24), which means that the 
similarly adjusted output and input values for these DMUs will also lie in this hyper- 
plane .* 

The portrayal in fig. 2(a) for the one output/one input case makes it possible 
to visualize what is occurring. Point A is inside the production possibility set with the 
frontier defined by the efficiency surface represented by the solid line. Obtaining a 
solution to (23) for the DMU o associated with A and applying (13) projects A into B 
on the efficiency surface. 

Any point on this efficiency surface with input value x and output value y 
will satisfy 

b _ Y - a  
X 

where a is the intercept and b the slope. In our case, this gives 

~t 

dy _ y /% 
dx x x 

*See Chames, Cooper, Golany, Seiford and Stutz [36] for details. 



A. Charnes, W. W. Cooper, Data envelopment analysis 81 

j l  

Fr r : 
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> x  

f(x) 

Fig. 2(b). Returns to scale and 
most productive scale size. 

) x 

Note that we will then have 

d y > y  
dx < x 

< 
according to whether/2 o 7 0 as in (25). 

Via these simplified relations between output and input we can use these 
expressions to relate marginal product to average product in a diagrammatic variant 
of the usual returns-to-scale analysis in economics. In contrast to the usual 'smooth 
behavior' of the economics textbooks, 'marginal product' here assumes the form of 
a step function and the curve for 'average product'  exhibits 'kinks' at points where 
changes in the marginal product occur. 

Figure 2(b) shows the relations between marginal and average product, with 
the latter achieving its maximum value for all points in D-E,  the interval where con- 



82 A. Charnes, Ir W. Cooper, Data envelopment analysis 

stant returns to scale prevail. Returns to scale will occur in the order portrayed in fig. 
2(a) for any DEA analysis, with changes from one locale to another being signalled by 
changes in the optimum basis as successive DMUs are brought into the functional of 
(24), where the sign of ta o shows which returns-to-scale situation applies locally. The 
extension to sensitivity analysis supplied in the third paper of the following three 
papers may be used to delineate the permissible range of variations before a change in 
the local returns-to-scale properties will occur. 

Via the concept of Most Productive Scale Size (MPSS), Banker in [6] provides 
a development in which he shows that MPSS (= constant returns to scale) is achieved 
by any DMU o if and only if 0* = 1. To see what this means, we may consider a DMU o 
with input-output vector (X o, Yo) which is not at MPSS. In the sense defined by 
Banker, this means that it is possible to move from (X o, Yo) to a new (aX o,/3Yo) 

= (2o,  17o.) with a,/3 > 0 and/3 > a, where J(o ~> ]~/--1 X/)k/and I7o ~< ~/'=1 Y/~'j 
for some X i >1 0, 1 = E/n_- IX]. In other words, (X  o, Yo)is not MPSS if it is possible to 
(i) achieve a more than proportionate increment in all components of Yo when X o is 
augmented (increasing returns to scale), or (ii) achieve a less than proportionate 
decrement in all components of Yo when X o is decremented (decreasing returns to 
scale). MPSS is achieved only when neither (i) nor (ii) is possible (constant returns to 
scale). 

We proceed via a different route than the one utilized by Banker in [6] in order 
to tie these conditions to the ones specified in (25). We therefore first prove: 

Lemma 1 ." 

If min 0 --= 0* = 1 in (7) then, Part One, min 0 = 0* = 1 in (23) and, Part Two, 
r 

/% = 0 in (24). 

Proof.- 

Assume 0* = 1. 

Part One: Since XJo = 1 and 0 = 1 and all other Xj = 0 satisfies the constraints 
in (23), we must always have 0* ~< 1. Suppose we could have an optimal solution 
X~., j = 1, . . . ,n, for (23) with ~i* < 1. This would also satisfy (7) which differs from 
(23) only because the latter contains the added constraint E~= i X/=  1. Hence the 
supposition that we could have 0* < 1 in (23) would contradict the optimality 
assumed for 0* = 1 in (7). This proves Part One. 

