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1. I n t r o d u c t i o n  

We start  off with  the model  

(1.1) { N : EN(1 - N / K ) -  3NP/(/3 + N),  

~b = - P ( 7  + (SP)/(1 + P) + flNP/(/~ + N) 

where dot means differentiation with respect to t ime t; N(t) and P(t) 
are the quanti t ies  of prey and predator ,  respectively; c > 0 is the specific 
growth rate  of prey in the absence of predat ion and without  environmental  
l imitat ion;  in the  absence of predators  the prey populat ion grows logistically 
to carrying capaci ty K > 0; the functional response of the predator  is of 
Holling's type  (see [11, 12]) with satiation coefficient or conversion rate 
/3 > 0; the specific morta l i ty  of predators  in absence of prey 

(1.2) E(P) = (7 + ~P) / (1  + P)  

depends on the quant i ty  of predators,  7 > 0 is the mortal i ty at low density 
and 5 > 0 is the limiting, maximal  mortal i ty (the natural  assumpt ion  is 

This  system seems to us a fairly realistic one if neither heredi tary effects 
nor spatial  d is t r ibut ion are taken into account. The Holling type funct ional  
response is widely used and has a vast l i terature,  and if 7 = 5 then the 
morta l i ty  of p reda tor  reduces to a constant  (see e.g. [9]). The  advantage 
of the present  model  over the more often used models is tha t  here the 
predator  morta l i ty  is nei ther  a constant  nor an unbounded function, still, it 
is increasing with quantity.  

First  we s tudy  the stability of equilibria of this system and possible 
bifurcations.  
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It is reasonable to assume that the present level of predator quantity 
effects instantaneously the growth of prey, on the other hand, the growth of 
predator is influenced by past values of prey quantity. Therefore, secondly, 
we replace N in the second equation of (1.1) by its time aZerage over the 
past. We shall be concerned, primarily, in the destabilising effect of the 
influence of the past and in the char~ter of the possible bifurcations. 

Finally, we shall assume that predator and prey undergo Fickian diffu- 
sion in space. 

Accordingly, in Section 2 conditions for stable equilibria of system (1.1) 
will be established. In Section 3 an Andronov-Hopf bifurcation will be 
calculated at a special constellation of the parameters. In Section 4 the 
delay will be introduced, and conditions for stability will be established. In 
Section 5 the Andronov-Hopf bifurcation will be calculated when the delay 
is increased. The study of the reaction-diffusion equation built upon (1.1) 
will be accomplished in a subsequent paper. 

2. Stabi l i ty  of  equ i l ib r ium points  

Clearly, t.he positive quadrant of the N, P plane is invariant for system 
(1.1), and one may prove, similarly as it was done in [9], that all solutions 
with non-negative initial conditions stay bounded in t r [0, oc). 

On the boundary of the positive quadrant the system has two equilib- 
rium points: (0,0) and (K, 0). A simple linear stability analysis shows that 
(0,0) is always unstable, and that (K, 0) is asymptotically stable if 

(2.1) 7 > ZK/(Z + K), 

and unstable if 

(2.2) 7 < ZK/(Z + K). 

Note that (2.2) is equivalent to 0 </37/(/3 - 7) < K and implies 7 </3 and 
7 < K .  

However, for reasonable parameter configurations we may establish the 
global stability of (K, 0). 

THEOREM 2.1. ff 

(2.3) 7_->/3 and 6 >=13 

then (K, O) is globally asymptotically stable with respect to the positive quad- 
rant of the N, P plane. 
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PROOF. Decreasing the first term on the right hand side of the second 
equation of (1.1) by writing/3 for 7 and 5 we get that  

P =< - / 3 P ( 1 -  N/(/3 + N)) < - c P  

for some c > 0, since N(t) is bounded in t E [0, oc). As a consequence, 
any solution P(t) corresponding to non-negative initial conditions tends to 
zero as t tends to infinity. Thus, the omega limit set ~ of every solution 
with positive initial conditions is contained in {(N, 0) : N => 0}. But for 
N > t(  we have N < 0, so, ~ C {(N, 0) :  0 __< N __< K}. Taking into account 
that  (0, 0) t/~t and that  ~t is a nonempty, closed, invariaat set we get that  

= {(K, 0)}. [] 
Note that  since the right hand side of (2.1) is less than /3, the first 

inequality of (2.3) implies (2.1), i.e. it implies the asymptotic stability of 
(K,  0). The intuitive meaning of 7 _-> /3 is clear: the minimal mortali ty 
of the predator  is high compared to the conversion rate; this leads to the 
extinction of the predator.  If we assume that  the mortality of the predator 
grows with its quantity, i.e. 5 > 7 then the first inequality of (2.3) implies 
the second. 

