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Abstract 

An exact solution is given for the bending of uniformly loaded rectangular cantilever plates by 
using the idea of generalized simply supported edge together with the method of superposition. As 
illustrative examples, a square plate and a rectangular plate with the ratio of the clamped edge to the 
neighbouring free edge equal to two are solved numerically. The results are compared with those 
obtained from approximate methods to conf'Lrm the validity of the method presented. 

I. Int roduct ion 

Rectangular cantilever plate has one edge clamped, three edges free with two free corners. To 
find an exact solution, which ,satisfies both the differential equation and all the boundary conditions 
including the two free comers, has long remained one of the most difficult problems in the theory 
of elastic thin plates. However, due to the importance of this problem in engineering, much work has 
been done. For example, the method of f'mite difference and energy method were used to effect an 
approximate solution. Moreover, Fourier integral was used to solve an infinitely long rectangular 
cantilever plate. Probably, L. V. Kantorovich was the earliest research worker who tried to solve an 
uniformly loaded square cantilever plate by using his own method. C. W. MacGregor solved the 
rectangular cantilever plate with the clamped edge inf'mitely long, and a concentrated load acting on 
the infinitely long free edge. His solution was verified nicely by experiments. D. L. Hell used the 
method of finite difference to get a solution of a cantilever plate, the ratio of the clamped edge to 
the adjacent free edge being equal to four and a concentrated load acting on the middle of the long 
free edge. J. J. Jaramillo made further calculations of the infinitely cantilever plate by placing the 
concentrated load respectively at distance �88 �89 �90 of the depth of the plate. W. A. Nash also used the 
method of finite difference for solving an uniformly loaded rectangular cantilever plate, the ratio of 
the clamped edge to the adjacent free edge being equal to two. Shih Tsun-tong was the fhrst to use the 
generalized variational principle for the elastic thin plate. He attempted to get a solution of the same 
problem solved by Nash. Later, this variational principle was also used by H. J. Plass, Jr. and others 
to work out a solution for an uniformly loaded square cantilever plate. Recently, with the advent of 
computer the method of finite elements is used to attack this old problem, although much has to be 

improved. 
From the works mentioned above, it can be seen that up to now "for a rectangular cantilever 

plate no exact solution is available. This paper attempts to get an exact solution of this well-known 
problem. For this purpose, the concept of generalized simply supported edge and the method of 
superposition are used. Like the case of clamped edged rectangular plates, we shall be led to series of 

inf'mite simultaneous equations to be solved. 
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H. General ized Simply Suppor t ed  Edges 

For an ordinary simply supported edge, such as x = a, the corresponding boundary conditions 
will be W = 0 and Mx = 0. Along a generalized simply supported edge such as x = a, the bending 
moment Mx still vanishes but the deflection W does not vanish. Accordingly, when setting occurs 
along an ordinary simply supported edge~ it becomes a generalized simply supported edge. And 
along both kinds of simply supported edges there will be transverse forces acting. 

The merit of adopting generalized simply supported edge is very plain. To start from it, we have 
only to eliminate the transverse forces along the edge to fulf'd the boundary conditions of the free 
edge. 

As some preparatory work, we shall solve the following several simple problems involving 
generalized simply supported edges. 

(I) A rectangular plate has three simply supported edges and the fourth edge y = b is a 
generalized simply r edge, as shown in Fig. 1. Along this edge the deflections will be ex- 
pressed by the sine series: 

( W ) y . b =  ~ a .  sin mTr____y__x o ~  
G I1-1 

The deflection surface of the plate is 

2 , - i  s inh a.. 1 p 

+ a,, co th  a= ) �9 s inh  mZYa rnrCYa 

" c o s h  m : y  } s in  tl~;tx a ( 2 . 1 )  
~ '  a. ,sin- 'nz---x- 

!/ 

m~rb 
in which Otm = --. Along the edge y = b the transverse forces are a 

a-~-F-j~ + ( 2 -  l,) -O-~-~s 

Fig 1 

X 

b 

J_ 

D rn~n z [ 3 + ti 
= ( 1 - U ) 2 ~ ,  a3 a,, 5 ~  coth  

Along the edge x = a, the transverse forces will be 

( F ~ ) , . o =  - D [ O~W O~I'V ] 
Ox------7- + (2 - P) OxOy ~ .... 

am ] sin - -  
a,,, + s inh  z a~, 

m.Tr x 
( 2 . 2 )  

i ~g] 3 3l" 3 Qm 
= - D 2  (1 - / a ) z  y-~ a ~ s inh  a.. 

