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Abstract

An exact solution is given for the bending of uniformly loaded rectangular cantilever plates by
using the idea of generalized simply supported edge together with the method of superposition. As
illustrative examples, a square plate and a rectangular plate with the ratio of the clamped edge to the
neighbouring free edge equal to two are solved numerically. The results are compared with those
obtained from approximate methods to confirm the validity of the method presented.

I. Introduction

Rectangular cantilever plate has one edge clamped, three edges free with two free corners. To
find an exact solution, which satisfies both the differential equation and all the boundary conditions
including the two free corners, has long remained one of the most difficult problems in the theory
of elastic thin plates. However, due to the importance of this problem in engineering, much work has
been done. For example, the method of finite difference and energy method were used to effect an
approximate solution. Moreover, Fourier integral was used to solve an infinitely long rectangular
cantilever plate. Probably, L. V. Kantorovich was the earliest research worker who tried to solve an
uniformly loaded square cantilever plate by using his own method. C. W. MacGregor solved the
rectangular cantilever plate with the clamped edge infinitely long, and a concentrated load acting on
the infinitely long free edge. His solution was verified nicely by experiments. D. L. Holl used the
method of finite difference to get a solution of a cantilever plate, the ratio of the clamped edge to
the adjacent free edge being equal to four and a concentrated load acting on the middle of the long
free edge. J. J. Jaramillo made further calculations of the infinitely cantilever plate by placing the
concentrated load respectively at distance %, %, % of the depth of the plate. W. A. Nash also used the
method of finite difference for solving an uniformly loaded rectangular cantilever plate, the ratio of
the clamped edge to the adjacent free edge being equal to two. Shih Tsun-tong was the first to use the
generalized variational principle for the elastic thin plate. He attempted to get a solution of the same
problem solved by Nash. Later, this variational principle was also used by H. J. Plass, Jr. and others
to work out a solution for an uniformly loaded square cantilever plate. Recently, with the advent of
computer the method of finite elements is used to attack this old problem, although much has to be
improved.

From the works mentioned above, it can be seen that up to now for a rectangular cantilever
plate no exact solution is available. This paper attempts to get an exact solution of this well-known
problem. For this purpose, the concept of generalized simply supported edge and the method of
superposition are used. Like the case of clamped edged rectangular plates, we shall be led to series of
infinite simultaneous equations to be solved.
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II. Generalized Simply Supported Edges

For an ordinary simply supported edge, such as x = 4, the corresponding boundary conditions
will be W = 0 and Mx = 0. Along a generalized simply supported edge such as x = @, the bending
moment Mx still vanishes but the deflection W does not vanish. Accordingly, when setting occurs
along an ordinary simply supported edge, it becomes a generalized simply supported edge. And
along both kinds of simply supported edges there will be transverse forces acting.

The merit of adopting generalized simply supported edge is very plain. To start from it, we have
only to eliminate the transverse forces along the edge to fulfil the boundary conditions of the free
edge.

As some preparatory work, we shall solve the following several simple problems involving
generalized simply supported edges.

(1) A rectangular plate has three simply supported edges and the fourth edge y = b is a
generalized simply $upported edge, as shown in Fig. 1. Along this edge the deflections will be ex-
pressed by the sine series:

(W)yas=) Gmsin mrx a x
-y
The deflection surface of the plate is '
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Along the edge x = g, the transverse forces will be
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Substituting this equation into the above equation, we have:

Vdxes=—D 2(1;;”) my a,,, cosmr Y, ' s ':: T sin 1’52 (2.3)
may i=3 ( +—+— )
a m

Similarly, along the edge x = 0 we have the transverse forces:

D e i L b T

Along the edge y = 0 the deflection surface has its slopes:

BW) _ 1 p ma, [ 1+4 mirx
( Y=o =7 2

3y Znas Lo +n coth a,,.] sin (2.5)
The concentrated forces acting respectively at the corners (g, b) and (0, b) are:
(R):::=2D(l—#) (aa?; ) =D(1- l-‘)’—-—.f?la,,,m2 cos mx
ii# coth a, +;§ZT—] (2.8)
(R):::=D (1—4)* - Z a,,.m’[ 1+Z coth a.+ n‘;’; a,,.] (2.7)

RBw ]

When the generalized simply supported edge has its deflections symmetrical to the mid-point of the
edge, we have to change Z to 2

m=1 m=1,3,.