Part Two: Because (24), the dual to (23), contains one more variable than the 
dual to (7), we must have 
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S S 

Z [.t~Yro -/20 >~ Z It*Yro" (26) 
r = l  r = l  

By virtue of the duality theory of linear programming and the preceding result, we 
have equality holding in the above expression. The expression on the right shows that 
an optimum is available for (24) with /20 = 0. Furthermore, no other optimum can 
have /20 :/: 0 when 0* = 1. To see that this is so, observe that/20 serves as a dual 

^'/t ~" 
evaluator for 27= 1 X/= 1 in (23). Thus,/20 :~ 0 means that we could obtain an im- 
provement in the optimal value of the functional by replacing this constraint with 
2/n 1 X/ 1 + 6 for some 8 r 0. In particular, if/20 < 0 then choosing 6 < 0 would 
decrease the optimal functional value. Similarly, the choice ~ > 0 would decrease the 
optimal functional value if/2o > 0. Using duality theory again, the indicated reductions 
would yield a new 0* < 1, and because these solutions to the primal in (23) were 
already available for (7), we would again have a contradiction with 0* = 1, the initially 
assumed optimum for (7). Q.E.D. 

* O* O* Next we start with (24) and show that/'to = 0 implies = = 1 

Lemma 2. 

-It 
If/20 = 0 is part of an optimum for (24) then 0* = 0* = 1, where 0* is optimal 

for (23) and 0* is optimal for (7). 

Proof.- 

An optimum with/20 = 0 will also be optimal for the dual to (7) so that, via 
the dual theorem of linear programming, 0* = 0". 

Now consider the following new problem: 

min 0 - e s [  + s r 
i = 1  r = l  

subject to 

0 X i o  

n 
- -  

tl 1 
/'=1 
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YrO = Yq~/  - si 
/=i 

j = l  

X, s i ,  "~*r >~ O, (27) 

and observe that this admits, but  does not  require O = 1. Now suppose we could have 
0"* < 0 * where the latter is optimal for (23). This would mean that we could replace 
the last constraint in (23) with O* = 2;~= 1 ~j and achieve a reduction in 0* which im- 
plies that ~t o > 0 for the corresponding dual evaluator in (24). Similarly, if O* > 0* 
we would have/a o < 0. The only other possibility is 0"* "* = 0 , in which case we would 
have 0"* is optimal for (23) and hence is part of  an optimal solution satisfying E.n 1 ~" = 1. 

i = 
This can only be true if 0"* = 1 with/1 o = 0 in (23). Combining this with our first 
paragraph in this proof  we then have O* = 0* = 0* = 1 as the only result which is con- 
sistent with #o = 0 in (24). Q.E.D. 

As in other parts of  DEA,* we have a variety of  alternative characterizations 
which we list in the following: 

Theorem: MPSS has been achieved when any of the following are opt imal  

in (7) in (23) or (24) 

O* = 1 or L X*. = 1 O* = 1 or /a o = 0 
1 

/ = 1  

The projection of  A onto B in fig. 2(a) assumed that formulae (13) and (14) 
were applied to optimal solutions to (23). However, there is no trouble in accommo- 
dating this to the preceding analysis, since this can be accomplished in the manner 
suggested by Banker, viz., 

*See the discussion on p. 432 in [41]. 
eThis broken line is sometimes referred to as the 'Reference Set'. Byrnes, F~re and Grosskopf [22] 
refer to it as a 'Reference Technology'. 
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O*X 0 - s-* Yo + s+* 

e T ~* ' e T 7k* 
(28) 

= X* with, as Banker [6] where ~* is the optimal solution vector to (7) and eTa, * ~ =  1 /' 
notes, 

gl 

~,*< 
17 

j = l  

1 , ( 2 9 )  

according to whether returns to scale are increasing, constant, or decreasing, respective- 
ly. As the above formulae indicate, however, achievement of MPSS with constant 
returns to scale does not guarantee achievement of 100% efficiency. The latter also 
requires s § = s-* = 0, which is automatically achieved in the CCR formulation. 

These economies of scale are local, with changes occurring as movement is 
effected from one facet to another in the course of DEA analysis (see the third paper 
in the following series). In the kinds of DEA analyses heretofore available, one can 
only obtain 'concave' production functions (see the basic paper [36] for proofs). A 
production function possessing convex portions with large local economies of scale 
would thus be totally missed." Needed methods for uncovering the presence of such 
possibilities are suggested in [36], along with ways of showing some DMUs to be 
efficient that would otherwise be rated as inefficient. 

Of fundamental importance in applications is the choice of DMUs along with 
the inputs and outputs to be used in evaluating their activities. Most uses of mathe- 
matical programming are for 'planning' managerial activity where the inputs and 
outputs to be considered are confined, by and large, to those which can be varied at 
the discretion of management. DEA introduces 'control' features revolving around 
actual accomplishments in which some of the inputs (and perhaps some of the out- 
puts) are at least partly non-discretionary. 

