Awserr - A Propositional Logic
VSt with Explicit Fixed Points

Abstract. This paper studies a propositional logic which is obtained by inter-
preting implication as formal provabilily. It is also the logic of finite irreflexive
Kripke Models. _

A Kripke Model completeness theorem is given and several completeness theorems
for interpretations into Provability Logic and Peano Arithmetic.

0.0 The strange tale of the Formalist who lost Modus Ponens

Imagine a formalist. He has become convinced that any philosophy
of mathematics worth being taken seriously, must explain the meaning
of the logical constants. Yet he clings to the tenets of formalism. He
sets out to produce a hybrid: formal semantics.

Consider the translation s from %, the language of Propositional
Logic (PL), to #, the language of Modal Propositional Logic (MPL).
It is given by:

2> Lpg

(4 A B)yr>*(A* AB*)
(Av B)-*(A*v B*)
(A~ B)—>*[1(4A*—B%).

Our formalist stipulates: the formalistic meaning of C is to be the
classical meaning of C%, where [] is interpreted as provability in some
fixed formal system. For definiteness he restricts his attention to Peano
Arithmetic (PA4). An interpretation of % into %p, is just fo¥, where
J is some interpretation for Provability Logic (PrL) of ¥ into Zp,
(for more details see §5). Formal Validity will be defined as: 4 is formally
valid iff for every interpretation g PA F AY. The formalist proceeds to
formalize. He looks for a logic — even before conception he calls it:
Formal Propositional Logic (FPL) — satisfying: Fgppr A iff 4 is for-
mally - valid. By Solovay’s Completeness Theorem for Provability
Logic (PrL), this is equivalent to:  tgpy 4 iff Fp,47.

The logic he finds turns out to have Full Explicit Fixed Points, i.e.
for any A(p,q) there is a B(q) s.t. B(q)tgprA(B(4), g)-

For this luxury however a price has to be paid. The Fixed Point
Theorem readily yields an explicit Liar Sentence. Yet 1 should not be
derivable. So one of the steps in the usual derivation of . must be blocked.
It turns out to be Modus Ponens. The reason is that PA nont Prov A=A
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in general, e.g. PA nonk Prov "0 = 1"—0 = 1. This, of course, is pért of
Godel’s Second Incompleteness Theorem. '

After some soulsearching our formalist decides to follow the tortoize
and repudiate Modus Ponens, for — he argues — what can one expect,
to have a formal proof that A*->B* is no evidence whatsoever that if
A¥ is true, then B is true.

Only lately he is having some trouble expressing the thought ..

0.1 Motivation

A more serious reason than speculation about strange formalists to
be interested in logics like FPL is the study of notions like Prov, formal
provability as coded in P4, which naturally occur in the metamathematics
of formal theories.

- 0,2 Contents

In the following I will provide a formalization of FPL and prove
the associated completeness theorem.

The notion of interpretation described in 0. 0 is not the only one which
yields FPL and possibly not even the most interesting one. FPL turns
out to be also the logic of X{-sentences of PA by interpreting the atoms
ag Xl-sentences, L as 0 = 1 and treating conjunction, dlS]unctwn and
implication as before.

§1 contains the Kripke Model theoretic prellmlnarles for the de-
velopment, of FPL. §2 gives FPL plus associated Kripke Model comple-
teness theorem. §3 has the basic facts about FPL. §4 studies an extension
of FPL which is complete for a certain infinite matrix. §56 finally gives
three interpretations into PA vlus associated completeness theorems.

0.3 ‘Some partly philesophical remarks

0.3.1. .On a certain equation. Let IPL be Intuitionistic Logic. We
have: ~ '
IrL  FPL
8, PrL

The reason is that # is a Godel translation for IPL in 8,. We have:

b A i kg AT
as well as: ]
l"'11"PLA- lff l'Pr(LTA'#‘

The analogy gains substance when one considers that the axioms of

' 04
8, are valid for true, real or rigid provabiﬁty. The crucial rule —Ei]i .

which is blocked in PrL, is justified as follows: suppose we have a proof
p of A, then A, or else p would not be a irue proof of A. This argument
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suggests that what a proof is, cannot be fixed completely by a set of
‘formal’ properties; there must be at least some semantical properties.
0.3.2 Liar Paradox and Provabilily Parados. With the usual deriv-

L
ation of the Liar Paradox in IPL from the postulated rules ~_—_!z (1)

L
and % (2) corresponds via  the 8, derivation of the (true) Provability

G O "6
; el {(3) and a
there is an explicit sentence L satisfying (1) and (2), likewise in PrL there
is an explicit sentence G satisfying (3) and (4). In both cases paradox

- A
is blocked by failure of Modus Ponens resp. —a—-—

Paradox from the postulated rules

(4). In FPL

¢.4  Prerequisites

§1-4 are quite selfcontained. The reader only needs a basic under-
standing of Kripke Models for IPL, see e.g. [4] or [10]. §5 requires an
understanding of the main results of PrL see e.g. [2], [9], [7], [8].