(2) A rectangular plate has its two edges y = 0, y = b which are simply supported and the
other two edges x = 0, x = g are generalized simply supported edges, the deflections of which are
given by (Fig. 2): iny

(W),..=2 b; sin 3

T8 ey

o | .
b 7"} bisin "Z“"‘y
al
y .
The deflection surface is given by: Fig 2
_1- # coshfi—1r1 B 2 i inx
W= z_'; b { sinhg, l.( sinhp; 1—4 )s"‘h 2
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+T cosh b ]+ =% cosh S sinh 5 }sm—[)—— (2.8)

in which 8; = 11-1;1

Along the edge x = g, the transverse forces are equal to:

D e 137° cosh B,—1[ 3+4u
(V,):_n— 2 (l “) Z bi bg . Sinhﬂi L l_ll anhﬂ]

[

sml (2.9)

Along the edge y = b, we have the transverse forces:

3
(V) s D4(1b u)? 237 b, (;oser Zm —in max (2.10)
L i 2 m a
=1 Mml gees (—i2—+b2>

Along the edge y = 0 the deflection surtace has its slopes:

2
2-m)5+-T
14 4 b, b2 z . mrx
(ay )y-thZT mz m TmE gt 22 sin = (2.1D)
The concentrated force acting on the corner (g, b) is equal to
PAYE. coshf—1 1+H N\ ,
(R);., =D(1-#)*] Zb i (B cothpi+ 1ELY)— g Tcos in
(2.12)

(3) There is a simply supported rectangular plate and along the edge y = 0 are acting bending
moments expressed by (Fig. 3):
M(x)=3_ En.sin max

L XY

Z E“an—?—

Loy [ 7 [ 1 [
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The deflection surface of the plate is
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+cotha, =¥ cosh T |sin 22 (2.13)
The transverse forces along the edge y = b are:
1—-4 mrx
7 9y. b~—(l+ﬂ)%-m , smham [1+ e cotha,]sm—a— (2.14)
Along the edges x = 0, x = g the transverse forces are:
Emi[—b—z + (2—4) p ]cos mn inx
Ve)saa= Z,' I a AR sin=p" (2.15)
R m(a’+ m? )
[——- + (2—4) — R
(Vx)x-n=‘az‘z Z BE T\ m! ]Sin "Zy (2.16)
55T ()
The deflection surface of the plate has the slope along one of the edges y = 0:
aw _ a Enr mx
(59°),..~Dm ] soth w32 (2.11)
The concentrated forces at the two corners (g, b) (0, b) are:
(R),-,, =—(1-#)3 - ¥ nh o (an cotha,~1)cos mx (2.18)
mmq
(R)x-a—'_(l By == smha (a, coth a,—1) (2.19)

MmMw}

(4) A rectangular plate is simply supported and uniformly loaded, ¢ being the load intensity.
The transverse forces along the edge x = a are:

B
V )ena= 228 5 5| (3= tash é5—(1—#) 2 sin ‘2% (2.20)
= i=1,8ee cosh? £
2
Along the edge y = 0 the deflection surface of the plate has its slopes equal to:
Cm
aw _ 2a% 2 |, max
<79_y") ‘D‘n“ m-§ tanh v2 - L2 a"l] std a (2. 21)
cosn E
Along the edge y = b the transverse forces are:
2w
Vy)yas=—22L gy (3—#) tanh 5 — (1-p) —2 | sin ¥
7 e )8 2 cosh? 2n a
2
The concentrated reactive force at the corner (g, b) is: (2.22)
. a,
(R)yop= éil__”_). : yu L (tan Gn__ 2 _ (2.23)
L) see m 2 Za"l
1,80 cosh 3
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Having got the above four parts, we can superpose them to satisfy all the boundary conditions and
the free corner conditions. However, only these four parts are not sufficient to realize the displace-
ments of the two free comers (0, b), (g, b) as it should be. For the above four parts still keep these
two corners fastened. Therefore, we have to introduce an additional part to be superposed.
Let the deflection surface be