m =  1 

�9 [ ( a .  co th  a , , -  2) s inh  mn.va mnYa 

Expressing the expression in the brackets in sine series, we get Ei 

E i  =-~. (a,,  co th  a . . -  2) s inh  tony m:ry 
o tl a 

- - c o s h  m:ry ] (I j COS f n ~  

cosh m=U ] in! /  - -  ' sin dy  
a a T 
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4sinh a .  cos in is=s 
b n' + bz / 

Substituting this equation into the above equation, we have: 

(V.,) x - . = - D 2  ~ is ~: u)\~ 'Z]-"" cos.,.E cos;= 
m 

ne - I  i ~ l  

Similarly, along the edge x = 0 we have the transverse forces: 

(v.)..0----o 2 ( 1 ~ u ) \ ~  ~ ~2 i~cosi~ 
b z i 2 x 

Along the edge y = 0 the deflection surface has its slopes: 

( ) - ma. rl+/~ 8W =~ 1 2 /  ~ sinh a., t-]-Z-7+a, coth a. ] sin - -  - ~  Y-O 

The concentrated forces acting respectively at the corners (a, b) and (0, b) are: 

( R ) . . . : 2 D ( : - # )  
w - |  

b z i 2 ~: 
i~y 

sin --~--- (2.3) 

i~y 
sin T (2.4) 

m~X 

{ 8 zW ~ n 2 
- -  ~,- = D ( 1 - # )  ~ ~.a.,m 2 cos mz k axOy 1,.; - ~ -  

(2.5) 

�9 F 1 + .  ~. ] 
L-I--X- ~ -  co th  a,. + sinla" a= (2.6) 

srz F 1 + #  - a .  ] 
(R)~.o=D (l-U)" �9 a2 y] a.,m' L-TZ-g-coth a.,+ ~nhi a, .j (2.7) 

W = b  i ~  I 

When the generalized simply supported edge has its deflections symmetrical to the mid-point of  the 
edge, we have to change Z to 2; 

m=l re=l, 3 , . . .  
(2) A rectansular plate has its two edges y = 0, y = b which are simply supported and the 

other two edges x = 0, x = a are generalized simply supported edges, the deflections of which are 
given by (Fig. 2): Dry 

( W ) = . , = ) - ~  b, sin b 
�9 : m e  i - I  

! . . . .  . ~ - . a ~  , , I  
I l I I I I  a " -  

,'I OiSID 

Fig 2 
The deflection surface is given by: 

W=1-~2 ~. b , { .  cosh p:  - 1 
sinhB~ 

2 ) s inh  i~r____~x 
1 - #  b 
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i~rx i~rx ] 2 isrx 
+ - - - ~  cosh - - 7 _ 1 +  l_t----- T eosh b 

i / /~  "~_ } ~' ~X 
: s inh sin - -  
o b (2.8) 

in which/3i = --if-. 

Along the edge x = a, the transverse forces are equal to: 

isrrs c o s h , & - ]  [ 3 + ~  fl' sin (2 .9 )  
( V . ) x . . =  ( 1 - l t ) '  b, ~ s inh f l ;  " 1 - : *  sin--fi,8; -g- -  

Along the edge y = b, we have the transverse forces: 

(Vu)u .b=D4(  l - # ) *  m ~ msrx " 'r~,5.2, b, cos i,~ ~ ~i,~ - -  
b~ ,-I i =-l,s--. + b  z 

(2 .10)  

Along the edge y = 0 the deflection surlace has its slopes: 

~1~ m 's 
oW ) 4 v"  b, ( 2 - u ) - - r  . . . .  

( -o7. yT. m V ij sin- - "-t,s... ( --~i-m"+-~ a 

The concentrated force acting on the corner (a, b) is equal to 

( (R),. , ,  = D ( 1 - l l ) z - o i ~ b i  i2[ c o s h f l i -  Isi__~_ff.fl~. fl; c o t h f l , +  --1-~- ~-l-b/a ' } -  f l , ]cos irr 

(2 .12)  
(3) There is a simply supported rectangular plate and along the edge y = 0 are acting bending 

moments expressed by (Fig. 3): 
M ( x ) =  ~ E',,, sin mrr_x_x 

m - I  

E~s ln  m~rx 
m-I G 

/ / ! / / r / 

,Y 

The deflection surface of the plate is 

a '  X-" E , . [  
W ~ 2Dz2 ./.~, m2 t 
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+ eoth  a~, muY cosh ~- -~]s in  m a y  a ' a ( 2 . 1 3 )  

