
A Proposi t ional  L o g i c  
vxss  with Expl ic i t  F ixed  Points  

Abstract. This paper studies a propositional logic which is obtained by inter. 
preting implication as formal provability. It is also the logic of finite irreflexive 
Kripke Models. 

A Kripke Model completeness theorem is given and several completeness theorems 
for interpretations into Provability Logic and Peano Arithmetic. 

0.0 The strange tale of  the Formalist who lost Modus Poneus 

Imagine a formalist. He has become convinced tha t  any philosophy 
of mathematics worth being taken seriously, must  explain the meaning 
of the logical constants. Yet  he clings to the tenets of formalism. He  
sets out to produce a hybrid:  formal semantics. 

Consider the translation �9 from ~e, the language of Propositional 
Logic (PL), to "~D, the language of l~Iodal Propositional Logic (MP2~). 
I t  is given by:  

• [ ] •  

(A ^ B ) ~ *  (A* ̂  B*) 
(A v B)~*(A*  vB*) 
(A-+ B)~-** [] (A_*--~ B*). 

Our formalist stipulates: the formalistic meaning of ~ is to be the 
classical meaning of C*~ where [] is interpreted as provability in some 
fixed formal system. For definiteness he restricts his attention to Peano 
Arithmetic (PA). An interpretation of .SP into .~p~ is just fo*, where  
f is some interpretation for Provabflity Logic (prir,) of s into .9'p~ 
(for more details see w Formal Validity will be defined as: A is formally 
valid iff for every interpretation g P A  ~ A g. The formalist proceeds to  
formalize. He looks for a l o g i c -  even before conception he calls i t :  
~ormal  Propositional Logic (/~PL) --sat isfying:  F~pLA iff A is for- 
really valid. By SolovaT's Completeness Theorem for Provabfli ty 
Logic (PrL)~ this is equivalent to:  ~FpL A iff FprzA*. 

The logic he finds turns out to have ~ull  Explicit Fixed Points~ i.e. 
B -~ for any there is (q) s.t 

For this luxury however a price h~s to be paid. The Fixed Poin~ 
Theorem readily yields an explicit Liar Sentence. Yet • should not be 
derivable. So one of the steps in the usual derivation of • must  be blocked. 
I t  turns out to be l~odus Ponens. The reason is tha t  PA nonF _Prov ~A~-->A 
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in general, e.g./>A nonb _Prov ~0 = 1"->O = _1. This, of course, is part  of 
Gfdel's Second Incompleteness Theorem. 

After some soulsearehing our formalist decides to follow the tortoise 
and repudiate ~odus  Ponens, for - - h e  argues - - w h a t  can one expect, 
to have a formal proof tha t  A * ~ B * ,  is no evidence whatsoever tha t  if 
A* is true, then B* is true. 

Only lately he is having some trouble expressing the thought . . . .  

0 . 1  Motivation 

A more serious reason than specul~tion about strange formalists to 
be interested in logics like 2'/>15 is the s tudy of notions like Pro% formal 
provabflity as coded in/>A, which naturally occur in the metamathematics 
of formal theories. 

�9 0 . 2  Contents 

In  the following I wflI provide a formalization of ~/>L and prove 
the associated completeness theorem. 

The notion of interpretation described in 0.0 is not the only one which 
yields F P Z  and possibly not  even the most interesting one. 2"/>15 turns 
out to be also the logic of /0-sentences of PA by interpreting the atoms 
as /0-sentences ,  • as 0 = 1 and treating conjunction, disjunction and 
implication as before. 

w contains the Kripke ~ode l  theoretic preliminaries for the de- 
velopment of FP15. w gives 2"/>15 plus associated Kripke ]Kodel comple- 
teness theorem. w has the basic facts about 2'/>15. w studies an extension 
of ~/>15 which is complete for a certain infinite matrix. w finally gives 
three interpretations into PX ~lus associated completeness theorems. 

0.2 "Some partly philosophical remarks 

0.3.1. �9 O n  a e e r ~ n  efua~ion.  

have:  " 

I/>15 

$4 

Let 1/>15 be Intuitionistic Logic. We 

2'2.5 

Pr15 

The reason is tha t  �9 is a GSdel translation for 1P15 in 84" We have: 

b~pr.A iff b~4 A* 

as well as: 
~ ~pL A iff ~ p,L A . 

The analogT gains substance when one considers tha t  the axioms of 
ClA 

S4 are valid for true, real or rigid provability. The crucial rule --~-- ,  

which is blocked in PrL,  is justified as follows: suppose we.have a proof 
p of A ,  then A ,  or else p would no$ be a true l~roof of A .  This argument 
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suggests tha t  what  a proof is, cannot be fixed completely by a set of 
'formal '  properties;  there must  be at  least some semantical properties. 

0.3.2 Ziar Paradox and Provabigity Paradox. With the  usual deriv- 
Z 

ation of the  ~iar Paradox in I P Z  from the postulated rnles -~-~ (1) 

-1L 
and ~ (2) corresponds via �9 the  S~ derivation of the (true) l>rovability 

O [] -70 
Paradox from the postulated rules Vt"-]-G (3) and ~ (4). I n  :PP/5 

there is an explicit sentence/5 satisfying (1) and (2), likewise in Prs  there 
is an explicit sentence G satisfying (3) and (4). I n  both  cases paradox 

ClA 
is blocked by failure of Modus Ponens resp. - A 

0.4 Prerequisites 

w are quite selfcontained. The reader only needs a basic under- 
standing o~ Kripke l~odels for 1PL, see e.g. [4] or [10]. w requires an 
unders tanding of the  main results of PrZ see e.g. [2], [9], [7], [8]. 

0.5 Acknowledgements 

The use o/ the  work of the pioneers of Provabil i ty Logic should be 
evident .  

For  the  development  of the  Kripke l~odel theory of w [6] has been 
my  g~ide. w is related to [3]. The present  work seems a companion to 
[5]~ [2] where the  relation between Pr/~ and E is studied. 

'1. Basic Propositional Logic 
1.1. Language 

Let P :  = {Po~Pl, ..-} be the  set of propositional variables. s 1 7 6  the  
smallest set s.t.: 

P ~_ ~ ;  .1_ e~q'; A , B  e.o~=>(A^B), (AvB) ,  (A->B) e ~ .  