W=ky (2.24)
in which k is a constant to be determined. In fact this is a rotation of the plate as a rigid body with
respect to the axis x. The angle of rotation can be expressed by:

ow 4k 1 . mrx
= b = .25
(ay )yee k = M-IZ'S--- o sin— (2.25)

II. Uniformly Loaded Rectangular Cantilever Plates

Let there is a rectangular cantilever plate for which the edge y = 0 is fixed and the other three
edges are free, as shown in Fig. 4. Our problem can be reduced to as follows:

Within the boundary of the plate we have to satisfy the equation

VW =—1- (a)
All the boundary conditions are: L Y, ., x
e ~ —r—
Wver=(Fy), =0 b
W | W\
(5 #%5),..70 |
w 4 ()
E ) _
DA - Tl W
L h4 W - —'—
—+ U — xm O [
( axz ayz )x-?r a
(d) !
4 W _
BT (2T ”)aay 1220 y
The two free corners (a, b), (0, b) require Fig. 4
R=29(1—n)( ng_}‘o (e)

The above five parts all satisfy the differential equation of the deflection surface of the plate.
Now we have only to superpose them to fulfil the conditions of a clamped edge and three free edges
together with two free corners. The solution thus obtained should belong to the category of exact
solutions. As under uniform load the deflection surface of the plate will be symmetrical to the
middle line perpendicular to the clamped edge, the lower index of am and Ep; should be 1, 3,5, ..

To satisfy the condition of the clamped edges (b}, we have to superpose the slopes given by
equations (2.5), (2.11), (2.17), (2.21), (2.25) and equate their sum to zero. Then we obtain

m at

an 1+u LIg
(1 l[) 1 Slnha [ +a, coth am]+2 b Z i mz a’- 2
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ap,
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376



+.__2_..._.= m=1, 3’ 5--- (3.1)

To make the transverse forces along one of the edges y = b vanish, the equations (2.2), (2.10),
(2.14), (2.22) are superposed and equated to zero. Thus we have:

an
gs* 2 [ A 2
- == (3—-#)tanh T~ —(1—-H4) ——— ]
S Drt T m 2 cosh? &
e @ b, cos in e 3+H
+4(1—H)— )‘-—‘: - (mz o >z+(1 B):m 2 =@ coth @,
!-z bz

QA 02 Em 1—
+sinh‘a,,.j)_(l+ﬂ) “oxD m’sinha,,.[1+ 1+

To make the transverse forces Vx along one of the edges x =a vanish, superpose the equations
of transverse forces by (2.3), (2.9), (2.15), (3.2) and equate their sum to zero. The third equation
becomes:

K o
#amcotham]—o (3.2)

A
_gbt 14, Bi _q_py —2
Dnt is [(3 /“)tanh 2 (1 H) cosh? ﬁ_i]

ma] geee

3
+(l-#)’-—27—cosirt- 3 bza,,.. T

1 bs
~7ia " Da, 2 Y

oo (_af'+ —m")

;o ey _cosh fi—1 3+H#
+5 A=1)%; sinh B; 1—4 smh Bi ]_ (3.3)
In the above equation i = 1, 2, 3, . . ., but for the first term when i is even, it is equal to zero. Owing
to symmetry for the vanishing of transverse forces along one of the edges x = 0, we shall get an
equation entirely the same as (3.3). As at the free corner (g, b) there is no concentrated force acting,
we have to superpose the concentrated reactive forces given by equations (2.6), (2.12), (2.18),(2.23)
and equate their sum to zero. Thus we obtain the following equation:

osh fi—1 1+#
- Dbt cos i [ cssmfﬂ (ﬂ" coth At )_ﬂ‘]
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?
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From another free corner we shall get an identical equation. In this manner, we have got three series
of infinite simultaneous equations (3.1), (3.2), (3.3) and a single equation (3.4). Using them we can

. ka .
solve the unknown coefficients am , bi, Em, Pt As numerical examples, we shall solve two problems.