The transverse forces along the edgey = b are: 

mE,, 1 _lz 
sinha "[l + ~ a , .  cot ha,~ m"x 

o 
( 2 . 14 )  

Along the edges x = O, x = a the transverse forces are: 

y-: (V, , ) , , . .= a 

[ b 2 i: ] E~i ~_ + (2 -P)  ~ cosmzr 

," b z i 2 )2 ,n ~ + - - ~  
, sin--b-. (2.zs)  

b* i z 

s i r l - - -~  
, - ,  . b ~ i ~ -)~ (F")~-~ -f-~' ~ m / ~ ' ~ + ~  

The deflection surface of the plate has the slope along one of the edges y = O: 

( OW ~ a ~ E ~ , l ' s o t h a ~  a .  "l . mrtx 
- - ~ - - / y . o = 2 - - D - ~ , - ' m - - t  sinh~a" J s a .  --a~ 

The concentrated forces at the two corners (a, b), (0, b) are: 

(4) 
The transverse forces along the edge x = a are: 

( 2 . 1 6 )  

(2 .17)  

E~  ( a .  c o t h a .  - 1)cos mz (2 .18)  (R)x .o  = - ( 1 - p )  �9 s i n h a ~ .  
m J l  

E~ (a., coth  a .  -- 1) (2 .19)  (R)~ .0=- (1 -p )Y~ ,~ .~  s i n h a .  
m w l  

A rectangular plate N ~nply  supported and uniformly loaded, q being the load intensity. 

2bq 1 
(Vx),..----- ~-~ ~ .  ~ ( 3 - / ~ )  t a n h  - ( 1 - # )  

i - l C q * . -  

2 

cosh ~ 3~ 
g 

sin b ( 2 . 2 0 )  

Along the edge y = 0 the deflection surface of the plate has its slopes equal to: 

r 
8 W 2aa q V ~ 1 ] an, 

. o = ~ - ~  ~ -- t anh  
r m ~  1,~$.-  , 

Along the edge y = 17 the transverse forces are: 

~ 2 sin mu_.___zx 
cosh* a,, a 

2 "  

(2.21) 

1 a . ,  9. m.rt.x 
2aq ~ .  m z ( 3 - - / 0  t a n h  - ~ - - -  ( 1 - / ~ )  - -  sin . . . .  ( V y ) y . 6 =  n~ 

U,n ill ,,-I,s... eosh z "~ 

The concentrated reactive force at the corner (a, b) is: (2 .22)  
am 

( R ) , . . =  4(__ ~) qa, E m ~ ~- - - -  (2.2s) 
I - b m. I~S,. .  c o s h "  

3 7 5  



Having got the above four parts, we can superpose them to satisfy all the boundary conditions and 
the free corner conditions. However, only these four parts are not sufficient to realize the displace- 
ments of the two free comers (t3, b), (a, b) as it should be. For the above four parts still keep these 
two comers fastened. Therefore, we have to introduce an additional part to be superposed. 

Let the deflection surface be 
Y = k y  (2.24) 

in which k is a constant to be determined. In fact this is a rotation of the plate as a rigid body with 
respect to the axis x. The angle of rotation can be expressed by: 

oW. = k =  4k ~ . . . .  1 sln (2.25) 
y - o  g r/l a m=|tS-,, 

HI. Uniformly Loaded Rectangular Cantilever Plates 

Let there is a rectangular cantilever plate for which the edge y = 0 is fixed and the other three 
edges are free, as shown in Fig. 4. Our problem can be reduced to as follows: 

Within the boundary of the plate we have to satisfy the equation 

V V W -  

All the boundary conditions are: 

= 0  

O=W O=W~ 
-ay.v~-+/~ o x = / u o b  = 0  

OsW . O'W -I ? ~ - +  ( z - u )  ax---r~ju.  = o  

O=g" + u ~ 
8X 1 - - i "  = - o  = 0  Oy ],,., 

a s W  03W "1 --~-~+ (2-u) ~ ~.o = o  OxOy J=- ,  

The two free comers (a, b), (0, b) require 

(b) 

D 

(c ) 

l (d)  

-F 
b 

l 

x .,, ,. / ( /. ( 

! 
G 

Y 
Fig. 4 

(a) 

$r 

R = 2 D ( 1 - ~ O (  02W t~0  (e) 

The above five parts all satisfy the differential equation of the deflection surface of the plate. 
Now we have only to superpose them to fulfd the conditions of a clamped edge and three free edges 
together with two free comers. The solution thus obtained should belong to the category of exact 
solutions. As under uniform load the deflection surface of the plate will be symmetrical to the 
middle line perpendicular to the clamped edge, the lower index of am and Em should be 1,3, 5 , . . .  