0.5 Acknowledgements

The use of the work of the pioneers of Provability Logic should be
evident. ‘ :

For the development.of the Kripke Model theory of §1, [6] has been
my guide. §4 is related to [3]. The present work seems a companion to
[5], 2] where the relation between PrL and S is studied.

1. Basic Propositional Legic
1.1. Langnége

Let P: = {p,, p1, ...} be the set of propositional variables. % is the
smallest set s.t.:

Pc%; 1e¥; A,BeL=>(AAB), (AVB), (A->B)eZ.
1.2 The Theory

* The theory Basie Propositional Logic BPL is given by the following
groups of ruleschemes:

4 B (AAB) (AAB)
§ I: I —,—— 2
group A @~ B) AH 1 B
A B \E 1
(Av B) (Av B) A
T (4—B)(B—~0)
(4->0C)

(Transitivity)
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(4A—>B)(4A—~>0)

ALE [@—>(BA0))
(formalized AI) -

: (4—-C)(B—~>0)
vEi ((dv B)>0)
(formalized v E)

group 1I: -1 [4] vE [A4] [B]
]-3 (4Av B) O’ 0
(A—->B) c

A. Visser

A rulescheme is considered here as a set of rules. A rule always con-

tains individual elements of %, e.g. i 2 T rule and
(PoA 1)
. A B
(AAB)

Pq:ﬁzlh
(PoA D1)

We may add to our system a set of additional rules R of the form

Ay A,
B
means: A is derivable from I', with the rules of BPL-+R.

We say:

Frd  for: @1y A
' v+4  for: I't,A
kA for: @ +,4
AAdbrpyB for: I'y A tgB and I'y B g4
A A B for: A 4t,gB -
A 4B for: At B
AA4+B for: 4 4t,,B

1.3 A few basic facts about BPL

. Such rules will be called normal rules. When I'c .2, I'ky A

1.3.1 Demved and underived schemes. The following are easily seen

t0 be derived schemes:

(A%(B/\ 0) (A->(BA0O)

AR (A—>B) (4—0)

. (4A-B) (A—=0)
Vit (A—=(Bv0)} (4->(Bv0))
ST ((A/\ B)~—>O’)

(A—-—>(\B->0))
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The following are not derived ruleschemes as can be seen from the
completeness theorem (1.10):

LR A#g»B
(or Modus Ponens)

(A—~(B~>C))
~B1 ((4 A B)y—C)

1.3.2 Substitution of equivalents. Let a propositional context C [ ]
be defined as usual. The following can be proved by easy inductions:

iy S8E i AArpgB=>C[A] -ty C[B]
(Substitution of ' '
Equivalents)

i) SEf : A«BFC[A]«~C[B]

(formalized S E)
SE justifies us to be careless with brackets, so we will be.

1.4 Models

A (Kripke) Model K is a structure (W, <,f> where W is a set of
“worlds”; < a binary transitive relation on W; f a function from W in
the subsets of P s.t. w <« w' =f(w) < f(w').

1.4.1 Satisfaction. Let K =W, <«,f> be a Model. kp = Wx.? is
the smallest relation s.t.:
— P ef(w)=w lFgp;
— whgAand whkyB=>wlhz AAB
— wlgAdor wli—KB»wl!-KAvB
— (V' a4 w wikg A=w IFKB)»wIFK(A——>B)
Define further for I' ¢ Z:
Tihgd:eVw e Ww kgl >w lbg4).
We write K+ 4 or IFgA for @ lrgA.

142 Faor. Tor all AcZ and w,w' eW: wlhgd and o' q w
=>w lFgd.
1.4.3 Closure under rules. We say that K is closed under a rule of
Ay A
the form ——}—B——"i if {4,, ..., 4} FB.
Let R be a set of normal rules. We say that K is closed under R if
K is closed under every element of R.

Define: I'lFgd: <« for every R-closed K I’I}-KA
‘We have:

1.4.4 SoUNDNESS THEOREM. I bpd =I'irgd.
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Proor. Routine. 7

As a preliminary for the completeness theorem we will give a connection
between ‘formalized’ and ‘unformalized’.

1.5 DzuFNITION. Let I' € %. Define: R, = {élB———;AE T Fp(dya
A ...Ak)——>B}-
1.5.1 Facr. R cR;,.
Ay, 4,
PR!OOF- If e ER then I""R(Al/\ .;-Ak)—?B- D

B

1.6 THEOREM. For ol I'c %; keN; 4,...4,, BeZ: I'rz{4;n
A"'Ak)")B@FSAI"'Ak }_RB . )

B
Proor. “="., By definition.
“«?, By induction on the length of the proof.
Case i). The length of the proof is 0, io.w. Bel, A,... 4;. Trivial.
' B, ...B,

Case ii). The last rule applied is of group T or of R,. Say it is R =

We have:
IN4,.. Ayt By, ... Ty A ... Ay by B,
By Induction Hypothesis and AIf:
Tl (AN oo 4)—>(ByA ... By).
When R eR, we have by definition:
IFp (BiA ... By)—C. '
When R is ¢f group I this follows by AE and —1I.
By Tr we find:
Tg(4A . 4,)—0.