1.2 The Theory 

' The theory Basic Propositional Logic BP.5 is g iven  by the  following 
groups of rnleschemes: 

group I :  
A B (A^B)  (A^B) 

A I  A N  
(A ^ B) 

A B 
v I  .L:E 

(a v B) (A v B) 
Tr (A--->B)(B-+O) 

(A--->O) 
(Transitivity) 

A B 
1 
A 
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^ I f (A-~B) (A~(7,) 
(A->(B^ (7),) 

(formMized ^ I )  

v ~ f (A->(7) (B-~O) 
((a v B)-~(7) 

(formalized r E )  

group / / :  ->I [A] v E  [A] [B] 

B (A v B) 0 G 
(A-+B) C 

A ruleseheme is considered here as a set of rules. A l~ale always con- 

rains individual elements of ~ ,  e.g. P~ is a rule and P0~Pl 
(PO h P l )  (PO A P l )  

A B  

We may  add to our system a set of additional rules R of the form 

A1 . . .  Ak Such rules will be called normal rules. When /"_= s p ka A 
B " �9 

means: A is derivable from P, with the rules of B P r , + R .  
We say: 

k~A for: O kR A 
P b A  for: T k g A  

A for: O k~A 
A q kr, RB for: /~, A baB and f ,  rB kRA 
A q kRB for: A q k,,BB 
A. "t PrB for: A q kr, gB 
A q ~ B for: A ~ Fo, oB 

1.3 A few basle facts about BPTJ 

1.3.1 Derived and underived svhemes. The lollowing are easily seen 
to be derived schemes: 

, , ~  ~. (A-,(B ^ c')) (A-~(B ^ e)) 
(A->B) (A->C) 

vii: (A->B) (A->C) 
(A-.(B v a)) (A-.(B v a)) 

-~I I: ((A A B)->C) 
(A-*(B-*O)) 
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The following are  no t  derived ruleschemes as c~n be seen f rom the  
completeness theorem (1.10): 

A @A-~B 

B 
-~E 

(or Modus Ponens) 

- > E l  ((aAB) 0) 
1.3.2 Subs$iluf, ion of equivalents. Let  a propositional con tex t  C [ ] 

be defined a s  usual.  The foUowing can  be proved by  easy inductions:  

i) SE : A HFr, n B ~ C [ A ]  dFr, n C[B] 
(Substi tut ion of 
Equivalents)  

if) S E f : A~--~B b O [ A ] . ~ [ B ]  
(formalized S E) 

SE justifies u s  to be careless wi th  brackets,  so we will be. 

I .~  Models 

A (Kripke) ~[odel K is a s t ruc ture  <W, ~ , f >  where  W is a set of 
"worlds" ;  ~ a b inary  t ransi t ive  relat ion on W; f a funct ion f rom W in 
t h e  subsets of P s.t. w .~ w' ~ f ( w )  ~ f(w') .  

1.4.1 Sa$isfavtion. Let  K : <W, .~, f> be a ~ode l .  ~ c_ W •  is 
the  smallest relat ion s.t.: 
- p~ e l ( w )  ~.w IFKp~ 
- -  W Ib K A and w IF K B ~ w IF K A A B 
-- w l F K A  or w I F E B ~ w l F ~ . A v B  
-- (Vw' ~ w w ' I F k A  ~ w ' i F K B ) ~ w l F ~ : ( A - + B  ). 

Define fur ther  for. F _ 5e: 
/~ iFKA : ~ V w  e W ( w  IFK/'~ W IFKA): 

We  wri te  K IF A or IFKA for 0 IFKA. 

1.4.2 FAC~. For  all A e Se and  w ~ w ' e W :  wlF~A a n d  w ' < l  w 

1.4.3 Closure under rules. We s a y  t h a t  K is closed under  a rule of 
A~ .. .  A k 

t h e  form B if {A1, �9 ,. ~ Ak} {F~B. 

Let  R be a set of normal  rules. We say tha t  K is closed under  R if 
K is closed under  every  e lement  of It. 

Define:  /~ IFaA: ~ for every  It-closed K /'IFKA. 
We  have:  

1.4.4 SOU~DZ~ESS TH~0~E~. / '  FRA ~ / ~  ]FRA. 
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P~00F. R o u t i n e .  [2 

As a preliminary for the  completeness theorem we will give a connection 
between ~orma:lized ~ and ~unformalizedL 

1.5 DE~NITION. Let r ~_ s Define: Rr :  = l AI B Ak j r  ka(A1^ 
% 

^ . . .  Ak)->.B }. 

1.5.1 FAr R _ R r .  

A~ .. .  A k 
Pgoo•. I f  - -  e R  then  P ~R(AI^ . . .Ak )  -+B. [] 

B 

1.6 TKEORE~. ~or all I'~_.LP; k e N }  A 1 . . . A k ~  B e.g~': _r'[-R(A1A 

^ .. .  Ak)'+B<*-P~ A1 .. .  Ak karB. 

P~ooF. " ~ ' .  :By definition. 
" r  ". By  induct ion on the  length of the  proof. 

Case i). The length of the  proof is 0~ i.o.w. B e/ '~ A~ . . .  A k. Trivial. 
B~...B~ 

Case ii). The last rule applied is of group I or of R r .  Say it  is B -- 
c 

We have:  
r ,  & . .  & ... r ,  & .  

By Induct ion  ~ypothes i s  and ^ I  f: 
/~ F a (A1A . . .  Ak) - -> (Bi^  . . .  B~). 

When R e Re we have by definition: 
/~ k a (B1 A . . .  Bs)-->O. 

When R is ~f group I this follows by AE and ->I. 
By Tr we f ind:  

F ~a (AI^ .. AD->C. 
Case iii). The last rule applied is ~ I .  We have:  

~F, A~ A~ ka r B ~ C  from _P~ A~ .. Ak~ B FarC. 
:By Induc t ion  tIypo~hesis: 

.P ba (AI ^ . . .  A ~ : ^ B ) ~ C .  
Using the  derived rule - + I f  we find: 

-P t-R (AI  ^ . . .  Ak)-+(B-->C). 
Case iv). The last rule applied is r E .  We have / ' ,  A~ . . . .  A~ FarD from 

~ A  1 . . . A  k k a r B v C ;  /~A'  I . . .A . e~B  FRrD; -P~AI~--.~Ak, 
O Far D. 

By Induct ion  l~ypothesis: 
F }'a (A1A .. A k ) - + ( B V  O)~ I1 ~a (A~A ..  AkAB)-~a~); 
F ka (A~A .. A~^ C)-+D. 