THEOREM 2.2. If 

(2.4) 7 </3 =< 

and 

( 2 . 5 )  , , ;  - 

then (K,  0) is globally asymptotically stable with respect to the positive quad- 
rant of the N, P plane. 

Note that  if/3 > 7 then (2.5) with a strict inequality is equivalent to 
(2.1), so if (2.5) is strict we know that  the equilibrium is locally asymptoti- 
cally stable. 

PROOF. First, consider the case when (2.5) is strict, i.e. (2.1) holds. 
This implies that  an ~ > 0 exists such that 7 > / 3 ( K  + ~)/(/3 + K + ~), and 
so if N(t)  <= K + 71 then applying (2.4) 

fiN(t) ~ P(t) < ( /3(K + ~) ~ P(t). 
P ( t ) < -  7 - / 3 + N ( t ) ]  = - 7 5-+-I~--~] 

But the set {(N, P)  : 0 < N __< K + ~], P > 0} is positively invariant since 
< 0 if N = K + y, P => 0. So if the initial values satisfy N(0) __< K + U, 

P(0)  > 0 then P(t) ~ 0 exponentially as t ~ c~. If N(0) > K + ~1 then 

fV(t) < - ~ N ( t )  while N(t) > K + 7 I. 
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So N will be equal to K + r / in finite time, and then P(t) --+ 0 as before. 
From here on one may repeat the proof of the previous theorem to complete 
the proof for this case. 

Secondly, assume that  (2.5) is an equality, i.e. 7 =/3I( / ( /3  + K). We 
substi tute this value into system (1.1) and move the origin into (K, 0) by 
the coordinate t ransformation n = N - K, p = P.  We get the system in 
the form 

{ ~  = - s ( n  + K ) n / K  - /~(n + K)p/(/3 + K + n), 
(2.6) p -p(/3K/(fl  + I; ) + 8p)/(1 + p) +/3(n + K)p/(/3 + K + n). 

Now, we use the positive definite Liapunov function 

V(n,p) = (/3/K)n 2 + (13 + I()p 2. 

If we denote the derivative of V with respect to the system (2.6) by 17 we 
h ave 

-(1/2)V(n,p)(/3 + I ( +  n)(1 + p) = n2(n + K)(~ + K + n)(p+ 1) t ic /K2+ 

+np(n + K)(p + 1)/3~/K + p2(~5(/3 + K)p +/3I()(/3 + K + n ) -  

-/3(/3 + K)p2(n + g) (p  + 1), 

and applying (2.4) a simple calculation shows that  V(n,p) < 0 for n = 0, 
p > 0. This means that  all solutions with positive initial conditions either 
tend (in principle) to (n,p) = (0,0) or leave the n _>_ 0, p > 0 quadrant  
through the line n = 0 in finite time. Now, the strip {(n,p) : - K  < 
< n < 0, p > 0} is positively invariant and if - K  < n(t) < 0 then applying 
(2.4) 

p(t) <= - p(t)(/3K/(~ + K) + t3p(t))/(1 + p(t))+ 
+/3(n(t) + K)p(t)/(/3 + K + n(t)) = 

= -p( t )  /3 + I( /3 + K + n(t) + (1 + p(t))(/3 + 1() 
< 0 .  

Thus, once, in the strip, p(t) is monotone decreasing and p(t) ~ a >= 0, 
t ~ oo. If a > 0 were the case then 

 /32 
~(t) < -p(t)  ( 1 + p(to)) (/3 + K)'  t > t o  

would hold for some to > 0, and this would imply that  p tends to zero 
exponentially contradicting the assumption a > 0. So p(t) tends to zero, 
and the proof of the previous theorem can be repeated again. [] 
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Note that,  as a corollary, conditions (2.4), (2.5) imply that system (1.1) 
has no equilibrium point in the positive quadrant N > 0, P > 0. 

We now turn to the case when an equilibrium point exists with positive 
coordinates. Making the right hand sides of system (1.1) equal to zero we 
get that the prey null-cline is the parabola 

P = Hi (N)  := (K  - N)(/3 + N)v/(/3K) 

and the predator null-cline is the hyperbola 

P = H 2 ( N )  := (/3 - 7 ) N  - / 3 7  

To have a reasonable concave down predator curve we have to assume 6 > 
__> fl, so since the case when also 7 _->/3 has been treated in Theorem 2.1 we 
shall assume in the sequel that (2.4) holds. In the special case when 5 =/3 
the predator curve is the straight line 

P = H3(N) := (/3 - 7)N//32 - 7//3. 