To satisfy the condition of the clamped edges (b), we have to superpose the slopes given by 
equations (2.5), (2.11), (2.17), (2.21), (2.25) and equate their sum to zero. Then we obtain 

m ~ a z 
+ ( z - t O  

(I-/~) --~. ~ ~ - v  coth a .  + 2  - -  �9 
4 sinha=l_ 1 - /~  ..  lrBz a2 )z 

( -i-r-- + ~ 

l "1 ~ �9 e , , . r  <,. ] q o  1 a. . 
+ 4 ~ r D  m: -L sinhZa,,, 'J + ~-i-D-D'~ tanh 2 ~ a~ 

cosn - - - ~ j  
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9. ha 
--=0 m ~ l ,  3, 5"- (3 .1 )  4 m z rr 

To make the transverse forces along one of  the edges y = b vanish, the equations (2.2), (2.10), 
(2.14), (2.22) are superposed and equated to zero. Thus we have: 

Ctm i ..... ] 
qa" 2 ( 3 - P ) t a n h  am 2 

- D ~  ~ �9 'n ~ - ~ - - ( 1 - ~ )  a. ,  cosh' ---~- 

_/~)~ a s ~ b~ 
+ 4 ( 1  b a ~ i 

i~l 

cos ix . , 2  as f 3 + #  

~ - V - + - ~ - /  

+ sinhZa.," - ( l + / Z )  2~D m2sinha,, .  1 +  1--i-u ( 3 . 2 )  

To make the transverse forces Vx along one of the edges x = a vanish, superpose the equations 
of transverse forces by (2.3), (2.9), (2.15), (3.2) and equate their sum to zero. The third equation 
becomes: 

qb" 1 [  fl, 9 . . _ ]  
-Drr--~" P ( 3 - P ) t a n h - - - f f - - ( 1 - / ~ )  - -  

e o s h  t 

b s am + ( 1  i _  _ _  
-~) .~ ~os i~ .  ~ m (_--:r- b~ i~ V 

a + ml / 

b 2 i l 

i'-'  " - ~  ~ b' /2 V s- l , , . . ,  m ( - - a i - +  m* / 

. ,,, ] +u (1-v)'b, =o (3.3) 
sinh fl; 1 -/~ sinh fli 

In the above equation i = I, 2, 3 .... , but for the f'trst term when i is even, it is equal to zero. Owing 
to symmetry for the vanishing of transverse forces along one of the edges x = 0, we shall get an 
equation entirely the same as (3.3). As at the free corner (a, b) there is no concentrated force acting, 
we have to superpose the concentrated reactive forces given by equations (2.6), (2.12), (2.18), (2.23) 

and equate their sum to zero. Thus we obtain the following equation: 

~ [ bt ~..bd ~ cos i~r cosh f l i - 1  
i - ,  sinh B; 

1 a 2 E, (am coth a,~ - I) 

. r  I + P  a,,, ] 
- ~. m~a,, I.-~-Z--- ~- coth a , +  sinh' a------~ 

m~l13~ 

4 qa' 1 ( a,. 
+ - - ( 1 _ ~ ) ~  . - - ~ . / u  ~ r~ a tanh g 

mmll~oH 

o _~ 1 +/~ \ (fli coth  ~,, T--~-~-~)  -- f l , ]  

~ s  

2 ) ~ 0  
. c o s h  2 ~ 

$ 

(3 .4 )  
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From another free corner we shall get an identical equation. In this manner, we have got three series 
o f  int'mite ~nul taneous  equations (3.1), (3.2), (3.3) and a single equation (3.4). Using them we can 

ka 
solve the unknown coefficients am, bi, Era, - - .  As numerical examples, we shall solve two problems. 

One is for a uniformly loaded square cantilever plate and the other is for the edges a : b equal to two. 