:By v E f  we find: 
I '  Fa ((A~ ̂  .. A~,^ B) v (A ,  A .. A ~ ^  G))->D. 
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One easily shows: 
r F~ ( ( &  ^ .. & ) ^  (B ^ C)p~( (& ^ .. & ^ B ) v  ( &  ^ .. Ak ̂  C)). 

So by / ' r :  
r Fr ( ( & ^  .. A D ^  (Bv C))~D. 

Using: 
( A I ^  ~. A k ) - > ( A I ^  .. A k ) ( A ~ ^  .. Ak)-->Bv G 

^ I f  
(A1^ . .  Ak)->((A1^ .. A k ) ^  (Bv C)) 

we f ind using Tr  again: 
F F r ( A 1 ^  . .  Ak)-->D. [] 

1.7. DEFINImION. / '  ___~ is called R-prime if whenever P Fr A we 
have A e/~ und whenever/~ FR A v B we have P FR A or P FR B. Moreover 
F must be consistent, 

1.8 FACT. I f  F nonFr A then there is an R-p r ime / "  _D/' s . t . / "  nonFr A .  

P~oom-. Routine. [] 

1.9 Tm~oRE~. I f  IT' nonFr A then there is an R-closed model K = <W, < 

f> s.t. K IF P and K noniF A. 

PRoov. Take W: = {[A]] A ~ F, A is R-prime}, where [A] stands for 
<O, A). We use [A] rather than A itself to avoid confus ionbe tween  
A IF g A as a world and A IF g A as a theory. 

[A] < [A']: r is R~ prime. 
y ( [4 ] ) :  = P n 4 .  

Note that :  
�9 [ A ]  -~ [ A ' ]  ~ A __ A '  ~ f ( [ A ] )  __= f ( [ A ' ] ) .  

I t  is easy to verify tha t  ~ is transitive so K is a genuine model. 
Claim. {BIE4] 1FEB} = 4.  

The proof is by induction on the length of B. The only problematic case 
is -->: 

D 
Suppose (/)-~/~) e A. Then ~-- e R~. 

sO for every R~-prime A': D ~ A' ~/~ ~ A'. By Induction Hypothesis :  
for every [A'] ~> [A]([A'] I F~ :D~ [4 ' ]  IF~: E), i.e. [A] IF~: (D-->J~). 

Now suppose (D-+/iT) ~ 4 ,  then by theorem 1:6 A, D I -~ r~ E. Extend.  
4 w ( D } t o ~ n  R~-prime A' s.t. A ' n o n b r ~ E .  We have [4 ' ]  ~> [ ^ ] . B y  In- 
duction HS~pothesis : 

[A'] IF K / )  and [A'] non lF  K E.  So [h]  nonlF K (_D->E). 
I t  follows easily thut:  

- -  K is R-closed 
-- K I~ /~, because each A_~/ '  
-- K ~onIF A ,  because there is an R-prime 4 s.t. A D F and A ~ A. E] 



162 A. Iriss~v 

1.10 C0~LET~,Nv, SS THEORE~. F ~ n A  * ~ F  I~uA. 

P~ooF.  Combine 1.~.4 and  1.9. [] 

1.11 RESidUE. B y  inspection of the  proof,  we can see  t ha t  we have  
t h e  completeness theorem also for  the  class of models  K = (W,  ~ , f>  
~.t~.W ~ W'  ~ W=~W ~ W ' .  

1.12 COROLLX~Y: Completeness Theorem for Intui t ionis t ie  Pro- 
~positional Logic. ~et Intui$ionistie Propositional Logic ( IPZ)  be B P L  
+--~E. Then: F ~ i p L A ~ f o r  al~ reflexive K :  P l ~  Ac~for  all K where 

is a weak Tariia~ order F iLK A .  

PROOF. " ~ "  is clear. 
" *  ". I t  is sufficient to show tha t  the  model  cons t ruc ted  in 

11.9 is reflexive when R = -~]~. W e  have to show t h a t  ~ny ->E-pr ime 
A ~ P is R~-prime. B u t  t ha t  is immedia te  using -~E.  [] 

1.13 L E ~ .  Suppose I" non~ A ~ 1 ~ .finite. Then there is a .finite Ko 
-:- (Wo~ ~ o,fo>, where w < o w' ~ o w :~w = w' s.t. Ko I~ _r'and Ko nonl~ A .  

P~ooF.  Consider the  model  K - - ( W ,  ~ , f>  cons t ruc ted  in 1.9 s.t. 
K I~ P and  K nonl~ A (for R = O). Le t  A be  the  set  of subformulas  of the 
elements of F u { A } .  ( E u c h  formula  is ~ subformula  of itself). 
Define:  
--  w: - - { B e A  l w I ~ B }  
- Wo:  = { ~ l w  e w }  
-- for a, b E W o :  a ~ o b :  r  e a ,  E e b t h e n  F e b  

- -  r e ( a )  - -  a ~ P  
I t  is e~sy to see tha t  Ko is ~ model,  t ha t  Ko is finite and  tha t  a ~ o 

a t ~ o a = = > a  =- a ~. 

Claim. for eve ry  B e A: w i ~  B r  lk~o B.  The proof  is b y  induct ion 
on the  length of B.  The only problemat ic  ease is -+. 

Le t  B --= (/~-->/~) e A. 
" ~ " .  Suppose  w I ~  (E-+/~) and  a ~> o w and  a I ~ 0 / L  There tha t  o = ~. 
B y  Induc t ion  Hypo thes i s :  u IP~E, hence /~ e ~  i.e. E c a .  ~ o r e o v e r  
(E->/~) e ~, a ~> o w, so /~ e a. Hence  u IPx/~. Again b y  Induc t ion  H y p o -  

thesis :  ~ IP ~o/~ i.e. a I~o ~ -  
" ~  ". Suppose  ~ I~o ~-->1~, w' ~ w, w' I ~  E.  Clearly ~ '  ~ o w ~nd b y  
Induc t ion  Hypo thes i s :  ~ '  I ~ o / ~  hence ~ '  i~o/~.  [] 

1.14 C o R o n a r Y .  I f  I ~ is f ini te we have 
(i) . l - ' t -A.~for all f ini te  models K :  I'II--~: A 
(if) I" l'x~r. A r all f ini te K ,  where ~ is a weak partial order: 

F ~  A. 

]>~ooF. ~ r o m  1.13. Observe  t ha t  the  construct ion in 1.13 preserves 
ref lexivi ty .  [] 
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2. Formal Propositional Logic 

2.1 THE SYST]~ FP35. Le t  L6b's Rule 35 be:  
T - ~ A  

where  T : ~ ( •  • ~P35 is B P L  + 35. 