Since H i ( N )  > 0 if and only if - f l  < N < K and H2(N) > 0 (H3(N) > 0) 
if and only if N >/~7/(/3 - 7) the system has an equilibrium point (at least) 
with positive coordinates ( N , P )  if and only if 

(2.7) /37/(/3 - 7 )  < N < K 

(cf. condition (2.5); this shows again that if (2.4) and (2.5) hold then there 
is no equilibrium in the iflterior of the positive quadrant). The stability of 
the positive equilibrium can partly be settled by linear stability analysis. 

THEOREM 2.3. Assume that 

(2.4) 7 < fl < 6, 

(2.8) 87/(/3- 7) < K, 

and denote a positive equilibrium of system (1.1) by (--N,-P), -N > O, -P > O. 
I f  K <= /~ then system (1.1) has a single positive equilibrium and it is 
asymptotically stable; if 0 < (If  - /3 ) /2  < N- then (-N,-fi) (which may not 
be the only positive equilibrium) is asymptotically stable. 

PROOF. If K __< r H1 is monotone decreasing in the interval (0, K).  
Since H2 is monotone increasing in (fl7/(/3 - 7), ec) this yields the unique- 
ness of the positive equilibrium. 
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is 
The aacobian of the right hand sides of system (1.1) evaluated at (N, P) 

~(~-~-~) _ 9 ~  

i~(~+~) ~+~ 
p ~  _ (~-~)P 

(~+~)~ (1+~)~ 

~ (K - / 3  - 2~) (e - ~)~ 
Tr J (~,~) = 

If (/3 + N) (1 + ~)2,  

/3NP [ e (5-7) (K- /3-2N)  /32 ] 
act a (~ ,~ )  - / 3  + ~ u/3(~ + ~)~ + (/3 ~-~)~ " 

If K </3 then, in view of (2.4), clearly, Tr < 0 and det > 0, i.e. (N ,P)  is 
asymptotically stable indeed. If (If -/3)/2 <= N the same applies. [] 

Note that in case/3 < I( we have an interval N E (0, (K - /3) /2)  where 
the All~e effect holds, i.e. the increase of the prey quantity is beneficial to its 
growth rate. In this case the sufficient condition of stability N > (K -/3)/2 
is, in fact, the "Rosenzweig-MacArthur graphical criterion", cf. [6,7]. In 
our case when 0 < N < (K - /3) /2  then the equilibrium may still be stable. 

3. The  ease 5 = 8 

In this section we assume that (2.4) and (2.8) hold with the equality 
valid in the former. This, as we have seen, ensures the existence of a positive 
equilibrium. In this special case the coordinates of the positive equilibrium 
can be determined explicitly and an Andronov-Hop_f bifurcation can be 
calculated by hand. Now the equilibrium point (N,P)  is the intersection 
of the parabola P = Hi(N) with the straight line P = H3(N). We get that 

( 3 . 1 )  = (1 /2) (K - /3  - (1 - 7//3)K/c+ 

+ ( ( I f  - f l - ( 1 - ' / / / 3 ) I ( / c )  2 + 4t((/3 + 7/e))1/2).  

Assuming that K >/3, the sufficient condition of asymptotic stability proved 
in Theorem 2.3 is (I( -/5)/2 =< N. Substituting (3.1) into this condition we 
get that (N ,P )  is asymptotically, stable if 

(3.2) g(K,/3,7,c) := (1 - (1 - 71/3)2/c)K 2 + 2(/3 +/3/e + 7/c)K +/32 >__ O. 
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This, obviously, means that if c >__ 2 ( 1 -  7//3) then (N,-P) is asymptotically 
stable (for arbitrary K > 0). On the other hand if 

(3.3) ~ < 2(1 - 7//3) 

then g(K,~,7,c) >__ 0 for 0 < K __< K*, and g(K,/3,7,e) < 0 for K > K* 
where 

(3.4) K* ( / 3 ( E + 1 ) + 7 + ( 4 e f 1 2 + ( 8 + 7 ) 2 )  ~/2) = /(2(1 - 7//3) - c). 

Thus, we have arrived at a corollary of Theorem 2.3. 

COROLLARY 3.1. I f7  < fl = 5, (2.8) and (3.3) hold, and 0 < K <= K* 
then (-N,--fi) is asymptotically stable. 