One is for a uniformly loaded square cantilever plate and the other is for the edges a : b equal to two.

(A) An Uniformly Loaded Square Cantilever Plate

As the coefficients Ey converge rather slowly, 24 terms are taken. However, the coefficients
am and b; converge very rapidly. Taking 4 = 0.3 from equations (3.1), (3.2), (3.3), (3.4) the computer

gives:

Gn=0. 16661%%
0.15843x107¢
0.18381x107°
0.53338%x107°
0.23649%x107°
0.12001x 107"

_ga

Dn*
—0.023495
—0.33926x 107"
—0.10234x107?
—0.41063x107°
—0.19881x107®

bi=—-2.1193

ga®
ﬂd

E.= —65.860

—4.7718
—1.7282
—~0.89311
—0.56526

—0.40881

ka ga*
s =4.0101 Dt

0.23645Xx107*

9.71954x107°
0.11742x10°°
0.42755%x107°
0.19762x107°
0.10280x107°

—0.43681

—0.013385
—0.24922% 102
—0.80302% 107
—0.33963X10"°
—0.16918 X 10"

—20.212

—3.5163
—1.4297
—0.78423
—0.51583
—0.38285

—10.780

—2.6969
—1.2039
—0.69634
—0.47424
—0.36036

0.20979x 10"

0.39248x 107"
0.87801x10"°
0.34735x10°°
0.16631x10"°
0.88496x 1077

—0.11579

—0.79574x 107*
-0.179341107*
—0.62996 x 107°
~0.27992%x107°
~0.14379%x107

0.45943Xx10™*

0.24276 107"
0.67675x10"°
0.28528 x10""
0.14086x10°°
0.73545x 107"

—0.04937Q

—0.52219%x107*
—-0.12527 x107*
—0.50918 x107°
—~0.23583x107°
—0.12470x107%

.8540

.1325
-0298
.62455
.43896
. 34075

From the calculated results it can be seen that am and b; converge very rapidly and that. £}, is about
0.5% of E, . Now let us calculate the deflections along the free edge y =a.

k=4.

ga’

0101 Dt

The deflection curve of the free edge y = a is

W)ywe=ka+ Y

. mrx
3, 818 ——
a

May Bees

=0.12933
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ga* ga'
D + Dant

= 99
=0.12933 D

{0.16661 sin

3

X
a

Inx

+0.0023645 sin o



+0.00020979 sin 2%

+0.000045943 sin ”T"+o.00001584z sin 9’;"}

The terms starting with 1075 are all neglected.
The maximum deflection occurs at the mid-point of the edge and is equal to:

4 4
(W)=0.12933 I9—+ 42— (0.16661 - 0.0023645+0. 00020979

4 4
—0.000045943+ 0.000015842]1=(0.12933+0.0016879) qg--—O.lSlOZ-qDa—
The earliest approximate result obtained by Kantorovich was 0.1192 -q-D— . In the following

table are given the deflections at several points along the free edge y = a. And for comparison, the
results obtained by the method of finite elements are also listed*.

x 0.5¢a 0.375a 0.25a 0.125a 0
4
W) 0.13102‘;[0) 0.13091 0.13056 0.12998 0.12933
FEM 0.12905 0.12892 0.12851]1 0.12788 0.12708
Kantorovich 0.1192 0.1211

This deflected free edge is seen to be concave upwards. However, according to the solution of
Kantorovich the deflections at the two corners are larger than that at the mid-point and the deflec-
tion curve of this free edge will become concave downwards.

The free edge x = a will bend into a curve the equation of which is:
iny _ qa®  qa { LY
(W)aaa=ky+ D b: sin ——a 0.12933-5~ ¥ = ppe |2-1193 sin —

i=

2y 3ny 47y
a

+0.43681 sin +0.11580 sin —-—+0 04937 sin

+0.023495 sin i—’.+o 013385 sin 9-1+o 0079574 sin 1;1”

+0.0052219 sin 8——+0 0033926 sin ..9_‘2.*.0 0024922 sin 10:!/

+0.0017935 sin ilaﬁ!-}—-f—o,o()lgg,gg sin--lﬁz:3~’-+o_0010234 sin 13:9 }

The terms of 1073 are all neglected.
In the following table are given the deflections at several points along the free edge x = a. And for
comparison the solution from the finite elements-method is also tabulated.