2.2 C03~I~/~ET~NESS THEORE~ FOR _1~p35. Let I" ~_ .9", I '  f i~ fe ,  fhen: 
P FvpL A o for  every f inite irreflexive K F It" K A .  

P~oo~. 
" ~ " .  We will prove more  general ly t h a t  every  K s.t. ~ is reverse well- 
founded  (i.e. > is wellfounded) is closed under  Z.  

Consider w e W. Suppose tha t  every  ~ > w is closed under  L and  
suppose w IF K ( T - > A ) - ~ A .  

For  u ~> w we have  u IbK ( T - + A ) - ~ A  by  monotonici ty ,  u is closed 
under  35 so ulV~ T-+A. Moreover if ulF K T-+A,  then  u lFKA because 
w I~ K ( T->A)->A. So u lF~ A for any  u > w. So w IV K T->A. B y  ba r  in- 
duct ion we f ind t h a t  K is closed under  iS. 
" ~ "  Suppose  PnonF~,pL A.  Let  K be the  model  cons t ructed  in 1.9 s.t. 
K is 35-closed and  K I~ P and  K non I~ A .  Le~ K0 be the  model  constructed 
in 1.13. We have  Ko IV/' and Ko nonlb A .  ~ o t e  t h a t  we do not  know 
whether  K0 is closed u n d e r  35. Define K~ ---- (We,  <~ , f0 ) ,  where  a ~x  
b: ~ ( a  <~ o b ~nd a r b). B y  the  " ~ "  pa r t  of our  proof we see t h a t  K ,  
is au tomat ica l ly  closed under  35. Le t  A be as in 1.13. We prove:  

Fo r  all B e A ,  for all w e W :  wlVKB~, (o lVKoBc, ( , IVK~B.  
We a l ready  have  the  f irst  equivalence. We prove the  second one with 

induct ion on the  l eng th  of B. The only non t r iv i a l  ease is again -~. 
Suppose B = (E-->~) e A. 

I) I f  ~ I~o E-+_~, t hen  for any  ~ > o w (~ lbK o E ~ I~o/~).  By  Induc t ion  
Hypothes is :  for every  ~ > o w (u IkK~ E ~ IF~x ~) .  So cer ta inly:  for a n y  

> ~ ~ (~ II-K~ E ~,~ IF~:~ 2'). Thus:  ~ IV~x (E-+_~). 
I I )  If  (o nonlV~o E - > ~ ,  then  there is  a ~ > o w with (~ IVKo E and  ~ no~IFK0 ZV). 

case i) " There is such a ~ s.t. ~ # ~ .  Then ~ t> ~ ~ and  by  Induct ion  
Hypothesis  ~ I ~ E  and ~ nonl~K~ ~ .  So ~ nonlF~ E - - ~ .  

case ii) The only such ~ is ~ itself. We have:  
a) l~or every  ~ > x ~ :  ~ lyre E * ~  I~o ~v 
b) ~ I~-Ko E ~nd ~ nonll-Ko .~ ~nd ~ > o w. 

Consider a ~ > w with u IV~ E - > ~ .  I t  follows t h a t :  
c) ~ > o #  
d) ~ I~o (E->~v) (because (E->~) ~ A), ~o nonlt-~o E ->~  
e) ~ > ~ (by (c), (d)) 
f) ~ lt-~o E (by (b), (c)) 
g) ~ I~'Ko ~ ((a), (e), (f)) 
h) u I~: 2' (F  e A) 

> w wi~h u IrK (E->~)  was arb i t rary ,  so: 
i) w I1-~ (E->/~)-->2'. 
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By: 

T 

E-->T 

T 
E-->T [ T-~F] 

.~-->-.F 

( T--+.F ) -+  (.].].E --+ .F ) ( .~-->F)- .F 

( T-+F)-+.B 

~- ->~  

we f ind:  

J) • II K E - - > F  
Thus 

Gontradiction. 

T--+.~ 

((i)) 

((E->F) ~ A,  (j)) 
[] 

3. Basic Facts about l~PL 

3.1 An alternative version of L6b's Rule 

There is an  a l ternat ive  version of LSb's l~ule/5'  which is interderivable 
wi th  .5 over B P Z .  ~ a m e l y :  

[ T ->A]  

A 
- - ~  / s t  

A 

~ o o ~ ' .  

( - r~A)->A 
15 

T->A 

3.2 ])]~FII~ITION. 
smallest set s.t. 
i) i r j ~ p j  e F r  

[T-->( T-->A)] ( T-->A)->A 
Tr 

T - . A  
- - / 5 '  
T-->A 

:EC(p~), t h e  set of .Formal, ConSexSs of Pc is the  
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ii) ± e NC(p~) 
iii) A,  B ~£z=>(A~B) e_FC,(p~) 
iv) A ,  B e NO(p~):~(A ^B),  ( X v B )  e/~C(/%). 

3.3 EXA~ZpI,E. /0o^ (pl-->/ao) is a formal context of Pl and not  of Po- 

3.4 TIn, ORES: ~/£ore Substitution of Equivalents. Zet G[po] be a for- 
real eon~ex~ of 1Oo. 

A .-~ B~C, [A. ] 
i) SE+: xvP/5 is closed unde r : ,  G EB] .... 

T-->(A,-,B) 
ii) SE +f:  li!PZ is dosed under:  

(TEA]~C,[B] 

P~ooF. Induction on proof length or use Completeness Theorem. 

8.5 Unlelty of Fixed Points in  Formal Contexts 

Suppose ~[Po] is a formal context of Po. We  have: 
i) (A -t I'r,~,r,C[A] and B ~ br, Fpr.VEB]) =~A "t Fr, vpLB. 
ii) (Formal Version of i): zvPZ is closed under:  

A .+G[A ] B.-~(7[B] 
A .-~B 

[] 

I ~ o o F .  
i) V 

ii) 

A A-~Tnon[ T->B] 

A B-->A A-+B 
(ex hypothesi) 

G[A ] A .-,B 
SE + 

o iB]  
B (ex hypothesi) 

Z '  
B 

A~C,  EA] 

[T-->(A ~+B)] SE+f 

~ E A ] ~ G [ B ] .  
1-r 

A ~C,[B] B~GEB] 

A ~ B  
A ~ B  

T r  

3.6 FIX]~D POINT THEOREYI..t~Or any C[po ] we have: 

0E r]   FpLVIVE r]]. 
Before proving 3.6, first we give two lemmas. 