Now, let us turn to the most interesting case when (3.3) holds and 
I( > K*. Then g is negative and (N, P) lies on the up-going branch of the 
prey isocline, i.e. to the left from the maximum, in the All~e effect zone. 
An easy calculation shows that in this Case det J (N, P) > 0 always. On 
the other hand 

(3.5) Tr J ( Y , P )  = 

= s (1 - 2 N / I ( )  - E/3 (/32 + / 3  _ 7) ( 1 -  N / I ( )  / ( ( /3 -  7)(/3 + N-)) ,  

hence 

sgnTr J ( N , P )  = 

= sgn (1 - ~ / ( U  - ~ )  - / 3  (/32 + 8 - 7) / ((8 - 7 ) ( 8  + ~ ) ) ) .  

Thus, (N' ,P) is asymptotically stable, resp. unstable if 

/3 (82 + /3-  7) / ( ( f l -  7) (/3 +-N)) + N /  ( K - - N )  >1, resp. <1 .  

Substituting N from (3.1) and introducing the notations 

A = 2(/3 - 7 ) / ( c / 3 2 )  - 1 / /3 ,  B = 1 + (/32 + / 3  - 7 ) / ( / 3  - 7 )  + 2 7 / ( e / 3 ) ,  

C = (/32 + / 3  _ 7 ) / ( 8  - 7 ) ,  D = (/3c + 7 ) / c ,  E = (e/3 - (/3 - 7 ) ) / ( 2 ~ 8 )  

we get that the condition of asymptotic stability can be written in the form 

(3.6) ( ( E K  ~/2) ~ + D @  '/~ - < B K / ( A K  + C) - EI( +/3/2 
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(and we have instability if the inequality sign is reversed). Because of (3.3), 
clearly, A, B, C, D > 0. The last condition of stability makes sense only 
if the right hand side is positive. In this case it can be brought to the 
equivalent form 

a2K 2 + a l K  + ao < 0 

where 

a2 = A ( A D + 2 B E ) ,  al = 2 A C D - t - 2 B C E - 3 A B - B  2, ao = C ( C D - / 3 B ) .  

Now, an easy calculation shows that the right hand side of (3.6) is positive 
if 

E A K :  + ( C E  - B - A /3 /2)K - Cf l /2  < 0 

and this holds if K E [0, t() where h" = oc if E 5 0, and 

1 [B+A3/2-CE+ 
2 E A  

+(B  2 -k (A/3/2 --k CE)  2 + 2 B ( A ~ / 2  - CE) )  1/2] 

if E > 0. If we assume that/3 __< e/2 (which is a fairly reasonable assumption 
taking into account that c is the maximum growth rate of prey, and/3 is the 
predation rate) then it is easy to see that a2 > 0, a0 < 0, i.e. the equation 

(3.7) a2K 2 + a l K  + ao = 0 

has two real roots of different s!g.ns. Let us denote the positive root by Kb. 
Clearly, if 0 < K < Kb then ( N , P )  is asymptotically stable; if Kb < K 
then it is unstable. Since the determinant of the Jacobian stays positive, 
and the trace is changing its sign, the loss of stability happens by some kind 
of an Andronov-Hopf bifurcation. The parameters E, 3 ,7  will be considered 
fixed, K > 0 will play the role of the bifurcation parameter. According to 
what has been established above we nay expect stability for some K > K* 
only if K* < h~. If K* > h" then the equilibrium point is unstable for all 
K > K * .  

THEOI~M 3.2. I f ' /  < /3 = 5, (2.8) holds, 

(3.8) , ~ < _ _ s 1 2 < 1 - 7 / 3 ,  

K* 

system (1.1) undergoes an Andronov-Hopf  bifurcation at K = Kb; the bi- 
furcation is supercritical, resp. subcritical according as the number 

(3.9) p = ( l /w)[  ( -  (1 + r 2) ( s w C / ( 3  + -N) + e/t(b) + 
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_t_rsm 2 (~4/ ((B_~/)2(~_~_~)2) -C)/(mAr - ~)2) , 

�9 ( (1 - r 2 + 2rsC) w/(/3 + -N)-  

-m 2 (rm (1 - m2/((m-z)(m + ~))) / (m- ~) :  ~c)/(m + y)2+ 

+2rs/gb) + ((1 + r2) u~/ (8 + -N) + 

+r/3 3 ( 1 - m 2 / ( ( m -  7 ) ( m +  N ) ) ) / ( ( m - 7 ) ( / ~  + N-2)2) ) �9 