(A) An Uniformly Loaded Square Cantilever Plate 

As the coefficients Em converge rather slowly, 24 terms are taken. However, the coefficients 
am and bi converge very rapidly. Taking tt = 0.3 from equations (3.1), (3.2), (3.3), (3.4) the computer 
gives: 

qa 4 
a m = 0 .  16661 D ~ '  

O. 15843 X 10 -4 

O. 1 8 3 8 1 •  1 0  - e  

O. 53338 X 10-e 

0 . 2 3 6 4 9 •  10  - e  

O. 1 2 0 0 1 •  10 -8 

0.23645• 10 -~ 

0.71954• I0 -~ 

0.11742X I0 -~ 

0.42755• I0 -e 

O. 19762 X I0 -e 

0.I0280• 10 -8 

0 . 2 0 9 7 9 •  10 -s 

0. 39248 • 10 -a 

0.87801 )< 10 -6 

0. 34735 • 10 -6 

0 . ] 6 6 3 1 •  10 -6 

0.88496 • 10- '  

O. 45943 • i0-* 

O. 24276 • I0 -s 

0.67675 • JO -a 

0.28528 • 10 -e 

0.14086 • I0 -s 

O. 73545 )< I 0 - '  

qa4 - 0 . 4 3 6 8 1  - - 0 . 1 1 5 7 9  - - 0  049370 b~------ 2. 1193 D~r' 

- 0 . 0 2 3 4 9 5  - 0 . 0 1 3 3 8 5  - 0 . 7 9 5 7 4 , ' < 1 0  -2 - 0 . 5 2 2 1 9 ) < ] 0  -2 

- - 0 . 3 3 9 2 6 •  -~ - 0 . 2 4 9 2 2 •  -.= - 0 .  17934 ",: 10 -2 - - 0 . 1 2 5 2 7 •  J0 -~ 

-- 0. 10234 • 1 0 - '  - - 0 . 8 0 3 0 2 •  -8 - - 0 . 6 2 9 9 6 •  10 -3 - - 0 . 5 0 9 1 8  • 10 -3 

- - 0 . 4 1 0 6 3 •  10 -s  - - 0 . 3 3 9 6 3 •  10 -s - - 0 . 2 7 9 9 2 •  -3 - 0 . 2 3 5 8 3 •  10 -3 

- - 0 . 1 9 8 8 1  • 10 -s - - 0 . 1 6 9 1 8 •  10 -s - - 0 . 1 4 3 7 9 •  10 -s - - 0 . 1 2 4 7 0 •  10 -s 

E , . =  - 65.  860  qa2 - 20. 212 - 10 .780  - 6 8540 /I.4 

--4.7718 --3.5163 --2.6969 --2.  1325 

-- 1.7282 -- 1. 4297 -- 1.2039 - I .  0298 

-- 0.89311 --0.78423 -0 .69634 -0 .62455 

-- O. 56526 -- O. 51583 -- O. 47424 -- O. 43896 

- - 0 . 4 0 8 8 1  -0 .38285 --0.36036 --0.34075 

ka - - 4 0 l O 1  qa" 
�9 D I T t  

From the calculated results it can be seen that am and bi converge very rapidly and that E47 is about 
0.5% o f  E , .  Now let us calculate the deflections along the free edge y = a. 

h = 4 . 0 1 0 1 - - ~ 8 ,  - - - - -0.12933~ ~ 

The deflection curve o f  the free edge y = a is 

( W ) v . , = k a + ~ a ~ si~ -Em~r--~-x 
6 m-11~**. 

qa4 I 
----0. 12933 + Dn-----~ 0. 16661 s in  ~r._._xxa + 0 0023645 sln 3~r.._._Xa 
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+0.00020979 sin + 0  oooo45943 sin  75--+0.000015842 
G " G a J 

The terms starting with 10 -s are all neglected. 
The maximum deflection occurs at the mid-point of  the edge and is equal to: 

~ - -  qa4 fn ( W ) = 0 . 1 2 9 3 3  + Dn  4 L v . 1 6 6 6 1 - 0 . 0 0 2 3 6 4 5 + 0 . 0 0 0 2 0 9 7 9  

- O. 000045943 + O. 000015842] = (0.  12933 + O. 0016879)~4-~a = O. 13102-~/) -ha4 

The earliest approximate result obtained by Kantorovich was 0.1192 D ~  " In the following 

table are given the deflections at several points along the free edge y = a. And for comparison, the 
results obtained by the method of finite elements are also listed*. 

x 0 .5a  0.375a 0.25a 0.125a 0 

qa" 0.13091 0.13056 0.12998 0.12933 ( W )  0. 13102 D 

F.E.M. 0.12905 0.12892 0.12851 0.12788 0.12708 

K a n t o r o v i c h  0.1192 0.1211 

This deflected free edge is seen to be concave upwards. However, according t6 the solution of 
Kantorovich the deflections at the two comers are larger than that at the mid-point and the deflec- 
tion curve of this free edge will become concave downwards. 