.Case iii). The last rule applied is —1. We have:
T,A;...A g, B>C from I, 4;...4;, B0

By Induction Hypothesis:

I (Ain ... 4,AB)-C.

Using the derived rule —If we find:
T'rg (444 ... 4,)~(B-0).

Case iv). The last rule applied is vE. We have I', 4, ... 4; tg, D from
Ay . A, b, BvC; I, 4;,...4,, Bt D; I,4,, ceey Apy
Otg,D.

By Induction Hypothesis:
I'Fp(A1A A+ (Bv 0); I'bg{din . AgnB)—D;
g (4.4 .. 447 C)>D. ‘

By vE{f we find: :
Ibg ((AgA . A, AB)V (AyA . A4 Q))>D.
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One easily shows: :
Iig ((Ain o A)A(BAO)>{(A1A oo AuaB)v (1A .. AL A C)).
So by Tr:
Iig((AgA . A)A(BY C))=D
Using: , ‘ ‘
‘ (Ain oo A)—>(A A o A)(AA .. A)>Bv O

v I
(A1 A o A —{(ArA .. A A (B Q) :
we find using Tr again:
I'Fg(AdyA . AL D. O

1.7. DeEpiniTioN. I' = is called R-prime if whenever I'Fx A we
have 4 € I'and whenever I" Fy Av B we have I’ I—n A or I' bz B. Moreover
I must be consistent.

1.8 Facr. If I"nontg A then there is an R-prime I =2 I 8.t I" nontg A.
Proor.” Routine. |

1.9 THEOREM. If I' nontg A then there is an R-closed model K = (W, <,
> st KI-I and K nonl- A.

Proor. Take W: = {[4]|4 = I, 4 is R-prime}, where [4] stands for
(B, A>. We use [4] rather than 4 itself to avoid confusion between
Alr A as a world and 4 g 4 as a theory.

[4] «[4']: <4’ is R, prime.
J([4): =PnA.
Note that: ‘
[4] <[4]=4 = &' =f([4]) € f([4D.
It is easy to verify that < is transitive so K is a genuine model.

Claim. {B|[4]g B} = 4.

The proof is by induction on the length of B. The only problemame case

i -~
: D
Suppose (D—E) e 4. Then 5 eR,.

So for every R,-prime 4’: D e 4’=F ¢ A’'. By Induction Hypothesis:
for every [4'] > [A]([4'1Irg D=[4"] g B), ie. [4] kg (D—E).

Now suppose (D—E) ¢ 4, then by theorem 1.6 4, D |~ r, . Extend.
4u{D}toan R,-prime A’ st A"no'n!—RAE We ha,ve [4'] > [4]. By In-
duction Hypothesis:

[4TFg D and [A4' ]nonli—KE So [4] nonltg (D> E).
It follows easily that:
— K is R-closed
— K IF I, because each 42 I"
— K nonlk A, because there is an R-prime 4 s.t. A2 Mand AéAd4. [
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1.10 CoMPLETENESS THEOREM. I'tp A < I'IFzA.
Proor. Combine 1.4.4 and 1.9. O

1.11 REMARK. By inspection of the proof, we can see that we have
the completeness theorem also for the class of models K = (W, «,f)
sbw aw Sw=>w =w'.

112 Cororrary: Completeness Theorem for Intuitionistic Pro-
positional Logic. Let Intuitionistic Propositional Logic (IPL) be BPL
+—>EB. Then: I'tFprAd<for all reflevive K: I'lbx A<for all K where
< 18 a weak partial order I'lFx A.

PrOOF. “=" ig clear.
“s=?, Tt is sufficient to show that the model constructed in
1.9 is reflexive when R = —E. We have to show that any —E-prime
A 2 I' is R;-prime. But that is immediate using —E. 0

1.13 LuMMA. Suppose I'nont A, I' finite. Then there is a finite K,
=Wy, dofor; Where w <qw’ < w=>w=w's.bt. K, I"and K,nonlk 4.

Proor. Consider the model K = (W, «,f) constructed in 1.9 s.t.
K- I'and K nonlt A (for R= @). Let A4 be the set of subformulas of the
elements of I'U{4}. (Each formula is a subformula of itself).

Define:

— w: ={Bed|wlg B}

— Wo: = {w|we W}

— fora,beW,: a <yb: acbandif (B~ F)eca,Ecbthen Feb
- fo(a') =anpP

It is easy to see that K, is a model, that K, is finite and that a <,
& <ya=a=a'.

Claim. for every Be A: wlx B li—K B. The proof is by induction
on the length of B. The only problematic case is —.