�9 (((r~ - 1) ~C - 2 r ) ~ / ( 8  + ~ )  + 

q-/32 ( 1 -  r8 (m4/ ((m -- "/)2 (8 -[- ~ ) 2 ) _  C ) ) / ( ~ - ~  ~)2~_ 

+ (r 2 - 1)x lKb)]  + s (1 + r :)  3w/(/3 -t- N) :q-  

+/3 2 (2rsC-  1 -  3r 2 (1-  m4/ ((m -- 'T) (/~ -F N))))/(m -'F ~)3 

where -N = -N(Kb), uJ = (det J (-N(Kb),-fi(Kb)) ) Ug", 

r = -cm 3 (1 - -NIKb) I(u~(t3 - 7)(m + -N), 

s = cm (1 - -NIKb) I (w (/3 + -N)), 
is negative, resp. positive. 

PROOF. Denote the characteristic polynomial of system 
(N(K) ,  P ( K ) )  by 

(1.1) at 

p(A) = A 2 - Tr (K)A + det (K) 

where T r ( K ) =  T r J  ( N ( K ) , P ( K ) ) ,  d e t ( K ) =  det J ( N ( K ) , P ( K ) )  are 
given at the end of Section 2 (to be read with ~ = /3). We have seen 
that  det (K) > 0 for K > 0, and that  Tr (K) < 0 for K C (0, I(b), Tr (If)  > 

( I (b ,~ ) .  Tr(Kb)=O (this is actually equation (3.7)with the > 0for  K C 

positive root substi tuted into it). Denote the roots of p by AI(K), A2(K). 
Clearly ReAi(K)  <> 0 according as K ~ Kb. At K = Kb, ReAi(Kb) = 
= 0 and ImAi(Kb) = + iw where uJ = (det(Kb)) 1/2. To establish the 
statement about the occurrence of the bifurcation we have to show that  
the transversali ty condition 

dRe,\l(Kb)/dK = (1/2)dTr(Kb)/dK > 0 

holds. Introducing the notation f (K)  = -N(I()/K we get fi'om (3.5) that  

Tr (K) = - e  + ~(1 - f(K))(2 - t3C/(/3 + N ( K ) ) ,  
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d T r ( K ) / d K  = - c f ' ( K )  ( 2 -  3C/  (/3 + N ( K ) ) )  + 

+~(1 - f ( K ) ) f C - N ' ( K ) / ( f  + -N(K)) 2. 

From (3.1) we have 

f 2 (K)  - (2E - f / K ) f ( t ( )  - D / K  = O. 

Differentiating 

f ' ( g )  = f ( f ( g )  - D / f ) / ( K 2 ( 2 f ( K )  - 2E + H/K)) < 0 

since 2 f ( K )  - 2E  + f / K  > 0 because of (3.1), and f ( K )  - D//3 < 0 because, 
clearly, f ( K )  < 1, and D / f  = (eft + 7)/(c/3) > 1. From (3.8) we get C < 2, 
thus 2 - ~ C / ( f l  + N ( K ) )  > 0. We are going to show that  N ' ( K )  > 0. We 
know that  -N(K) is the solution of Hi(N)  = H3(N) (see Fig. 1), i.e. 

(3.10) ~ (I( - --N(K)) (fl + -N(K)) =_ 3 K  ((3 - 7)-N(K)/32 - 7 / 3 ) .  

P ~ g~oph H 3 P(K)I---/~ 

/ I I  w //i 
- f  I I r,a 

: ,L ~N 

K b K 

Fig. 1 

Differentiating the last identity we get 

(fl + -N( K)) -N( K)e/(flI(2) = 

= N ' ( K )  ( g ( 3  - 7) + vfl2 _ ef lg  + e f l 2 N ( I ( ) ) / ( 3 2 K ) .  
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Thus, N ' ( K )  > 0 iff 

(3.ii) K(Z - ~) + cZ 2 - cZI; + 2c9~(I~) > o. 

Expressing K from (3.10) in terms of N we get 

K = ~Z (9 + ~)  ~ / ( ~ 9  (9 + ~)  + Z~ - (Z  - ~ ) ~ )  

Note that since K > 0, we have 

(3.12) ~9 (/3 + N) +/~7 - (/3 - 7 )N > 0. 