The free edge x = a will bend into a curve the equation of which is: 

qa4 I .,'ty ( W ) ~ , . , , ~ k y +  ~--~.b~ sin iz!l - = 0 . 1 2 9 3 3 ~ .  y Dz" 2.1193 sin -----=-' a a 
i - I  

+0 .43681  sin 2 2 Y + 0 . 1 1 5 8 0  sin 3 n Y + 0 . 0 4 9 3 7  sin 4zy 
r o o 

+0 .023495  sin 5n,] __._ " + 0 . 0 1 3 3 8 5  sin 6~Y+0 .0079574  sin 7ny 
t l  0 O 

+0 .0052219  sin 8 n Y + 0 . 0 0 3 3 9 2 6  sin 9nY.+0.0024922 sin 10Jry 
Q a a 

+ 0 .  0017935 sin I I~y- -+  0. 0 0 1 2 5 2 8 a  sin - I2--'~'t!- + 0" 0 0 1 0 2 3 4 a  sin 13rtY- t a  

The terms of 10 -3 are all neglected. 
In the following table are given the deflections at several points along the free edge x = a. And for 
comparison the solution from the finite elementsmethod is also tabulated. 

y 0 0 .25a  0 .5a  0.75a a 
qa ~ 

ky 0 0. 032333 D 0. 064666 0. 096999 0.12933 

. i~y 
Y'~,b, sln -b- 0 - 0 . 0 2 0 3 8 4  - 0 . 0 2 0 3 3 9  - 0 . 0 1 1 9 5 2  0 
i - I  

qa ~ 
( W )  0 0 . 0 1 1 9 4 9 ~  0.044327 0.085046 0.12933 

This finite elements solution was communicated to the author by Mr. Wu Liang-tze of Peking University as a 
part of his research work. 
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EE.M. (W) 0 0.01182 0.043221 0.083888 0.12708 

The distribution of  bending moments along the clamped edge is given by: 

M ( x ) =  ~ E , . s i n  m a x  qa" { z x  + 2 0 . 2 1 2  sin 3~rx ~ - -  ~ 65. 859 sin a 

mm 11~$**- 

+ 1 0 . 7 8 0  sin 5zx  + 6 . 8 5 4 0  sin 7~rx + 4 . 7 7 1 8  sin 9 z x  
a a a 

+ 3 . 5 1 6 3  sin - -  
l l z x  

+ 2.6969 sin "13z----------~- -4- 2. 1325 sin ~ISS--~-F 1.7282 sin . . . .  
a 61 G 

17zx 

2 3 z x  
G 

+ 1 . 4 2 9 8  sin 19S--~x + 1 . 2 0 3 9  sin 21~r------E-x -t-1.0297 sin 
tl tl  

25~rx 2 7 z x  
+ 0 . 9 8 3 1 1  sin . . . .  + 0 . 7 8 4 2 2  s i n ~ + 0 . 6 9 6 3 3  sin 

a G 

29zrx 
G 

3 5 z x  
a 

4 1 z x  
a 

+ 0.62454 sin - -  
3 1 z x  + 0 . 5 6 5 2 6  sin ~aavv~r_.___..__~ + 0 . 5 1 5 8 3  sin - -  

a G 

37nx 39nx - - + 0 . 4 3 8 6 9  s i n - -  + 0 . 4 0 8 8 1  sin - -  a a + 0.47425 sin 

+ 0 .  38248 sin 43S-~x + 0 . 3 6 0 3 5 a  sin 45n____~Xa + 0 . 3 4 0 7 5  sin 47z___~Xa ) 

In the following table are given the bending moments at several points along the clamped edge. 

X 0 .5a  0.375a 0 .25a 0.125a 0.0625a O. 03125a 0 

M -0.53560qa ~ -0.53550 -0.53353 -0.5i270 -0.47314 -0.39115 0 

F.E.M. -0.53092 -0.53058 -0.52760 -0.50399 0.34571 

As a check let us calculate the total bending moment along the clamped edge to see if it is in equili- 
brium statically. 