Y 0 0.2ba 0.5a 0.75a a
4
ky 0 s 0.064666  0.096999  0.12933
Y b, sm»”’J 0 —0.020384 —0.020339 —0.011952 0
imy
% a¢’ :
(W) 0 5 0.044327  0.085046  0.12933

* This finite elements solution was communicated to the author by Mr. Wu Liang-tze of Peking University as a
part of his research wotk.
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FEM (W) 0 0.01182 0.043221 0.083888 0.12708

The distribution of bending moments along the clamped edge is given by:

2
M(x)= 3 En,sin '"Z" =— ‘it"‘- {65 859 sin —>—+20.212 sin 3 x

Mme] 3eee

57X | 6.8540 sin Z’;—"+4.7718 sin 9’;" +3.5163 sin 2%

+10.780 sin

137X | 5.1325 sin 15 X +1.7282 sxn'ﬂN———

+2.6969 sin

+1.4298 sin 220X 19 X 4+1.2039 sin 222X 21 +1.0297 sin 2—3;1

+0.98311 sin - 2-§—~+o 78422 sin 212X 27 +0.69633 sin 227

+0.56526 sin +0.51583 sin

+0.62454 sin 3lnx . 33nx . 35nx
a a a

+0.47425 sin —37—;’i‘—+o.43869 sin 297X

+0.40881 sin 217%

+0.36035 sin +0.34075 sin

+0.38248 sin 237 : 40:35 . 47:x}

In the following table are given the bending moments at several points along the clamped edge.

X 0.ba 0.375a 0.25a 0.125a 0.0625a 0.03125a 0
M —-0.53560ga* —0.53550 —0.53353 —0.51270 —0.47314 —0.39115 0
FEM. —0.53092 —0.53058 —0.52760 —0.50399 0.34571

As a check let us calculate the total bending moment along the clamped edge to see if it is in equili-
brium statically.

jaM(x)dx= "Xk sin %y = ¥ 2a  FE._ _ 290
0

0 mey 3. Ma] oo 11 m nb

{65.859+ 120 212+ — 10 (80+—b 8540+ ;1 18+1—13 5163

1
+-1‘2 6960+ 2.1325+ 171 7282+1—l§1 4298+ 1 2039+231 .0297

—1‘0 89311+ 0 78422+ - 1 +50.69633+ %0.624544—51‘,—30.56526

25 29

1 1 1
+ = + — 7 + + + 8
350.51583 370.4 425 90 43896 0 40881 |30 38284

1 1 =\ — 0. 5057844
+50- 36035+ 170.34075=0.50578¢a

0.50578—0.5
0.5

The error is =1.16%
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(B) Rectangular Cantilever Plat % =2,

As the coefficients £y converge slowly, 24 terms are taken for each coefficient. With u = 0.3,

the computer gives:
4

am=0.019561-507
0.10885 x 10~*
0.59338 x 10~
0.12860 % 10°°
0.50186 x 10”7
0.26018 X 10"

0.0016322

0.41559x107°
0.37283%x107°
0.97725%x1077
0.41778 1077
0.22647 % 107"

0.18039x107°

0.19308 x 107"
0.24922x107°
0.78471x1077
0.35277 %1077
0.19856 X 107’

0.35757 X 107*

0.10196x107°
0.17549x107°
0.61322x 107"
0.30144% 1077
0.17516 x 1077

4

bi=—0.128977%,  —0.026367 —~0.69674X 10" —0.29661x 10™*
—0.14090X 10" —0.80063X 10~ —0.47476X10™° —0.31052%107°
—0.20701x10"° —0.14714X10"* —0.10547X10™ —0.79204x 107
~0.59652X 10~ —0.46584X10™* —0.36369X10™* ~—0.29247 X 107*
~0.23465X10™* —0.19306X10™* —0.15827x10™* —0.13262x10™*
—0.11064X10™* —0.94417X107° —0.79656X10™° —0.68625x10°