Let B =(E->Fye . '

“=7”  Suppose w g (B—~F)and a 1>, and & g, E. There that o = .
By Induction Hypothesis: u iz B, hence Feu ie. Hea. Moreover
(BE—~>F)ed, a b i, s0 F ca. Hence % lz F. Again by Induction Hypo-
thesis: 4 I &, F ie. g, B.

e ? Suppose wll—K E->F, w > w, w' kg B. Clearly @’ b 4w and by
Induetmn Hypothesis: &’ Iz H, hence @’ ii—Ko F, 0

1.14 Cororrary. If I'is fmzte we hwpe
(i) Ik A<sfor all finite models K: I'lkx A
() I'bipp A<for oll finite K, where < is a weak pariial order:
Tirg A.

Proor. From 1.13. Observe that the construction in 1.13 preserves
reflexivity. |
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2. Formal Propesitional Logic
2.1 THE SYSTEM FPL. Let Lob’s Rule L be:

where T: = (Ll-—>1). FPL is BPL+ L.

2.2 CoMPLETENESS THEOREM FOB FPL. Let I' € %, I finite, then:
I Fppp, A <>for every finite irreflexive K I'lrx A.

PROOF.

=", We will prove more generally that every K s.t. < is reverse well-
founded (i.e. > is wellfounded) is closed under Z.

Consider w € W. Suppose that every u > w is closed under L and
suppose w kg (T—>4)—>A.

For u > w we have u g (T—A)—>A by monotonicity. # is closed

under L s0 ulFx T—>A. Moreover if ulx T—>A4, then ulrz A because
wlhg (T—>A)—>A4. 8o wlrx A for any v > w.So w g T->A. By bar in-
duction we find that K is closed under L.
“«? Suppose I'nontppy, A. Let K be the model construeted in 1.9 s.t.
K is L-closed and K I I" and K nonl A. Let K, be the model constructed
in 1.13. We have Kyl I"' and K,nonl A. Note that we do not know
whether K, is closed under L. Define K, = {W,, <4, f,’, where a <,
b: «<(a <,b and a # b). By the “=" part of our proof we see that K,
is automatically closed under L. Let A be as in 1.13. We prove:

For all Bed, forall weW: wigB <wlg B<dlg B.

We already have the first equivalence. We prove the second one with
induction on the length of B. The only non trivial case iy again —.

Suppose B = (E—-F) e A.

Iy Iiw g, B—F, then for any W o (4 lhg, B = g, ¥). By Induction
Hypothems for every D> ., (% g, B =it I}-K F). 8o certamly for any
4 > 1 (% Ihg, B = g F). Thus: wil—K (E—>F)

o) If wnonle E->F, ‘then thereisa & > o With (@ IFg, Eandunonl!—x ).

(T—>4)—->A
R

cage i) -~ There is such a % s.t. %  @w. Then % > ;@ and by Induction
Hypothesis i Ik B and i nonlg, F. So @ nonlg H->F.
cage ii) The only such # is & itself. We have:
a) For every @& B> : @ g, B=>0 g F
b) g, B and  nonltg, F and @ >, .

Consider a % > w with % Iz B—>F. It follows that:

) AW

d) @ lg, (B—F) (because (E—~F) e A), w nonltg, B—F
) @@ (by (o) (1)

f) kg, B (by (b), (c))

g) @ g, F ((a), (e), ®)

hy e F (Fed)

# &> w with % kx (E—F) was arbitrary, so:

i) wlhyg (B->F)—F.
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By:
T
BT [ T-F]
B-sF
(T>F)~>(E->F) (B-F)->F
T  A(T—=F)»F
BT T SF
BB
we find:
iy whg E~>F ((i))
Thus
k) 'ibll-KO E—-F ((E»F) ed, (j))
Contradiction.

3. Basic Facts about FPL

3.1 An alternative version of Léb’s Rule

A, Visser

There is an alternative version of Lob’s Rule I’ which is interderivable

with I over BPL. Namely:

[T—4]
'A ?
> I
Proor.
[T—=AT]
- [T>( T>A)(T>4)>4_
_A”. T—>A I
PR T T4
(ToAd)=d ”
T—>A L
7T
A -

3.2 DerFINITION. FC(p,), the set of Formal Coniexts of p, is the

smallest set s.t.
i) i #j=p;eF0(p)
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i) L eFC0(py)
iiiy 4,Be%=(4->B)eF0(p,;) .
iv) A,BeFC(p,)=(AAB),(Av B)eFC(p,).