Inputs or outputs are said to be non-discretionary when their values are not 
subject to management control. * Even when inputs are wholly non-discretionary, they 
may nevertheless need to be considered in arriving at relative efficiency evaluations. 
In the first paper that follows, for example, the effects of possibly differing weather 

*Even an isotone function can have such portions. See [36]. 
*Banker and Morey [14] refer to the values of these variables as being determined exogenously. 
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conditions on the sortie rates of fighter aircraft needs to be taken into account in 
evaluating the maintenance efficiencies at different bases. This may be done in various 
ways in a DEA analysis, of course, but the important point is that such non-discretion- 
ary inputs should be included whenever they are believed to have significant effects. 

One way to approach this problem is provided by the following model due to 
Banker and Morey [15]. Using D and N to represent the index sets for Discretionary 
and Non-Discretionary inputs, respectively, this model replaces (22) with 

min 0 - e s7 + 
l E D  r 

subject to 

For i E D" 
n 

Oxio = ~ xi/X j + s7 
/=1  

For i E N:  

F o r r =  1 , . . .  ,s. 

X i o  = 

n 

%.x/+ s 
i=1 

n 

Yro = ~ Yr/X i 
/=1 

- -  S + 

n 

i = ~-~ X/ 
/=1 

xj, s;, s; >1 o. (30) 

Particular attention might be called to the fact that the slacks for i E N are 
not represented in the functional. That is, they are treated in the same manner as the 
slacks in ordinary linear programming. 

To bring all this more clearly into view, we formulate the dual to (30) for 
direct comparison with (24) as follows: 
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m a x  ~ ldrYro -- ~ 
r = 1 i E N  

v.Xio - I~ ~ 

subject to 

- Z  xi/- o - vix.: <<, o 
r = 1 i E N  l E D  

vtX io = 1 
i ~ D  

Pr ~> e > 0 for r = l , . . . , s  

v. ~> e > 0 for i E D  
t 

v/ >~ 0 for i E N .  (31) 

Note that  e, the non-Archimedean constant,  continues to be used for all outputs,  as 

before.  It also continues to apply for the inputs that are discretionary but  not  for the 
inputs that are non-discretionary. The latter are constrained only to non-negative 
ranges so that values o f  v* = 0 are possible for i E N - a condit ion which is some- 
times referred to as corresponding to the assumption of  'free disposability' in the 
literature o f  economics.* This assumption does not apply to the non-Archimedean 
terms, however,  which are assumed to have 'some (positive) value' that needs to be 
considered in their use or non-use. 

For  purposes of  further interpretat ion,  we now reverse the transformations in 
(3) and apply them to (23). This gives 

*This term, which seems to have originated with T. Koopmans [61], is employed extensively by 
. . . ! R. F~ire and his associates who also refer to it as strong disposability . See [221 and the references 

cited therein. 



88 A. Charnes, W.W. Cooper, Data envelopment analysis 

m a x  

s 

Z - Z 
r = 1 i ~ N  

OiXio -- tl 0 

Z OiXi 0 
l E D  

subject to 

2 UrYrj -- Z 
r :  1 i ~ N  

vixi/ - u o 

Z O.X. .  t t] 
i ~ D  

<~ 1 

v i ) O ,  i E N ;  

Oi U r 
/> e > 0, l E D ;  ~> e > 0, r =1 . . . . .  s. 

~. viX,o Z viXio 
i E D i E  D ( 3 2 )  

Using the terminology of [26], Banker and Morey [14] interpret the objective in (32) 
as being directed to maximizing the 'net virtual surplus' - - i.e., the surplus of outputs 
minus fixed inputs [see (16)-(18)] .  In a more complete characterization, it maximizes 
the rate of net virtual surplus per unit discretionary input utilized. 

Banker and Morey [14] show how to extend this to the case of non-discre- 
tionary outputs and how to decompose the resulting efficiencies into separately 
identifiable scale and technical efficiencies.* We shall not pursue these topics further 
except to note that extensions to partially controllable inputs and outputs ~ require 
the introduction of additional constraints while the question of simultaneous treat- 
ment of non-discretionary inputs and outputs remains open. Even when some inputs 
are completely non-discretionary, as in the treatments from Banker and Morey de- 

*Banker and Maindiratta [13] show how to extend this analysis to the case of 'price r or 'allocative 
efficiencies' which take account of prices charged for different inputs and received for different 
outputs. 

el.e., outputs or inputs which are discretionary only within certain ranges. 
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scribed above, one might argue that relative efficiency ratings should be secured 
only from DMUs with non-discretionary inputs of comparable magnitudes to those 
for DMU o. This, too, might be handled by adding constraints while retaining the usual 
objective function. See [36] for suggested treatments of these topics. 