3.6.l. I~E~A. Ze~ D[po] be a forma~ con~ex~ OJ po. Then: 

[] 
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PROOF. "F" 

Trivial ly we ha, re:  .D[T]  -{ FD[T],FpLT ~ 
so by SE: 1)[1)[T]] q FZ~[T],F.Z.L1)[T]. 
Thus:  1) IT ]  I-_~pz,1)[1) [ T]]. 
(l~ote tha t  we did not use tha t  1)[P0] is formal, nor did we use /L)  

T 

[ T-->-1) [ T]] .D [ T]-->T 
1)ID[T] ] T+-~1) [ T] S~__j+ 

1) IT ]  L '  [ ]  
1 ) I T ]  

3.6.2 DP,~mI~m~. ~I0( i~),  t]~e set of strictly informal contents of 
1~, is the smallest set s.t. 
i) 1~ e ~I~(1a~) 
ii) la~ does not  occur in A ~ A  e $IC,(I~) 
iii) 1), E e ~IC,(~) ~ D ^  .E, D v  E ~ SIO(T~). 

3.6.3 Ex~vmnE. (po^p~)v (/ol---~:p~)is in Si(~(la0)but not in ~ IG(~ ) .  

3.6.4 L~rm~. ~or every 1) e .9 ,  T ~ P ,  Shere is a p ~ , ~ e P ,  
1) ~-- .E[~]  <p~> and ~[p~] <p~> e -~C(~) and ~[Pk] <p~> e.~ s.t. 

E [Pk] <Pz> e ~IC,(pz). 

PaooF. Routine. [] 

3.6.5 EXA~LE. Let D ~/aoV (lal->po). For Po choose p~, pa and 
~[p~] <~> -p~v (p~-~p~). 

D[A] 
3.6.6 L~A. If 1)[Po] e ~Iun(Po), ~hen ~'PZ, i8 dose~ ~nder 

1) [T ]  

PROOF. Induction of D [P0]. (The idea is tha t  the relevant occurrences 
of A are only in positive places.) [:] 

PROOF OF 3.6 
"F" By the same reasoning as the "b" par t  of 3.6.1. 
"-I" Write O[Po] as D[Po] <To>, where D ~ o ]  <Po> is as in 3.6.4. 
Apply 3.6.1 to D[po] < T>. We find: 

( ] [T ]  ----- 1 ) IT ]  < T> "l FEpL1)[C~ [ T]]< T >. 
By 3.6.6: 

e l y  [ T ]] -- 1)[0 [ T ]] <V [ T ]> FFp~1)[C [ T ]] < T>. 

So we h~ve: C[C[T]] Fi~pLC[T ]. [] 

3.7 R E ~ K .  Of course we do not have unieity of fixed points in 
generul as is seen in the case C[Po] =-Po. 
We do get: 
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A -I FI;F~zC[A ] ~AFr,  ypz 6'[ T]. Since A 4 F.r,~,F.r,z, T, we get C [ A  ] 4 Fr~,F.aa.. 
C[T] .  So / , C [ A ]  Fr, Fpr~O[T]. Thus A ~ r ,  FPL6'[T ]. So (][T] is the  
m~ximal fixed point  w.r.t .  Fr,~pL- 

3.8 EXX~rPL~: "The L iar" .  T->•  is the  unique A (modulo 4 F ~ . ~  
s.t. A 4 F ; ~ - ] A (  = A-+•  

&. A "classical" version o f / ' P L  

4.1 DEFII~ITIOI~S. Let  F, A c .Z. 
i) Sub~ = {sis: P-+A} 
ii) -- /~ = s(pl) 

- ( X / ,  B)" = (X" ^ B ' )  
- (X v B)" = (X'  v B ' )  
- -  (A--->B) 8 = AS-+B" 

iii) P = { B ' I B e F }  
iv) E l i =  ~ , .A:  ~ f o r  every s e S u b n  (}-RE" ~ ~'RA"). 

4.2 SOME ~'ACTS. 
i) Consider s e SUb{T }. We have for any A e s 

A~ "~ ~'IPL T o r  .4s "~ ~ ' i p L l .  
ii) Let  6 'PL  be Classical Propositional Logic. We have:  

F I-ep L A c ~ F  II ={T,I},IPL A. 
iii) F bvpr~ A ~:~ F il=~,vpz A. 

P~oozs.  l~outine. [] 

Below we will do something analogous to the  "classification" of I P L  

for /~PL. 
4.3 DEFII~ITIOI~S 

i) -- • ---- T(~-•177 

-- -to: ------- • 

-- • : ----- T-+In 

4.4 FACTS 
i) a~be~o+l ~nd a<b~• L • and •177 

ii) Let a~ b e eo+l~ then: 

-- _L a A • ~ ~'FPL • 
-- • v • q ~FPL-tmax(a,b) 
-- if a <~ b • • 4 ~-~,pL T 

if  a > b .La-->" l b "] ~-FpL.]-b+l 
iii) I f  s eSub{• then  for any A e . ~ ,  there is an r e w + l  s.t . :  

A 8 4 ~YPn • 

I~OOFS. All the  proofs are easy. Let  me just  prove:  

a ~> b =>. _La'->'.L b ~ ~'lOpL.J-b+l. 
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-Lb+~ 
-r Ill 

•  T - ~ •  b 

_La--> T b 
Tr  

[ • by  (i) 
-[-a--1 

-La--> • -Lb-">" •  

_l_ a --> .L a -  

Ill 
( T-+•177 / i  

T-> • ~ 

111 
La 

T-->_L a •177 b 

T ~-Lb" 
ill 

-Lb+l [] 
4.5 DEFINITIONS 

i) ^ : (~+1)2- ->(~+1)  w i t h  ^ (a~ b) ---rain(a,  b) 
v : (oJ-~l)~->(eo+l) wi th  v (a~ b) = m~x(a~ b) 

-+: ( ~ + l ) ~ - > ( o J + l )  wi th ->(a ,  b) = {oJ ff a ~ b  
b + l  ff a > b .  

il) An  ass ignment  f is a func t ion  P ~ o ~ + l .  
iii) Le t  f be an  ass ignment .  Def ine:  

- t ~ &  =f (~o i )  
- [ •  = o 
- ~(~t ^B) ]~  = ^ (~Ais ,  ~Bif) 
-- [ ( a v B ) ]  t = v ([A]$, [B]I) 
-- [A-+B] z = ->([A] z, iS]I).  