3.3 EXAMPLE. p,A (P1—>P,) is a formal context of p; and not of p,.

3.4 THEOREM: More‘Substitution of Equivalents. Let C[p,] be a for-
mal context of p,.

) ) A BHCO[A]
+. I Lt

i) SE7: FPL is closed under: CIB]
. . T—>(4«B)
E+f: FPL 1 Do
ii) SETE is closed under GIATo0[B]

ProoF. Induction on proof length or use Completeness Theorem. [J

8.5 Unicity of Fixed Points in Formal Contexts

Suppose C[p,] is a formal context of p,. We have:
i) (A. 'I l_I',FPLG[A] a:nd B "l !-I',FPLG[B]) $A " FF,FPLB'
ii) (Formal Version of i): FPL is closed under:

A-C[A] B~C[B]
AeB
ProoF.
i) T
A  A-Tnon[ T->B]
A N A A4A—-B
F[Z—]— (ex hypothesi) 1ToR
O1E] - SE*+
-—B—(ex hypothesi)
- L
ii) - [T—>(4<B)] SE*f
AoC[A] C[A]<C[B]
Tr
A B o
«C[B] B C’[B]Tr
A«~B ,
AeB L =

3.6 TFixEp PoIiNT THEOREM. For any C[p,] we have:
CLT] Ak gpO[O[ T
Before proving 3.6, first we give two lemmas.

8.6.1. LmmwmA. Zet D[p,] be a formal context of p,. Then:
D[T]H }-FPLD[D[T]].
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Proor. “p7
Trivially we have: D[T]Aktpry ppcT)
so by SE: D[DLT]] Htpirype LT
Thus: D[ T] tppDID T

(Note that we did not use that D[p,] is formal, nor did we use L.)

113 _{”

.
[T=D[T]] D[T]>T

D]D{T]] ‘ T D[T] n
D[T] I’ BB O
D[T]

3.6.2 DeriNiTION. SIC(p,), the set of strictly informal contents of
Py, is the smallest set s.t.

)  »,e8I0(p)
ii) p; does not occur in 4 =4 e SIC(p,)

iiil) D,HE eSIC(p;)=>DAE,Dv EeSI0(p,).
3.6.3 EXAMPLE. (PoA P;)V (p1—>p2) is in 8IC(p,) but not in 8IC(p,).

3.6.4 LmemwmA. For every De%, p,eP, there ¢ o p,,p eP,

Eip] <ppeZ st D=EHp]l<p> and E[p,] {p)ePC(p;) ond
Elpgl <p> € SI0(py).

Proor. Routine. I
3.6.5 ExXAMPLE. Let D = p,v (p;—>p,). For p, choose p,, p; and
Elp:]1 {ps> =PV (P1~>D2). .

. D
3.6.6 LeMMA. If D[p,]e S8IC(p,), then FPL i3 closed under [4]

DLTY

Proor. Induection of D[p,]. (The idea is that the relevant occurrences
of A are only in positive places.) O

Proor or 3.6
“+” By the same reasoning as the “F” part of 3.6.1.
“4” Write C[po] as D[py] {poy, Where D[p,] {p,> is as in 3.6.4.
Apply 8.6.1 to Dp,1<{T>. We find:

O[T] =DLTIKTY Abgp D[CLTIK T

O[o[T]] =D[CLT] KCLTD FgpD|CLTI < TD-
So we have: C[C[T]] Frp O[TI O
3.7 RBeMArk. Of course we do not have wunicily of fixed points in

general as is seen in the case C[p,] =7p,.
We do get:

By 3.6.6:
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C[T). So A, C[A] FppprCLT]. Thus A%, ppp CLT]. So O[T] is the
maximal fixed point w.r.t. Fpppr-

3.8 ExampLe: “The Liar”. T->1 is the unique A (modulo 4 Fppz)

4. A ¢“classical’’ version of FPL

4.1 DeFINITIONS. Let I, 4 = 2.

i) Sub, = {s|s: P-4}
)y — i =s(p)

— (AAB)® = (4A°A B)

— (Av By = (4°v B®)

— (A—>B)* = A*~>B*
iii) I"® = {B°|Bel} .
iv) I'||= 4rA: <for every s e Suby (Fgl™ = kg A°).

4.2 SoMme FAoTs.
i)  Consider s € Sub,. We have for any 4 € #:
At Atppr T or A% Abzpp L. ‘
ii) Let OPL be Classical Propositional Logic. We have:
Ttopr, AT |l =1, 13,11 4.
iif) I'kopp A<eT'||=g,0pp A-

Proors. Routine. 0

Below we will do something analogous to the “clasgification” of IPL
for FPL.

4.3 DEFINITIONS
i) — lyt = T(=L1-1)
- lgr= L

1= T—>1

— Lt n

4.4 FAcCTS ‘
iy a,bewt+land a<<b=>1,tpp; 1y and 1, nontppr l,.
ii) Let a,b € w-1, then:
— LgA Ly Arrpr Limin,n)
— 1aV Lp1tpprl max(a,p)
—Ha<<bh L,»>lydlpp T
if a > b .La"?'.l_b 4 I_FPL'Lb+1
iii) If s € Sub,,,, then for any 4 €%, there is an ¢ € w+1 8.t.2
Af Atgpy, Lg
Proors. All the proofs are easy. Let me just prove:

a>b= 1,1y 1kpprlpsa-
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4‘_‘” “F’?J
Lot , ﬁ] by (i)
T i Lot
Lg=>T  T=1, Tr Lo>ly Ly Lo
—La"'>Tb Lo—>Lge
1l
(T dgeg)=>1p
T—> 1
I
“La
T—=1, L,=>i
T—1s
{
Lot