5. H i s to ry  and  re la ted  w o r k  

The first publication of Data Envelopment Analysis appeared in 1978 in the 
article [41] which the authors published jointly with E. Rhodes ~' (see also [42], [69] 
and [21]). This work had been initiated three years earlier in collaborative research 
with E. Rhodes to develop more adequate methods of evaluating some of the govern- 
ment supported programs for disadvantaged children that were then being undertaken 
in public schools. The applications to Program Follow Through, a large-scale experi- 
ment in U.S. public school education, which had been used to guide the development 
of DEA, were published jointly with E. Rhodes in [40]. They also appear elsewhere 
in fuller detail (see the doctoral thesis of E. Rhodes [69]). 

As might be expected, it is possible to relate DEA to on-going developments 
by others. An indication of DEA's relation to some of this other work may form a 
fitting close to this preface. Only a brief synopsis will be given, however, and interested 
persons should consult some of the references we cite for further bibliographical 
detail. 

Leaving aside topics like fractional and linear programming and similar pre- 
cursors published in the literature of operations research and management science, 
we can locate two strands of research in the literature of economics that are related 
to DEA. One strand originates in the publications of R.W. Shepard - [74, 75 ] - deal- 
ing with relations of 'duality'* between cost and production functions. The other 
strand originated in the publication [55] by M.J. Farrell, t which was concerned with 
developing an improved alternative to the customary measures of 'productivity'. t t  

Although Farrell's work was heavily empirical from the start, the same was not 
true for Shephard whose work was almost exclusively concerned with formalizing 
and rigorously establishing the relations he was studying. This initial emphasis has 
been continued in subsequent work. Afriat in [1], for instance, has continued to 

* A still earlier, synoptic treatment of DEA was published in [31]. 
* We have elsewhere suggested that these might better be called 'transform relations r. See [43]. 
t Farrell cites Debreu [511 as a source of some of his ideas. 
ttFarrell subsequently expanded this work to considerations of 'returns to scale t efficiency in his 

work with Fieldhouse [56 ]. 
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emphasize formal analyses in the tradition of Shephard,* although Hanoch and Roths- 
child [60] and Varian [77], Diewert and Parkan [53] and others have begun to turn 
this work in other directions, as the latter authors have begun to provide formulations 
which can be applied to empirical data to see whether cost, profit and production 
function structures are satisfied as postulated in economics. 

Although it can also be related to these kinds of undertakings, ~ Farrell's work 
was directed mainly toward developing a summary measure of the efficiency of the 
behavior of different economic entities. This tradition has continued into the present, 
as represented in the work of  R. F~re and his associates (see [23] and [54]), along with 
Lovell and Schmidt [67] and others. F~re, in particular, has sought to build on Farrell's 
classifications into technical, scale and allocative (or price) efficiencies in order to de- 
vise a scalar measure that can be decomposed for identifying each of these efficiencies 
separately - as well as jointly - in one measure of 'overall' efficiency. Continuing 
in the tradition initiated by Farrell, a great deal of this work has been rich in empirical 
use as well as theoretical development and interpretation. 

Almost all of the work in 'Farrell Efficiency' has been restricted to single 
output situations. Farrell, as well as others working in the tradition he initiated, de- 
scribe what is to be done in extending their methods for use in the case of multiple 
outputs (see Farrell [55], p. 257). They do not, however, supply what is needed in 
the way of precise mathematical details with accompanying definitions and inter- 
pretations. 

Some of the many new elements (and pitfalls) that enter into extensions to 
the multi-product case may be indicated by turning to yet another tradition in the 
economics literature. Almost all of classical 'theory of the firm' literature is heavily 
oriented to the single output case. In a recently published book [64], K. Laitinen 
seeks to extend that theory to the multi-product case in a relatively straightforward 
manner (i.e. with traditional calculus formulations and analyses). This extension is 
not so easy to come by, however, as can be seen from Laitinen's attempted exten- 
sions. Witness, for instance, his definition of the isoquant for any specified output 
vector as representing all combinations of inputs which are just sufficient to produce 
this output vector, t 