:iv) L e t / ~ w  {A} _~ .~. Def ine :  
-- F ~ A:  <*((for every  B e F :  [B]] = w) ~ [A]! = m) 
-- P ~* A :  for  every  ass ignment  g F ~a A 

- -  r b A :  <~,inf({[B]: [B e F } ) <  [A]: 
(Note t h a t  i n f ( O ) =  ~) 

-- F V A : r for  every  ass ignment  g: / '  Va A.  
4.6 :FACTS 

i) ~} A.~*- ~j.A 
ii) k~ A-->B.~ ~ t A - > B ~ A  ~IB 
iii) I " ~ I A : ~ I ' ~ A  

iv) F ~* A - ~ F  I[ ={• A 
v)  F V* A r (for every  s e Sub v: ~* F s => ~* A*). 

!>~ooys. i)-iv) are ent i re ly  rout ine .  Le t  us  do v). 
" ~ "  Suppose  F V*A and  ~* FL Consider an  ass ignment  g. We have :  

~ / ' ~ .  Define an  ass ignment  h as:  h(p~) = [s(l~)]o. Then  
~ r ,  so ~ A .  T~US ~ ~ .  
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s(p~) = • Then: ~* 1"s, so ~* A s, thus  e] A. 

~ . 7  F A C T S  

i) A ,  A ~ B  ~* B 
ii) Po, Po-~Pi i:/: ~ 
iii) •  ~* •  bu t  not  ~* •177  
iv) F, A ~ B ~1"  ~ A-->B. 

Suppose for every  s e Sub L ~* 1 ~ ~ ~* A t  Let  ~;F. Define s wi th  
[] 

[] 

P~oo~s .  Rout ine.  

Obviously  ~ looks more like I'xP35 than  ~*. Below we will axiomutize ~. 

4.8 Tm~o~m,[. Zet  F u { A }  c 2~o. We have: 1" ~ A ~ , fo r  all f inite,  
irrefl$xive, linear K :  1" IF~: A .  

t ~ o o F .  

" ~ "  Suppose 1" ~ A. Let  K be finite, irrefiexive and linear, and w JF K 1". 
Wi thou t  loss of general i ty  we m a y  assume tha t  w is the  downmost  node 
of K und tha t  W = {1, . . .  N} and tha t  m ~ n<*m > ~. 

Define aK(A ) = / m a x { k ] l  ~< k ~< 32 and k tl- K A} ff there  is such a k 
| 0 else. 

Define an assignment  f ~  b y :  fK(Pi) = aK(Pi', 
We claim: aK(A) = min([A]IK , 32). 

The proof  is b y  induct ion on the length of A. Suppose e.g. A ~ (B-+C,). 
In  case [B]]IK ~ [C]f K we have ag (B  ) ~ aK(C ) b y  Induc t ion  t typothes is .  
So ~ II-B-->C o r  aK(B-->G ) : _~. 

When  [B]I K > [C~I ~ we have to consider two possibilities: --[C~] K >f 32, 
then [B-->C~I K >1 32. B y  Induc t ion  ] typothes is :  32 I~ K C, so 32 I~ B->C. 
-- [C]]E < 32. Then b y  Induc t ion  t typo thes i s :  aK(C ) < a~(B).  So aK(B--->C ) 
= aK(C ) §  = [B-->C~.IK = min([B--~C~SK, 32). We assumed 32 1~ K 1". So 

for B e 1 " a g ( B  ) = 3 2  and thus  [B~IK>~32. Because  1 " ~ A ,  we have 
[[An/K~ Inin({[B~iKlB e 1"}) I> 32. So 32 I~K A. 
" ~  " Suppose  1" [~ A ,  then  there  is an f s.t. min([[B~f}B e F}) > [A]I. 
Suppose min({[B~11B e 1"}) = M. W e  const ruct  K~ = <W, ~ ,  g>. Le t  
W = { 1 , . . . , M }  and for re, n e W :  m ~ n: r  Take p i e g ( m ) :  
: ~*f(Pi) >1 m. 

B y  the  usual  induct ion on the length of A we prove  for  1 ~< m ~< M:  
:m I~-KIAe..[A]I>~ m. I t  follows ~bhat M I~c ~ 1", b u t  MnonlbK~A.  

4.9 DE~I~ITIOXS. We  shall consider an axiom us  a rule with e m p t y  
premiss. 
i) B _ P l l  is B_Pl + ((A-+B).v((A-+B)-+A)) 
i i)  F~I ~L is _EPL+((A-->B)v((A-->B)-+A)) 

or 
BILL + L 

6 - -  S t u d i a  L o g i c a  2/81 
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4.10 COMPLETENESS FOIr B P Z L  AND ~ P L  eL. 
i) Let F w { A }  c_ ~f: 

P FBpLL A.:c.for all linear Kripke models K :  /"IF~ A .  (Here linear 
means: for any w, w' e W, w < w' or w = w' or w' ~ w). 

ii) Zet F =_ s be iinite~ A e . ~ ,  then: 
I ~ ~'FpLffL A ,#>fotr all fini$e~ irreflexive~ linear K / "  Ib K A 

r /" ~ A .  

P~ooF. 
i) " ~ "  The val id i ty  of (A-+B)v  (A-+B)->A is routine.  

, ~  ,7 Suppose F nonl- BPLL A .  Consider the  model  K = <W, < ,  f>  
const ructed in 1.9 Le t  A _ /" be BPLL-pr ime  wi th  A r A. Le t  
K~: = <Ws, < ~ , f l >  where  W~ = {[A'] e WI[A'] ~> [A]} ~nd 

~ = < [--W~• a n d f ~  = f [ - W x .  
C lea r ly / "non  I ~  A ,  so it  is sufficient to show t h a t  K~ is linear. Consider 
[Ao] , [A~] e W~. The c~se t h a t  Ao = A or A x = A is triviM, so ~ssume 
Ao, A~ ~ A.  W'e h a v e :  

[~] <~ [&] 
[A] < ~ [A~ ] .  

The ease t h a t  Ao = A~ is triviM~ so ~ssume t h a t  for some G: 
[Ao] nonlt-K I C~ 

Suppose: 
[Ao] Ib~ A - > B  and  [A~] i~x A. 
We dist inguish: 
case i) [Ao] nonll-l~ A ,  then  [A] nonlkK~ (A->.B)->A, so [A] II'KA---~B. 
So [A~] m~ B.. 

euse ii) [Ao] I~g~ A ,  then  [Ao] I~K, ~->B.  
Well:  [A] I ~  (O->B) v ((C~B)->G).  Beeuuse (T->B)  
Ib~(C->B) we have :  [Ao] Ik~(C-+B) and  [As] I[~ ~ ~. So 
[A] nonll-g~(C-->B)->C,. So [A] IkK~(G->B). BUt [A~] It-g-l(]. So 

So A~ is ll~0-prime and  [A~] ~> ~ [Ao] 
ii) " ~ "  as in (i). 