L

a—1

4.5 DEFINITIONS
i)  A: (w+1)P—>(w+1) with A (e,d) = min(a, b)
v: (0+1)*->(w-+1) with v (a,d) = max(a, b)
->: (0+41)—>(w+1) with—(a, d) = {;)_:i t:fil; b
i) An assignment f is a function P->w--1.
iii) Let f be an assignment. Define:
— oy = f(p)
— [L} =0
- [(4 /\B)ﬁf = A (EA]]n EBﬂf)
— [(4 VB)Bf =V (B:A]}f7 [BY;)
- EA”*B]f == ‘*(I[A]]f’ [B]]f)‘
iv) Let I'v{4} < £. Define:
— I'kj A: <((for every Be I [B]; = o)=[A] = o)
— I'E* A: for every assignment g I'k, A

— 'k A: < inf({[Bl,; |Bell) <[4l
(Note that inf(0) = o)
— I'k A: < for every assignment g: I'F, 4.
4.6 Facrs

i) HAsEA
ii) FfA->Be FfA—-B<sAF B
iii) e, A=TF A
iv) I't* AT l|=( jueotn,ren 4
v) TI'E* A < (for every s € Subg: E* IS = F* 4°).

Proors. i)-iv) are entirely routine. Let us do v).

46 »

=

Ex I, 80 ky A. Thus Fy A°.

A. Visser

Suppose I' E* A and E* I'®. Consider an assignment g. We have:
ky I'S. Define an assignment h as: k(p;) = [s(p;)],- Then
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“«=” Buppose for every s e Sub, F* I = F* 4%, Let F;I. Define s with
$(P:) = Ly, Then: E* I, so E* A%, thus £} A. O

4.7 TFAoTS
i)y 4,A-BB
) Do, Po>pil# p1
i) 1;F" 1, but not K* 1, 1.
iv) I'A¥B=IF A-B. d

Proors. Routine.
Obviously k looks more like FPL than F*. Below we will axiomatize k.

4.8 THEOREM. Let I'V{A} < %. We have: I'kE A < for all fimite,
wrreflexive, linear K: Il A.

Proor.

“=” Suppose I'k A. Let K be finite, irreflexive and linear, and w e I
Without loss of generality we may assume that w is the downmost node
of K and that W = {1, ... N} and that m < n<m > #u.

Define ag (4) = {max{kll <E<S QN and kb A} if there is such a %k

. 0 else.

Define an assignment fr by: fx(p,) = ax(p,

We claim: ag(4) = min (4], N).

The proot is by induction on the length of A. Suppose e.g. A = (B->0).
In case [B], < [Oly, we have ax(B) < az(C) by Induction Hypothesis.
8o N IF B—+C or ag(B--0) = N.

When [B ]]fK > [C Iy we have to consider two possibilities: —-f[C}]fK = N,

then [B—C]y,, > N. By Induction Hypothesis: NIz C, so N I B—0.
—[Cl;, < N. Then by Induction Hypothesis: az(C) < ag(B). So az (B—0)
= ax(C)+1 = [B—0Y;,, = min ([B—0y,, N). We assumed N Ik I'. So
for Bel' ox(B) = N and thus [Bl;, = N. Because I'F A, we have
[A];, > min({[B], |BeI})> N.So N Iy 4.
“«=7 Suppose I'|# A, then there is an £ s.t. min ({[B];| B € I'}) > [4];.
Suppose min({[Bl;/B eI}) = M. We construct K, =W, «,g). Let
W ={1,..., M} and for m,ne W: m < n: <n< m. Take p; €g(m):
:=f(py) = m. ,

By the usual induction on the length of 4 we prove for 1 < m < M:
i lbg, A< [A], > m. It follows that M L I, but Mnom!-KfA.

4.9 DEFINITIONS. We shall consider an axiom .as a rule with empty
premiss. ‘ ,
iy BPLL is BPL + ((A—>B),v((A—>B)—>A))
ii) FPL°F is FPL +{(4—->B) v ((A—B)->A4))
or , ’
BPLL L

6 ~— Studia Logica 2/81
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410 COMPLETENESS FOR BPLL Anxp FPLCE,
i) Let I'v{d} = &Z:
I' b ppry A<for all linear Kripke models K: I'lrx A. (Here linear
means: for any w, w' € W,w < w' or w =w or w' < w).
il Let I'c & be finite, A € &, then:
I Fppron A<>for all finite, wreflewwe, linear K I'lFg A
< I'FA.