Although satisfactory for the single output case, t t  this definition fails to allow 
for the possible presence of output inefficiencies (and related difficulties) which are 
encountered when moving from the single to the multiple output case (see table 8 

* See McFadden [681 and Diewert [52]. 
See the discussion on p. 255 ff. in [43]. 

t See p. 16 ft. in [64]. 
NAt least in situations where the reasoning is from actually observed outputs (i.e. technically 

achievable outputs), as in DEA, since otherwise one must assume that the chosen (or assumed) 
output levels can actually be produced. 
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in the immediately following paper for an example involving output (as well as input) 
inefficiencies). The relation between outputs and between inputs, as well as between 
outputs and inputs, all need to be simultaneously considered. Especially when actual 
applications are to be undertaken, this can be a complicated and cumbersome task 
which DEA avoids by proceeding non-parametrically. 

The use of Pareto optimality to define and characterize DEA efficiency was 
also a novel element in this literature, as was the introduction of non-Archimedean 
terms and the slack variables with which they are associated. Turning again to Laitinen 
[64.] we can observe some of the problems that occur when proceeding without 
attention to these matters. Laitinen (along with others) uses Shephard's 'distance 
function'* to define the production function in terms of 'unit input distance'. That 
is, the level line intersecting the production surface is defined as the input combina- 
tions at unit distance from the origin which will yield the specified output vector 
(Laitinen [64, pp. 16-17] ) .  This is not satisfactory for defining the corresponding 
efficiency surface or production function, however, especially when applications to 
actual data are involved, since the resulting characterization can confuse frontier 
properties with efficiency, as was noted in our discussion of fig. 1.4 

The problem of distinguishing between frontier and efficiency properties 
has been present from the start in the literature we have been citing. There is reason 
to suppose that Shephard was aware of the problem although he never dealt with it 
in a specific manner. Farrell dealt with it by introducing 'points at infinity' as part 
of the production possibility set, but he was unable to give this concept operational 
form in the models he was using. Fare and Lovell in [54] discuss this in detail, where 
they attempt to provide a single real number efficiency measure which they refer to 
as 'Russell Measure'. F~ire with others has continued along this route in a manner 
which generally requires multiple linear programs to obtain such a measure (see [22]). 

As already noted, DEA uses a different approach by introducing non-Archi- 
medean elements that maximize the slack without disturbing the value of 0. As a re- 
suit, an inefficient vector cannot be a member of an optimum basis and the solution 
of only one linear programming problem provides all that is required for technical 
and returns-to-scale efficiency characterizations. Workir.g with R. Thrall, the authors 
of this preface have also shown how to obtain a transformed problem that does not 
require any non-Archimedean elements although, in general, it is computationally 
more efficient to work with the direct DEA models and algorithms that we have been 
describing (see [46]). 

Another and probably more striking difference is that DEA is 'empirically 
based'. The way in which this differs from other approaches is best illustrated by 
contrast with Laitinen's 'theory based' approach to testing and estimation. Using 

*Really a 'gauge function' in the sense of Brunn, Minkowski and Fenchel [58]. 
~See also the discussion in Banker, Charnes and Cooper [9]. 
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data generated from artificially selected (known) functions, Laitinen was unable to 
do anything very much with the troubles he encountered. In particular, his theory 
based approach left him unable to identify the sources of his troubles or how, and 
in what manner, they might be repaired in any specific manner. He was able only to 
conjecture possible problems with modeling or statistical specification which would 
require another fresh approach without any guarantee of repair. DEA, on the other 
hand, turns attention to each observation and, as illustrated in the second of the 
following papers, it provides operationally implementable formulae directed to cor- 
recting the troubles identified for each such point relative to the ensemble of observa- 
tions and the model used to identify these problems. 

In a sense, DEA explicitly joins together the two strands of work initiated by 
Farrell and Shephard. It also goes further by providing machinery not only for testing 
and estimation, but also for modifying observational data to produce what is re- 
quired. Thus, DEA provides an 'empirically based' theory of production and re- 
lated behaviors that can be used for control and correction as well as for prediction 
and understanding.* As noted in the second of the following three papers, DEA 
therefore provides a new method of  estimation which can be used as an alternative 
to customary statistical regressions and, of course, combinations of the two can 
yield additional new alternatives. 