En=—15.980 ‘i:ﬂ- —5.287 —3.0173 —2.0395
~1.4958 ~1.1595 —0.92960 —0.78506
~0.64253 —0.54849 —0.47458 —0.41636
~0.36717 ~0.32742 —0.29426 ~0.26636
~0.24262 —0.22232 ~0.20484 —0.18968
~0.17647 ~0.16490 —0.15472 —0.14572

q 3
k=0.48604 3+

From the above coefficients it can be seen that E,, is less than 1% of E,. Now let us calculate the
deflections of the free edge y = b.

qb®

k=0. 48004 =0.12540- D

qbh®
U =0. 48601<BD

The deflection curve of the free edge y = b is:

bt qb[

a. snL 0. 12)40"

(W',y_b=/2b+ Z

Mmea) Gewe

L .ax
0.019561 sin——

+0.00018039 sin S’Zx

=}

are all neglected. The maximum deflection at the middle of the edge is

+0.0016322 sin3’;" +0.000035757 sin7’;"

. 97
-+0.000010885 sin 2

Terms starting with 107
equal to:

W)=0.1254092

D +ISD ,{0 019561—0.0016322+0.00018039
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4

4 b
—0.000035757+0.000010885}=(0.12540+0. 0029704)-q—Db—=0 . 12837—%—

4
This value is a little larger than 0.125 _QZ_ , when the plate with a very large width bends into a

cylindrical surface. W. A. Nash obtained the corresponding value which is equal to 0.1585 1%‘ by
using the method of finite difference. Later by using the method of collocation it was reduced to
0.141 9%4_ . Both of them are too large. In the following table are given the deflections at several
points along the free edge y = b, together with the results got by Nash.

X 0.5a 0.375a 0.2ba 0.125a 0
be
W) 0.12837 qD—- 0.12825 0.12784 0.12691 0.12540
Nash 0.141 0.139 0.135

The distribution of bending moments along the clamped edge is:

3nx

mrx_ _ 9% {15 980 sin "2 +5.2857 sin S

M(x)=

m
M=), 3ee

+3.0178 sin % +2.0395 sin 7-’2—#-1 4985 sin 9—~+1 1595 sin ———11:"

+0.92960 sin

13:" +0.78506 sin 127%_ 1 0 64253 sin 7%

+0.54849 sin L‘:”‘—+o.47458 sin 7210""—+0.4163'6 sin - 237%

25 X +0.32742 sin 27”" +0.29426 sin 20T¥_

+0.36717 sin

+0.26634 sin 3—101‘ +0.24262 sin 33:"»--+0.22232 sin 227%_

+0.20484 sin —377’5 +0.18968 sin 39:" +0.17647 sin “Z"

431X . 4b5nx . 47:tx}
a a a

+0.16490 sin +0.15472 sin +0.14572 sin

In the following table are given the bending moments at several points along the clamped edge to-
gether with the Nash’s results for comparison.

X 0.5a 0.375a 0.25a 0.125a 0.0625a 0
M 0.51049gh" 0.51451 0.51386 0.51074 0.51472 0
Nash 0.5082 0.5047 0.4824

It can be seen that the distribution of bending moments along the clamped edge is almost uniform.
As a check of the above calculation, the total bending moment will be found as follows.

L M (x)dx=— 3‘7‘ {15 9so+—2 5827+i3 0173+—1—2 0395
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1 1 1

91 4986+ l ]590+ O 9296+150 76506+ - 0 64253

17
+Lo. 54849+ T o.47458+io 41536+ -1.0.36717+-10. 32742
19 2% 250" 270"

1
29O 29426+ 0 26634+ 10 24262+—0 22232+ 0 20484

+~-O 18968+-—-0 17647+ 0 16490+4150 15472+Z?0 14572}

= —1.0049¢56°

The error is negligible.

Deep gratitude is expressed to Mr. Shih Tzecheng who not only helped us to

solve the simultaneous equations by the computer but also tried repeatedly to find out how many
terms of the unknown coefficients were necessary to ensure a good solution. Thanks are also ren-
dered to Mr. Wu Liang-tze for his providing of the solution by the method of finite elements.
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