PRrOOF.
iy “=" The validity of (A—B)v (4—B)-—4 is routine.
“e? Suppose I'nont gpy; A. Consider the model K =W, «,f)
constructed in 1.9 Let 4 = I' be BPLL-prime with 4 ¢ 4. Let
Ky: = (W,, <5, f) where W; = {[4'] e W|[4'] > [4]} and
<, = A [ W xWsand f, =f [ W,.
Clearly TI'nonlkz, A ,so it is sufficient to show that K, is linear. Consider
[4,], [4,] € W,. The case that 4, = 4 or 4; = 4 i8 trivial, so assume
Ay 4, # 4. We have:.
[4] <, [4]
[4] <1 [44]
The case that A, = 4, is trivial, so assume that for some C:
[4o] nonltg, C,
[4y]lg, ©
Suppose:
[44] kg, A—~B and [4,]ig, A
We distinguish:
cage 1) [4,] %onll—K A, then [A4] nonlg, (A—B)—>A4,s0[4] g, A—B.
So [4,]lg, B
case i) [4 ]ﬁ—K A, then [4y] g, T——>B
Well: [A] g, (C—+B)v((C~B)—~>C). Because (T—B)
g, (C—B) we have: [4¢]lg, (C—B) and [4,]ll~g, C. Bo
[A]nonll-K (C—B)—C. 80 {4] li—K (O~B). But [4,] g C. Bo

[4,] g, B
So 4, is R, -prime and [4,] & 1 [4,]
i) « :>” as in (i).
“e?” yge (i) and the fact the constructions in 1.13 and 2.2 preserve
linearity. O
411 Facr. Let
“1(A A B) “1dv 1B
DM,: ———— DM,;: —————
" 4vB ¥ (4AAB)
T4vB) 147 71B
DM;: ————— DM,: ———
Yt A AB v B)

i) DM,, DM,, DM, are derived ruleschemes for BPL.
ii) DM, is derived for BPLL.
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Proor. i) Routine.

i)
(4 A B)
i
(A A B)—>1 .
A—>(B—1) [(B—~1)—+B]
A—->4 A-B
— A
A—-AAB AANB-> 4
[B— 1] A1

(B>L1)v(B>1)>»B (4->1)v(B—>1) (A->1)v(B-1)
(A—1)v(B—>1)

i
14 v "B

or via the completeness theorem. O

5. Interpretations

We will interprete FPL in Peano Arithmetic (P4) via PrL and
directly.

5.1 The Language of Modal Propoesitional Legie (MPL)

Let P, A, v, —, L be as in the case of £. [ is an additional logical
constant. &, the language of MPL, is the smallest set s.t.
— P2, 1e¥,
— A, BeZy=(AAB), (Av B), (A->B), ([I4) e .

5.2 Kripke Models for MPL

i) A (Kripke) Model for MPL is a structure M = (W, <,f>, where
W is a set (of worlds), <« a transitive binary relation on W and f
a function W-P.

i) Fky e WxZ, is the smallest relation s.t.:
— p; ef(w)=w Fjip;
— {w Fy 4 and w by B)y=w k3 (A A B)
— (wEky 4 or wky B)=w ky (Av B)
— (w Fyy A=w ky B)=w Ey (A—>B)
— (Vo' > w w' ky A)=w Ey ([04).

iii) Define for I' € Z:
—wky ' <VBel' wkyB
— ey Ad: <> (VNweW wky'swky, A)
— MFA: oy Ad: <Ok, A

iv) — K is the class of all finite irreflexive Kripke Models for BPL
— M is the elass of all finite irreflexive Kripke Models for MPIL
— I Fp,;, A means: for every M e M I'k, A.
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5.2 Two Godel Translations

We define:
iy 0: 22, by: i) 1: -2 by:
(p)°: = Op; (s = (PiA Opy)
(L) =(O4L) (L' =1
(AABY: =(A°A B (AAB)': = (4'A BY
(Av B): = (A°v BY) (Av B)': = (A'v BY)
(4—B)': 1(4°-B" (A-B)': = OA'-BY).
We have:

5.4 THEOREM. For finite I'c ¥, A eZ:

i) F l‘FPL A¢>T0 = {BO]B EF} ["Prl AO
jj.) F "'FPL A“S’Fl I_Pi’l .A.l.

ProoF. We know: for I' ¢ & finite, 4 € Z: I tppr Al lkpp A.
And for I" ¢ &, finite, A'eZL: I"lpy A'<I" Fp A" (see [1],
[91). So it is sufficient to show for I' ¢ & finite, 4 € &:

i) I'rppy A<IClp,; A°
i) Ippy AT p, A
Case ii) is rather easy, so let us do case i):
It is sufficient to provide @: M—K and ¥: K—M s.t.:

O(M) I A<M k A°
K IF A<¥(K) kA

For assume ['lzppr, 4 and M FI°. Then @S(M)II. So S(M)IF 4.
Conclude: M F A°. (Clearly A kp,, B<>VM: M F A=M k B.) The other
direction is similar.

Now let us construct @, Y. Consider M = (W, «,f)> M. Take
D(M) = M® = (W% <% f*>, where:

— W% ={weWaw' w < w}

— for w,w' e W?: w <, ,w': ew < w’

— for we W?: f2(w) = M {flw) | > w,w e W}

Consider on the other hand K = (W, <,f)> € K. Take ¥(K) = K¥
= (W%, <% f¥> where:

— W = WU(W x{W})

—forw,w eW*: w a¥w: o((w,w ¢ W and w < w')

or (w = <w”’, W> and (w < w”’ or w =w"))).