Substituting the expression for K into (3.11) yields the condition 

(1 + ~ )  + ~ 9 3 / ( ~ 8  (Z + N) + 9~ - (8 - ~)~)  > 0 

which holds true, indeed, in view of (3.12). Thus, dTr(K)/dK > 0, i.e. all 
the conditions of the Hopf bifurcation theorem hold (see e.g. [8]). Trans- 
forming system (1.1) into normal form and applying Bautin's formula (see 
[1]) we get (3.9) and this completes the proof of the theorem. [] 

EXAMPLE. Set /3 = 5 = 0.106, 7 = 0.008, ~ = 1.8000. These values 

satisfy the conditions of Theorem 3.2. (I(*,h I) = (12.46, 31.07), and Kb = 
= 12.92. Note that for K E (K*,Kb) = (12.46, 12.92) the asymptotically 
stable equilibrium ( N ( K ) , P ( K ) )  is in the All4e effect zone (like the case 
shown on Fig. 1). 

( N ( K ) , P ( K ) )  = (6.40, 55.77), and p = -1 .62 .10  -4. 

Thus, at K = Kb the equilibrium undergoes a supercritical Andronov-Hopf 
bifurcation, i.e. for K > 12.92 (not too large) the system has a small 
amplitude orbitally asymptotically stable periodic solution. 

4. T h e  mode l  w i th  m e m o r y  

We get a more realistic model if in the second equation of (1.1) we replace 
the present value of prey by the time average of prey quantity over the past. 
We follow Cushing [3], MacDonald [10] and Farkas [5] (see also Szab5 [13]) 
in assuming that the influence of the past is fading away exponentially. 
Accordingly, instead of N(t) the function 

t 

(4.1) Q(t) := f f  N(T)aexp(-a(t-  v))dT, a > 0 
--OO 
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will be introduced. Here the exponential weight function satisfies 

t oo 

ff aexp(-a(t-v))dT = /aexPC-a )d  = 1. 

- -oo 0 

The smaller a > 0 is the longer is the time interval in the past in which the 
values of N are taken into account, i.e. l la  is the "measure of the influence 
of the past". 

Thus, (1.1) will be replaced by the integro-differential equation 

(4.2) { N = s N ( 1 -  N/K) - flNPl(fl + N), 
P = - P ( 7  + 5P)I(1 + P) + flPQl(fl + Q) 

where Q is in given by (4.1). It can be easily shown that on the interval 
t E [0, oo) (4.2) is equivalent to the ordinary differential system 

(4.3) { N = oN(1 - N/K)  - flNP/(fl + N) 

P = - P ( 7  + 5P)/(1 + P) + flPQl(fl + Q) 

Q : a ( N - Q )  

(see [4]). This system has the following equilibrium points. The origin 
(0, 0, 0) which is unstable and of no interest, the point (K, 0, K) which is 
asymptotically stable if flK/(fl + K) < 7 and unstable if flK/(fl + I() > 7, 
and one or more equilibria with positive coordinates if and only if flK/(fl + 
+ K) > 7, or equivalent iff 

(4.4) 0 < Z7/(/7 - 7) < K 

(cf. (2.7)). The coordinates (N ,P ,Q)  of an equilibrium are determined by 
the conditions ~ = N, P = H1 (N) = H2 (N) where H1 and H2 are the 
functions introduced in Section 2 describing the prey and the predator null- 
-dines, respectively. From the equality of H1 and H2 we get that N must 
be a positive root of the cubic polynomial 

(4.5) q(N) = N 3 + q2N 2 + qlN + qo 

where 

qo : - ~ K ( c 6  + 7)/(~(~ - ~)), 

ql = f l K ( f l  - -  7)/(E(~ - ~)) - 9~(K - ~)/(~ - ~) - 9sr 

q: = ~ / ( ~  - ~) - (K - ~). 
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We assume, as before, that (2.4) holds (this time) with a strict inequality 
sign, i.e. 

(4.6) 7 < ,3 < 5. 

So the constant term in the cubic polynomial is negative, thus, there is 
either one or three positive roots. (N, P , N )  denotes one of these, N > 0, 
P > 0. As in (2.7) we must have 

(4.7) /37/(/3 - 7) < N < K. 

In order to check the stability of this equilibrium we linearize the system, 
introduce the notations 

]" , = d ( K ~ ) ,  o ,  = ~/(~ + ~), 02 = K - ~ - 2 ~ ,  
(4.8) 

l 03 -~- ( [ ( - N ) / ( , ~ - [ - N ) ,  04 : ( (5 -  fl)N-~,~5)2/(5 - " / ) ,  

and obtain for the coefficient matrix and for the characteristic equation, 
respectively, 

[ , 0 ! 0 2 - - 0 1 0  
A =  - , 0 3 0 4  q/~203 , 

0 - a  

(4.9) .~3 ..[_ (a--[- , ( 0 3 0 4  -- 0102)) ~ 2 + ( a ,  (0304 -- 0 1 0 2 ) -  

- . 2 0 1 0 2 0 3 0 4 )  A + a .0103  (f12 _ . 0 2 0 4 )  = 0. 