" r  " use (i) and  the  fact  the  constructions in 1.13 and  2.2 preserve 
l ineari ty.  [] 

4.11 ~ACT. Let 

7 (A ^ B) 7 A  v 7 B  
Di~ I: DM~: 

7 A v  7 B  7 ( A ^  B) 

7 (A v B) 7 A  ^ 7 B  
D~3: "TAATB DM~: 7 ( A v B )  

i) DM~, D]~[a, D]K 4 are  derived ruleschemes for BPJS. 
ii) DM~ is derived for BP.5.5. 
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P~oo~.  i) I~outine. 
~) 

( B-+ • ) v ( B-->_L )-+ B 
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[ B - ~ •  

- ] (AA B) 

Ill 
(A ^ B ) - > •  

A~(B-+I) 
A ~ A  A ~ B  

- ~ I f  
[(B-> •  

(A-+L)  v (B-+ • 

A ~ A A B  
Air  

A A B ~ L  

A-+• 

(A-+ • v (B-+• 
(A-+•  v (B-~.L) 

ill 
7 A  v -]B 

or via the  completeness theorem.  [] 

5.  Interpretat ions  

We will in terprete  F P Z  in Pea, no Ari thmet ic  (PA) via PrL  and 
directly.  

5.1 The Language of Modal Propositional Logic (MPL) 

Let  P, A, V, -->, l be as in the  ease of ~f. [] is an addit ional  logical 
constant .  s the  language of MPL,  is the  smallest set s.t. 
- -  p _ _ s  •  D 
-- A ,  B e ~ f D ~ ( A A B ) ,  ( A v B ) ,  (A->B),  (F3A) e.SPE~. 

5,2 Kripke Models for 2~PL 

i) A (Kripke) l~Iodel for M P Z  is a s t ruc ture  M = ( W ,  ~ , f } ,  where 
W is a set (of worlds), ~ a t ransi t ive b inary  relat ion on W and f 
a funct ion W->P. 

ii) ~ E W • D is the  smallest relat ion s.t.: 

-- (w ~vx A and w k~  B) =r ~ (A ^ B) 
- -  ( w ~ A  or w ~ t B ) ~ w ~ a f ( A v B )  
-- (w ~M A ~ w  ~ B) =>w ~ (A-+B) 
- ( V w '  > w ~ '  I=~ A )  = w  ~ ' ( [ ] A ) .  

fii) Define for /~_ s : 
-- w ~ I-': ~,  V B  e I" w ~ B 
-- I ' ~a~A:  " , ~ ( V w e W  w ~ I ' = > w  ~aIA) 
-- M ~ A :  r kM A :  c, .O ~a~ A 

iv) -- K is the  class of all finite irreflexive Kr ipke  ~Iodela for B/~5 
-- M is the  class of all finite irreflexive Kril~ke Models for M P L  
-- /~ ~ rL  A means :  for every  M e M  I '  ~M A. 
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5.3  Two Gildel Translations 

We define: 
i) 0: ~e_~e~ by :  

(p~)o: = []p~ 
( x ) ~  = ( [ ] •  

( A ^ B ) ~  = ( A ~  ~ 
(A  v B )  ~ = (A ~ v B ~) 

(A-+B)~ [ ] (A~ ~ 
We have: 

ii) 1 : ~ s  b y :  
(~o3 ~: - -  (P~ ^ [ ] ~ 3  
( •  = • 

( A A B )  ~: = ( A  ~ ^ B  ~) 
(A V B)~: = (A ~ v B ~) 
(A->B)~: = [](A~-+Bi). 

5.4 T ~ o ~ E ~ .  2Xor f inite I" ~ ~f , A e ~ : 

i) F F~p.~ A ~ P  ~ = {B~ B e F} ~'~.~ A ~ 
li) -~ ~'FPL "A"~"fq FPrt AI" 

PROOF. We know:  for F___s finit% A e s  Ft-FpzA. ,~ l~i t -~pLA.  
And  for /~' ~ ~tf~ finite, A '  es  F '  Fp~ L A'r ~ r z A '  (see [1], 
[9]). So it is sufficient to show /or F _= ~ finite, A e s 

i) /11~e L A*~/ '~  I~p~ z A ~ 
ii) 11 ]}'FPL A .r [}'Pr.L A1 

Case ii) is r a the r  easy, so let  us do case i): 
I t  is sufficient to provide 4 :  M.-->K and  ~ :  K-->M s.t.: 

4 ( M )  II- A . ~ M  ~ A ~ 

K Ik A r  ~ A ~ 

For  assume Flt'FeL A and  M ~ F  ~ Then 4 ( M )  IFF. So 4 ( M )  It-A. 
Conclude: M ~ A ~ (Clearly A ~PrL B.,~ V M :  M ~ A ~ M  ~ B.) The other  
direction is similar. 

Now let us construct  4 ,  T. Consider M = <W, . ~ , f } e M .  Take 
4 ( M )  = M ~ = <W~, ~ , f ~ > ,  where:  

- W+: = { w e W t 3 w '  w < ~ v ' }  
W'"  r "~ W' - -  f o r  w ,  w '  e W e :  • ~ ,  . 

-- for w ~ We:  f (w) = 0 {f(w')  l w' > w, w' e W}. 
Consider on the  other  hand  K = (W,  ~ , f>  e K. Take  ~ ( K )  = K v 

= ( W  v, ~ ~ fv> where:  
- w ~ ' :  = w u ( w x { w } )  
-- for w, w ' ~ W ~ :  w . ,~ 'w ' :  .~( (w,w" ~ W and  w ~ w') 

or (w = (w", W> and (w ~ ~ w "  or w = w"))). 
- -  ~or w e W ~ :  i f ( w )  = U { f ( w ' )  I w '  ~ ~'w, w" e W } .  
l~ow it is e~sy to see that 4, T h~ve the derived properties (by in- 

duction on the  length of A ;  note  t h a t  K ~ = K).  
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5.5 DE~'INITION. I~et f :  P-~L~~ Define: 
i) (p3f: = (fp~) 

( •  = (o = 1) 
(A A B)I: -:  (AI^ B I) 
( A v B ) Q  = ( A I r  B f) 
(A~B)~:  = [] (Af_~BS)( -- ~.ov(~A~-~B~)).  

ii) (/~)oI: = []f(Pi) 
(• = O(0  = i) 
(A ̂  B)~ = (A~ B ~ 
(AVB)~ = (A~ ~ 
(A-~B)01: = [] (A~ ~ 

iii) Ze t  g(T~): = (f(P~)^ []f(P~)), t h e n  A~I: = A g. 