— for we W¥: f¥(w) = U {f(w) |w <*w, w' e W}

Now it is easy to see that @, ¥ have the derived properties (by in-
duction on the length of A; note that K¥* = K). 0
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5.5 DEPINITION. Let f: P—%;,. Define:

) () =(fp)

(LY =(0 =1)

(AABY: = (A7A B

(4vBY: = (ATv BY)

(A—>BY: = D(Af»Bf)(~—Pwv(‘"Af—>Bf"))
i) () = Of(p)

(L)": = 00 =1)

(AAB)Y: = (AY A BY)

(Av B)Y: = (4Yv B")

(A-B): = (4¥—-BY)
iil) Let g(py): = (f(p;) A Of (ps)), then AY: = 47.

5.6 THEOREM. Let I' = % be finite and A € %, then:
i) IDigp AVf: PZ0PALT AT
i) I'bppp AoVf: P2, PALTY | AY
i) Ibppr AeVf: PsPp, PALTY | AY.

ProoF. The proofs of ii) and iii) are by combining 5.4 with Solovay’s
Completeness Theorem [9]. Note that: I' b ppy A< Fpp, AI'+4, by an
easy XKripke Model proof, and PA~+I7F A7<PA F (A TY—AY)
(¢ = 0,1). Let us turn to the proof of i).

There are standard ways of reducing certain sentences to provably
(in PA) equivalent X} sentences. It will be cohvenient to forget to mention

these reductions. Alfernatively one can read:
A e Lpy [ AB € L) PA + A« BY for ‘2¥"in the statement of the theorem.

“=7" By induection on the length of the proof. L. uses Lob’s Rule for
PA. —1 uses the fact that for 4 € Xy: PA +F A-—[JA.

“«” Suppose I’ nont ypy, 4. Let K be the finite irreflexive model of 2.2
such that K I I and K nonl- A. Without loss of generality we may assume
that W = {1,..., N} and that 1 €9 2,...,1 <N. ‘m < »’ can be bire-
presented in PA in the obvious way.

We now turn to the proof of Solovay’s Completeness Theorem (see
[9]). Solovay provides a (primitive) recursive function h s.t.:
i) PAF(h: N->{0,1,...N})
i) PAt(h(m) 5= 0—>h(m-+1) = h(m))

Let I: = hmh(m) (By i), ii) 1 exists).

iii) (PA4-+1 = 9,) is consistent for ¢ =0, ..., N.
iv) PAF({l =i->0O0 1> 1) fori =1, N
¥) PAF( =il —j), for § > 4, for i =1, ...,
Clearly ¢ <l is provably equivalent to Im¢ < h(m), a Z) sentence.
Define: ’
_JV{% < P|ilkgp;} if there is such an ¢
g(PJ') - { “0 = 1” olge.
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Clearly g(p;) is 2{. We claim:

It i A=>PA (Il =i—A%

II: inonktg A=PAF(l =i->"14%
The proof is by induction on 4, simultaneously over I, II.
Suppose iz A:
a) A =p,. Clearly PA}1l =¢—>i Q1

—>g(p:)
b) Then A, v case is trivial.
¢} A4 = (B-+0). We have:
Vi ijlg B=>jlg C. ,

Using the induction hypothesis and thé fact that there are only finitely
many j > 4, we find:

PA-(Vj> il = j—>(B”—->G"’))
(Note that we use the induction hypothesis on II for B.)

By iv): PA F (I = >0 & 4). So PA F (I =i—>[](B'->07%) ie. PA +
F( =1i>A49).

Suppose ¢ nonl A:
a’) Suppose 4 = p;. Consider ¢’s.t. ¢ lgp;, then i’ éa Thus PA + (¢

=1->i' 21). 8o PA i =1->"1g(p;). (It there is no ¢’ lxp; the
case is trivial).
b’) The A, v, 1 cases are trivial. In the 1 case we use iii).
¢') Suppose A = (B~->0). So there isané’ > ¢ with ¢’ I Band i’ nonlt. C.
By Induction Hypothesis and propositional logic:
PAF1 =i'—"1(B—(C7).
Byv): PAF(@ =i-"1070 =4').
So:  PAt(l =i->T10(B'~(C7))
ie.: PAFl =1i->T145
We find: PAFl =1->ATY
and: P41 =1->"14%
By iii): (PA+TI74 149 is consistent.
So: PA+T°nont A%, - |

5.7 REMARK. Let for f: P—>%p,, (4)" denote the usual inter-
pretation of & in L, . It is easily seen that the proof of 5.6. i can be
adapted to give:

(2> 0PI A O (D~ 00 i € N} bp, A)(Vf: P20 PA + 4%),

6.8 CororLARY. Let € = {“0 = 0"}u{“Ncon™(PA)”"|neN}. Then
Jor finite 'c ¥. A cZ:

Proor: Note that (1,) is provably equivalent to ~Jeon"(P4) and
(L) with 0 = 0. O
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