Applying the Routh-Hurwitz criterion the eigenvalues have negative real 
parts if and only if the following inequalities hold: 

(4.10) 
(4.11) 

(4.12) 

and 

(4.13) 

a + . ( 0 3 0 4  - 0102) > O, 
a(0304  -- 0102)--  . 01020304  > O, 

a . 0103  (~2 __ ,0204)  > 0 

M(~) :=  ( 0 3 0 4  - o , o 2 )  a 2 + ( ~ ( o 3 o 4  - 0 , 0 2 )  2 - ~ 2 o , o 3 )  

__?.]2 (0304 -- 0102) 01020304 ]> O. 

Clearly, , ,  01,03,  04 > 0. Three cases can be distinguished. 

a- -  
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Case 1 :02  < 0. This means that ( N , P )  lies on the descending branch 
of the prey null-cline of system (1.1). In this case the inequalities (4.10)- 
(4,12) hold true. If 

(4.14) ? ] ( 0 3 0 4  -- 0 1 0 2 )  2 -- 3 2 0 1 0 3  ~ 0 

then (4.13) holds for all a > 0 and ( N , P , N )  is asymptotically stable. If 
(4.14) does not hold then since the constant term of the quadratic poly- 
nomial M is positive, this polynomial either has no real root or has two 
roots of the same sign. If M has no real roots or has two negative roots 
then (4.13) holds agai n for all a > 0 and the equilibrium is asymptotically 
stable. If M has two positive roots, 0 < al < a0, say, then the equilibrium 
is asymptotically stable for large values of a, i.e. for small delays. Using 
a as a bifurcation parameter, the equilibrium is losing its stability by an 
Andronov-Hopf bifurcation when a is decreased below a0, i.e. the delay 
is increased. However, if a is decreased further below al the equilibrium 
regains its stability. 

Case 2 : 0 2  = 0. The point ( N , P )  is at the maximum, point of the prey 
null-cline of system (1.1). Again (4.10)-(4.12) hold true. Now, (4.13) is 
equivMent to 

a > 3201/04 -- ? ]0304 .  

If the right hand side of this inequality is negative or zero (which taking 
into account that ?] = e/(K3) roughly means that the specific growth rate of 
prey is large enough) then ( N , P , N )  is asymptotically stable for all a > 0. 
A more interesting situation arises if 

ao : =  3 2 0 1 / 0 4  - ? ]0304  > O. 

In this case the equilibrium is losing its stability if a is decreased below a0. 
This loss of stability occurs again by an Andronov-Hopf bifurcation. 

Case 3 : 0 2  > 0. This means that (N-, P)  is in the All6e effect zone, i.e. 
on the ascending branch of the prey null-cline of system (1.1). In this case 
(4.10)-(4.12) are not satisfied automatically. 

Let us assume that 

(4.15) 0304 - 0102 > 0 

and 

(4.16) 32 -- ? ] 0 2 0 4  > O. 

These inequalities imply (4.10) and (4.12). On the other hand (4.13), (4.15) 
and (4.16)imply (4.11), thus, (4.13), (4.15) and (4.16) together form a 
sufficient condition of asymptotic stability of the equilibrium. 
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If (4.15) and (4.16) hold then the polynomial M has a single positive 
root a0 > O, M(a)  > 0 for a > a0, and M(a) < 0 for 0 < a < a0. I f a i s  
decreased below a0 then the equilibrium (N, P ,  N)  undergoes an Andronov-  
-Hopf  bifurcation. 

EXAMPLE. Set /3 = 0.1, 7 = 0.01, (f - 0.1055, e = K = 1. The 
polynomial (4.5) is now q(N) = N 3 + 1.018N 2 - 0.190N - 0.210. The 
only positive equilibrium of system (1.1) ( N , P )  = (0.448, 3.025) is in the 
All6e effect zone. For these values of the parameters (4.15) and (4.16) hold, 
02 > 0, and the positi'~e root of M is a0 = 0.51. At a0 (4.11) still holds 
true, i.e. a0 is the critical point of the bifurcation. 

T h e  A n d r o n o v - H o p f  b i f u r c a t i o n  of  t h e  equilibrium 

We are going to treat the three cases of the last section together under 
the addit ional assumptions (4.15) and (4.16). (In the first and second cases 
these inequalities hold automatically.) 