I" J" M ( x ) d x =  ~ ,  E,,, s i n m Z X d x  -= ~,, 2a E,,, 2qa ~ 
0 0 m - - l 1 3 o ' "  ~ r e . l , 3 . . .  ~ I'~ )-~5 

+ 1~2. 6960+ ~52.1325 + 1 1  �9 7282+ 1 1 .  4298 + 1 1 "  2039+ 2131"0297 

+}o 
+ 150. 36035 + 1~0. 34075} = 0. 50578qa ~ 

The error is 0 " 5 0 5 7 8 - 0 " 5 - - 1 . 1 6 ~  
0 .5  

3 8 0  



(n) 
a 

Rectangular Cantilever Plate ~ = 2. 

As the coefficients E m  converge slowly, 24 terms are taken for each coefficient. With # = 0.3, 

the computergives :  
qa 4 

a ~ = 0 . 0 1 9 5 6 1 ~ A - i  0 .0016322  

0 .10885  • 10 - '  0 .41559  • 10 - t  

0 .59338  • I0  -~ 0 . 3 7 2 8 3 •  10 -e 

0 . 1 2 8 6 0 •  10 -8 0 . 9 7 7 2 5 X  1 0 - '  

0 .50186  • 10 -7 0 .41778  • 10-" 

0 .26018 • 1 0 - '  0 .22647  • 10 -7 

b ~ - ~ -  0 . 1 2 8 9 7 ~ a ~  - 0 .026367  

- - 0 . 1 4 0 9 0 •  -~ - 0 . 8 0 0 6 3 X 1 0  -z 

- 0 . 2 0 7 0 1 •  -8 - - 0 . 1 4 7 1 4 X 1 0  -~ 

- 0 . 5 9 6 5 2 •  - 0 . 4 6 5 8 4 X 1 0 - '  

- 0 .23465 • 10 -4 - 0 . 1 9 3 0 6  • 10 -4 

- 0 . 1 1 0 6 4 x 1 0 - "  - - 0 . 9 4 4 1 7 •  -6 

q a  ~ 
E ~ = - 1 5 . 9 8 0  z~-  - - 5 . 2 8 7  

- - ] . 4 9 5 8  --  1 .1595  

- - 0 . 6 4 2 5 3  - - 0 . 5 4 8 4 9  

- - 0 . 3 6 7 1 7  - - 0 . 3 2 7 4 2  

- 0 .24262 - - 0 . 2 2 2 3 2  

- 0 . 1 7 6 4 7  - - 0 . 1 6 4 9 0  

qa 3 
k - ~ 0 . 4 8 6 0 4  D z 3  

0 . 1 8 0 3 9 •  10 -3 0 .35757 X 10 -4 

0 .19308  • 10 -~ 0 . 1 0 1 9 6  • 10 -6 

0 . 2 4 9 2 2 •  10 -~ 0 . 1 7 5 4 9 x  10 -e  

0 .78471  X 10 -7 0 .61322  • 10 .7 

0 .35277  • 10 -7 0 .30144 • 10 .7 

0 .19856  • 10 -v 0 .17516 x 10 -7 

- - 0 . 6 9 6 7 4 X  I 0  -~ - - 0 . 2 9 6 6 1 •  10 - t  

- - 0 . 4 7 4 7 6 X 1 0  -s  - 0 . 3 1 0 5 2 •  -s  

- - 0 . 1 0 5 4 7 X 1 0  -3 - - 0 . 7 9 2 0 4 •  

- - 0 . 3 6 3 6 9 X 1 0 - '  - 0 . 2 9 2 4 7 •  -4 

- - 0 . 1 5 8 2 7 •  - 0 . 1 3 2 6 2 x 1 0  -4 

- - 0 . 7 9 6 5 6 x 1 0  -~ - - 0 . 6 8 6 5 5 •  -6 

- - 3 . 0 1 7 3  - - 2 . 0 3 9 5  

- - 0 . 9 2 9 6 0  - - 0 . 7 8 5 0 6  

- - 0 . 4 7 4 5 8  -- 0 .41636 

- - 0 . 2 9 4 2 6  - - 0 . 2 6 6 3 6  

- - 0 . 2 0 4 8 4  - - 0 . 1 8 9 6 8  

- - 0 . 1 5 4 7 2  - - 0 . 1 4 5 7 2  

From the above coefficients it can be seen that  E47 is less than I% of  Ex. Now let us calculate the 

deflections o f  the free edge y = b. 
qa :~ _ qb  ~ ,, q b  s 

k : - : 0 . 4 8 6 0 4  ~ - : 0 . 4 8 6 0 4 " <  8 ~ = u .  1 2 5 4 0  D 

The deflection curve o f  the free e d g e y  = b is: 