5.6 TH~o~a~.  Ze$ F _~ -~f be f ini te and A e s , then: 
i) F k~eL A ~*V/: P--->Z~PA + F ~ t- A ~ 
ii) F ~ A r P - ~ f ~  P A  + po~ t- A ~ 
iii) P ~ p ~  A - ~ f :  p_~qo~  P A  + p~l F A ~I. 

P~OO~. The  proofs of ii) and  iii) are by  combining 5A wi th  Solovay~s 
Completeness  Theorem [9]. Note  t h a t :  F k~p~Ar  b~pL A/'-~A, by an 
easy Kr ipke  ~ o d e l  proof,  and  t ) A + F ~ I F  A ~ . . P A  k E ] ( A F a ~ A  ~) 
(i ,= O, 1). Le t  us  t u r n  to  the  proof  of i). 

There  are s t anda rd  ways of reducing cer tain sentences to  p rovab ly  
(in P A )  equiva len t  X [ sentences.  I t  will be COilvenient to  forget  to m e n t i o n  
these  reduct ions.  Al te rna t ive ly  one can r e a d :  
'{A e s I~B e X ~  ~ A,,- .B}'  for 'X~ in the  s t a t e m e n t  of t he  theorem.  

" ~ "  By  induc t ion  on the  length  of the  proof.  I~ uses L6b's  Rule  for 
xOA. --+I uses the  fact  t h a t  for A e X~ P A  ~ A - + [ ] A .  

" * '  Suppose F nonF~z .  A .  l~et K be the  f ini te irrefle~ive model  of 2.2 
such t h a t  K IF F and  K non IF A .  W i t h o u t  loss of general i ty  we m a y  assume 
t h a t  W = {1, . . . ,  N} and  t h a t  1 <~ 2, . . . ,  1 <~N. 'm ~ n '  can be bite-  
p resen ted  in P A  in the  obvious way.  

We now t u r n  to the  proof  of Solovay 's  Completeness  Theorem (see 
[9]). Solovay provides  a (primitive) recursive func t ion  h s.t . :  
i) 
ii) 

in) 
iv) 
v) 
Clearly i ~ 1 is p rovab ly  equiva len t  to  3 m i  ~ h(m), 
Define:  

l"[i l l -~ j }  if there  is such an  i 
g ( i ~  "V0{"i 1 ~--' else. 

PA F (h: N ~ { 0 ,  1, . . .  ~ } )  
PA ~ (~(~)  ~ 0 - ~ h ( n + l )  _~ a(~))  

Let  ~: = l imA(n) .  (By i), ii) I exists). 

(PA + 1 ---- i) is consis tent  for i = 0, . . . ,  N.  
P A  ~ i f =  ~-~[]  (~ ~ i)) for ~ = 1 , . . . ~  
P A  ~(1 =i-->- '][]- l l  = j ) ,  for j ~> i ,  for ~ = 1 ,  . . .2V. 

a Z~l sentence.  
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Clearly g(pj) is Z ,  ~ We  claim: 
I :  ~ IFz= A * P A  F (l ---- i - ~ A  g) 

I i :  i nonlb~ A ~ P A  ~-(Z ---- i - ~ T A  g) 
The  proof  is by  induc t ion  on A ,  s imul taneous ly  over  I,  H .  
Suppose  i IF K A: 
a) A = p~. Clearly P A  F l = i -+ i  ~ l 

-+g(p~) 
b) Then  A, V ease is t r ivial .  
e) A =--(B-->C). We have :  

V j  > i j l } -KB=>jlFKC.  
Using the  induc t ion  hypothes i s  and  th6  fact  t h a t  there  are only  f ini te ly 

m a n y  j > i ~, we f ind:  

(l~0te t h a t  we use  the  induc t ion  hypothes i s  on  I I  for B.) 
B y  i v ) : P A  ~ (1 = i-~[:] l  ~> i). So P A  ~ (1 -- i-~[:](Bg-->Cg)) i.e. P A  

(~ = i->Ag). 
Suppose  i non II- A:  

a') Suppose  A ~- 10j. Consider i '  s.t .  i '  I~rpj, t h e n  i '  A i. Thus  P A  ~ (~ 

= ~-->i' 2 l). So P A F  i = ~-~-lg{pj). ( I t  the re  is no  i '  Ib~.pj t he  
case is tr ivial) .  

b') The ^ ,  v ,  • c~ses are trivial. In  the • case we use iii). 
e') Suppose A ~ (B->C). So there is an i, m i with i, Ibr B and i' nonl~ x ~ .  

B y  I n d u c t i o n  Hypo thes i s  and  proposi t ional  logic: 
P A  ~ ~ = i'--+ ~(Ba-->Ga). 
B y v ) :  P A  F (l = i - ~ 7 [ ] - I ~  = i ') .  

i.e.: /~A b l = i-->-]A ~'. 
We find: P A  b 1 ---- 1->A pa 

and: P A  ~ 1 = 1 ->- ]A ~. 
B y  iii): ( P A + F ~ + - ~ A  ~) is consistent :  
So:  P A  + F ~ nonF Aq. [] 

5.7 R E ~ K .  Let  for f :  P-+.C~'~A, (A) *~ denote  t he  usual  inter-  
pretation of -W n in 5 e ~ .  I t  is easily seen that the proof of 5.6. i can be 
a d a p t e d  to  give:  

(Pct[31"~)^ [3 (p~ -+ [31%) t ~ e/V} ~ , ~  A ) c ~ ( V / :  P-+Z'~ P A  ~ A*~). 

5.8 CO~OLL~Y. Ze~ C = {"0 = O ' } ~ { " - ] v o n ~ ( P A ) " l n ~ N } .  Then 
for  f~m~e I" ~_ .~ .  A e ~ : 

P F~pL~L A ~ V f :  P ~ C  P A  + F y J- l I. 

P R o o f :  ~ o t e  t h a t  ( •  is p rovab ly  equiva len t  to 7 c o n n ( P A )  and  
(.1..) I wi th  0 --- O. . [] 
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