Still further possibilities have been brought into view via the concurrent re- 
search reported in [36]. One aspect of this research provided the following as a new 
DEA form with ties to 'goal programming' and the operationally implementable 
form to test for Pareto optimality that is given in chapter IX of [28] :~ 

r = 1 i = 1 

subject to 

~ "  _ S § L Yrj  ~ /  r = Yro  
] = 1 

*See Charnes, Cooper, Learner and Phillips 137] for further discussion. 
~The material in this chapter was originally presented at the 1958 Econometric Society meetings 

in Chicago. See 136] for further details. 
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n 

Z x x  +,,- 
Zl 1 = X io  

j = l  

n 

Z =1 X/ 
j = l  

(33) 

with all variables constrained to be non-negative just as in (22). As in chapter IX of 
[28], we have Pareto efficiency for (Yo, Xo) - with components Yro, xio,  r = 1 . . . .  , s; 

i = 1 . . . .  , m - if and only if the optimal value of the functional is zero in the above 
model. Furthermore, if the test for Pareto efficiency is not passed then the non-zero 
slacks in the optimal solution show where (and in what amounts) the needed adjust- 
ments may be made. 

This identification of  efficiency estimation with goal programming allows 
us to close this preface by referring to yet  another strain of work initiated by Aigner 
and Chu [3], which is concerned with 'frontier es t imat ion ' in  a still different manner 
than the other work we have been citing. Using an explicitly assumed Cobb-Douglas  
form* for the production function, Aigner and Chu in [3] use a goal programming 
approach with only one-sided deviations permitted (as described in [35] and [28]) 
to obtain the relevant parameter values from observational data. 

The original work by Aigner and Chu assumed a determinsitic frontier. Aigner, 
Amemiya and Poirier [2], Aigner, Lovell and Schmidt [4], and others, have extended 
this to the case of 'stochastic frontiers' - i.e. frontiers which reflect the behavior of 
stochastic elements that can affect the input and output  behaviors. 

Forsund, Lovell and Schmidt in [59] describe this kind of work in a manner 
that is still relatively up to date. Incomplete and confined to the case of single outputs, 
this work is not  usable for the multiple output  situations that are characteristic of 
public enterprises. Moreover, DEA has again introduced new directions of work in 
the form of statistical distributions of  DEA efficiency measures which are not covered 
in this other work. ~ In particular, research conducted by the authors in collaboration 
with E. Rhodes has resulted in a canonical form for analyses of such statistical distri- 

*This was the form also assumed by Farrell in [551 to check and interpret the results he had 
already secured in the illustrative empirical application lie provides on p. 275 ff. See also Farrell 
and Fieldhouse [561 p. 258. 

~Farrell and Fieldhouse in [561 p. 263 report their use of plots of efficiency measures to study 
the effects of data groupings, but this work is differently motivated and directed than the treat- 
ment of statistical distributions of the efficiency measures per se. 
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butions of the efficiencies obtained from a collection of DMUs. As reported in [30], 
this type of analysis forms a part of what is required to obtain comparative evaluations 
of the efficiency of different 'programs' after the effects of 'managerial inefficiencies' 
have been identified and corrected. The ability to distinguish between 'managerial 
efficiency' and 'program efficiency', we might also add, depends on the ability to 
make adjustments such as DEA makes possible by means of formulae such as (13) and 
(14) and, as indicated in [40] and [41], still other refinements and extensions are also 
possible. 

This distinction between 'managerial' and 'program' efficiency also provides a 
new type of efficiency (or inefficiency) which should be added to the tri-partite 
collection introduced by Farretl in [55]: (i) technical efficiency, (ii) scale efficiency 
and (iii) price or allocative efficiency. Only the last named member of this set has not 
been dealt with in this preface.* Banker and Maindiratta [13] do deal with this via a 
DEA approach which extends the work of Varian [77] on this topic. Our own belief 
is that goal programming offers a better approach in many cases, not only because of 
the multiple objective character of most not-for-profit entities, but also because of 
the impossibility of pricing many of their outputs f  As noted by Bowlin [20], the 
joining of DEA and goal programming effected in [36] makes it possible to utilize 
the coefficients obtained from DEA as an element of the goal programming models 
used. See also Schinnar [72] for a use of DEA to obtain 'efficient coefficients' for use 
in input-output analyses of Leontieff type. 

A great variety of additional possibilities for research as well as applications are 
open for attention. The papers that follow should help to push matters along and also 
indicate further opportunities for both research and use of DEA and like approaches. 

*Farrell expressed grave reservations about any results that might be secured from studying price 
efficiency, even in private sector applications. 

~Cf., e.g. the aircraft sorties that constitute one of the outputs in the paper that follows. 