DEFINITION 5.1. The positive p a r a m e t e r s / 3 , % 5 , s , K  are called admis- 
sible if (4.6), (4.7), (4.15) and (4.16) hold, the polynomial (4.5) has a single 
positive root, and the polynomial M in (4.13) has a simple positive root a0 
such that  M(a)  > 0 for a > a0. 

Note that  if the parameters are admissible then for a > a0 system 
(4.3) has a single asymptotically stable equilibrium (N, P ,  N)  in the closed 
positive octant.  Note aJso that  the conditions imposed imply that  at a = ao 
(4.11) is still valid. 

THEOREM 5.1. Suppose that the parameters of system (4.3) are admis- 
sible then as the bifurcation parameter a is decreased at ao the equilibrium 
(N, P , N )  undergoes an Andronov-Hopf bifurcation. 

PROOF. At a0 the characteristic equation (4.9) assumes the form 

(A 2 + ao?] ( (~304 -- 0 1 0 2 )  -- ~ ]2(~1020304)  X 

x ( : ,  + ao  + - = o .  

The eigenvalues are 

Ao(ao)  = - -ao  -- ~ ( ( ~ 3 0 4  -- 0 1 0 2 )  < O, A1,2(ao) ----- •  

where 

(4.17) 03 = ( a o , ( 0 3 0 4  -- 0 1 0 2 ) -  ~ ]201~)20304)  1/2 
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(the expression under the root is positive because of (4.11)). A routine 
calculation shows that 

dP~eAl(ao) ( 0 30 4 -O10 2) (w2 /ao+ao '4 -0304 -0102 )  
- -  <0. 

da 2(w2-4- (ao-4-0304-0102)  2) 

In [2] the Poincar4-Liapunov constant of this bifurcation has been de- 
termined whose sign decides about the supercriticality, resp. subcriticality 
of the bifurcation. 

EXAMPLE. Assuming the parameter values of the Example at the end 
of Section 4 : / 3  = 0.100, 7 = 0.010, ~ = 0.1055, ~ = K = 1, we have 
(N, P ,  N) --" (0.448, 3.025, 0.448), a0 = 0.510. The parameters are admis- 
sible and the Poincar~-Liapunov constant is p = -0.207. This means that a 
0 < a < ao exists such that for a e (a0 - a, a0) system (4.3) has small am- 
plitude orbitally asymptotically stable periodic solutions with approximate 
period 2~r/w = 27.8. 

6. Discuss ion  

We have introduced an autonomous (time independent) predator-prey 
model (1.1) which we consider a fairly realistic one in this category. The 
growth of prey is restricted by the carrying capacity K of the environment, 
the functional response of the predator is of Holling's type, i.e. it is growing 
with increasing prey quantity but is bounded. The mortality of the predator 
in the absence of prey is a growing but bounded function of the predator 
quantity. We have shown (Theorem 2.1) that if the mortality of the predator 
is high compared to the predation rate then the predator dies out. We have 
also shown (Theorem 2.2) that even in the case when the predation rate is 
higher than the minimal specific mortality of the predator (but lower than 
the maximal mortality) the predator dies out provided that the carrying 
capacity is low. If in this case the carrying capacity is higher but not too high 
then we have a positive locally stable equilibrium (Theorem 2.3). In a special 
case it has been shown that the increase of the carrying capacity destabilizes 
the equilibrium and generates small amplitude periodic oscillations. This 
happens somewhere in the interior of the Allde effect zone, i.e. when in the 
neighborhood of the equilibrium the increase of prey quantity is beneficial to 
its growth rate. A criterion has been given for the stability of these periodic 
solutions. 

We have introduced infinite delay into the model (4.2) assuming that 
the predator's growth rate depends on past quantities of prey in  an ex- 
ponentially decreasing way. If now the equilibrium lies on the descending 
branch of the prey null-dine (i.e. in the neighbourhood of the equilibrium 
point the increase of prey quantity has an adverse effect on its growth rate) 
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then either the equilibrium stays stable for arbitrary large delay or it loses 
its stability at some value of delay but regains its stability if the delay is 
increased fltrther. If the equilibrium lies on the ascending branch of the 
prey null-cline (i.e. in the neighbourhood of the equilibrium the increase of 
the prey quantity is beneficial to its growth rate), in the All~e effect zone 
then the increase of delay destabilizes the system and causes the occurrence 
of periodic oscillations. In the Ph. D. thesis of the first author conditions 
are given for the stability of the bifurcating periodic solutions. In a second 
paper we shall introduce spatial distribution into the same model assuming 
that prey and predator are diffusing according to Fick's law with different 
diffusion coefficients. 
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