: 16 qb4 [ ~ x  
( l /V j y . a . - ~ - - k b +  ~ ,  a,, s i n  m ' r x  0 . 1 2 5 4 0 - - ~ +  D---~/ 0 .019561 s i n ~  

a a 

+ 0. 0016322 s in  3 z x  + 0. 00018039 s i n  5,'rx 
G Q 

7 1 I x  
+ 0 . 0 0 0 0 3 5 7 5 7  s i n ~  a 

I + 0 . 0 0 0 0 ] 0 8 8 5  s i n  - a 

Terms starting with 10 -s are all neglected. The maximum deflection at the middle o f  the edge is 

equal to :  

(~V) ~--0. 12540 + 1 6  0 . 0 1 9 5 6 1 - - 0 . 0 0 1 6 3 2 2 + 0 . 0 0 0 1 8 0 3 9  
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qb 4 
-0.000035757+0.000010885~=(0.12540+0.0029704) ~ 0 .  12837 D 

This value is a little larger than 0.125 D-~  ' when the plate with a very large width bends into a 

cylindrical surface. W. A. Nash obtained the corresponding value which is equal to 0.1585 ~ by 

using the method of  finite difference. Later by using the method of  collocation it was reduced to 

0.141 ~ . Both of them are too large. In the following table are given the deflections at several 

points along the free edge y = b, together with the results got by Nash. 

x 0 .5a  0 .375a  0 .25a  0 .125a 0 

qb" 
(H / ) 0.12837 D--- 0.12825 0.12784 0.12691 0.12540 

Nash 0.141 0.139 0.135 

The distribution of  bending moments along'the clamped edge is: 

M ( x ) - =  ~ E , , s i n m Z ' x  
Q z,s 15.980 sin . . . .  + 5 . 2 8 5 7  s i n - -  

g 

+ 3.0173 sin - - -  
5 z x  ~1r3r  l l~rx 

+ 2 . 0 3 9 5  sin 7____+] .4985s in  x 9 Z _ + l . 1 5 9 5 s i n  
G 0~ a a 

+ 0 . 9 2 9 6 0  sin 
13Jrx 15zrx 17zx  

- -  + 0 . 7 8 5 0 6  sin - - + 0 . 6 4 2 5 3  sin - -  
Q a a 

+ 0 . 5 4 8 4 9  sin - -  
19tr~ 

+ 9. 47458 sin _~l--m- + 0. 4163"6 sin 9~,_orc_ 
G G a 

+ 0 . 3 6 7 1 7  sin - -  25~x 27zrx 29zx 
+ 0 . 3 2 7 4 2 s i n  - -  + 0 . 2 9 4 2 6 s i n  . . . . .  

g a G 

31~rx 33z~x 35zx  
. . . .  + 0 . 2 4 2 6 2  sin . . . .  + 0 . 2 2 2 3 2  sin 

(I ~ G 
+ 0 . 2 6 6 3 4  sin 

+ 0 . 2 0 4 8 4  s i n 3 7 Z ~ ' x - - + O . i 8 9 6 8 s i n  39~r----~x + O . 1 7 6 4 7 s i n  41zx  
G ~ a 

47~rx } + 0 . / 6 4 9 0 s i n  43z~x +O.15472sin 45Jz_.____~x + 0 . 1 4 5 7 2  s i n - -  
(I a (I 

In the following table are given the bending moments at several points along the clamped edge to- 
gether with the Nash's results for comparison. 

x 0 .5a  0. 375a 0 .25a  0. 125a 0. 0625a 0 

M 0. 51049qb:' 0.51451 0.51386 0.51074 0.51472 0 

N ash 0. 5082 0. 5047 0. 4824 
It can be seen that the distribution of bending moments along the clamped edge is almost uniform. 
As a check of  the above calculation, the total bending moment will be found as follows. 
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+11 .4986+11 .1595+10 .9296+10 .76506+10 .64253  

- 1. 0049qb 3 

The error is negligible. 
Deep gratitude is expressed to Mr. Shih Tze-cheng who not only helped us to 

solve the simultaneous equations by the computer but also tried repeatedly to find out how many 
terms of the unknown coefficients were necessary to ensure a good solution. Thanks are also ren- 
dered to Mr. Wu Liang-tze for his providing of the solution by the method of Finite elements. 
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