Ca²⁺-Dependent Cl⁻ Efflux in Tonoplast-Free Cells of Nitellopsis Obtusa

Takashi Shiina* and Masashi Tazawa

Department of Biology, Faculty of Science, University of Tokyo, Tokyo 113, Japan

Summary. In order to demonstrate the presence of a Ca¹⁻-activated Cl⁻-channel in the *Nitellopsis* plasmalemma, tonoplast-free cells were prepared and their intracellular Ca²⁺ concentration was modified by internal perfusion. An increase in the Ca²⁺ concentration caused a large Cl⁻ efflux with a concomitant depolarization of the membrane potential. These changes were for the most part reversible. The critical Ca²⁺ concentration was about 4.0 μ M. Neither the Cl⁻ efflux nor the membrane depolarization showed a time-dependent inactivation. A Cl⁻-channel blocker, A-9-C (9-anthracenecarboxylic acid) reduced both the Cl⁻ efflux and the magnitude of the membrane potential depolarization. A small increase in the intracellular Ca²⁺ concentration, which is caused by membrane excitation of tonoplast-free cells is not sufficient to activate this Ca²⁺-dependent Cl⁻-channel.

Key Words Ca²⁺-dependent Cl⁻-channel \cdot Characeae \cdot Cl⁻ efflux \cdot membrane excitation \cdot *Nitellopsis obtusa* \cdot tonoplast-free cell

Introduction

Involvement of the Cl⁻-channel activation in the membrane excitation of characean cells has been demonstrated by measuring the Cl⁻-dependent transient inward current under voltage clamp (Kishimoto, 1964) and a large Cl⁻ efflux (Gaffey & Mullins, 1958; Mullins, 1962; Hope & Findlay, 1964; Mailman & Mullins, 1966; Haapanen & Scoglund, 1967; Findlay, 1970; Oda, 1976; Kikuyama et al., 1984). Presence of Ca^{2+} in the external solution is essential for maintaining the plasmalemma excitability (Findlay & Hope, 1964). The occurrence of both Cl⁻ and Ca²⁺ currents during membrane excitation was suggested by Beilby and Coster (1979a) for Chara and by Lunevsky et al. (1983) for Nitellopsis. Tsutsui et al. (1987a,b) observed inhibitory effects of both Ca2+ depletion and Ca2+-channel blockers on the membrane excitability of Chara cells. Thus the idea that the Cl⁻ channel in characean cells is activated by Ca^{2+} has been hypothesized. Recently, Shiina and Tazawa (1987*b*) presented results, which strongly support this idea. The transient Cl⁻ efflux during membrane excitation was influenced by various treatments, which influence the Ca²⁺ influx through the Ca²⁺ channel in *Nitellopsis* cells.

In this paper, we will directly show that Cl⁻ efflux and E_m depolarization¹ is dependent on $[Ca^{2+}]_i$, which can be modified in tonoplast-free *Nitellopsis* cells using the open vacuole method (Tazawa, Kikuyama & Nakagawa, 1975; Tazawa & Shimmen, 1980).

Materials and Methods

PLANT MATERIALS AND CULTURE

Internodal cells of *Nitellopsis obtusa* were used. The alga was cultured in large polyester buckets in an air conditioned room ($25 \pm 2^{\circ}$ C, 15 hr light/9 hr dark). Internodal cells isolated from neighboring cells were kept in APW containing 0.1 mM each of KCl, NaCl and CaCl₂. All experiments were carried out at room temperature (20–25°C).

Open-Vacuole Method

A Plexiglas vessel (Fig. 1) composed of three chambers was used to measure E_m , R_m and Cl⁻ efflux simultaneously (Mimura & Tazawa, 1983; Shiina & Tazawa, 1987b). Measurements of E_m

^{*} Present address: Faculty of Integrated Arts & Sciences, Hiroshima University, 1-1-89, Higashisenda-machi, Naka-ku, Hiroshima, 730, Japan.

¹ Abbreviations: A-9-C, 9-anthracenecarboxylic acid; α -NP, α -naphthylphosphate; APW, artificial pond water; EGTA, ethyleneglycol-bis-(β -aminoethylether)N,N'-tetraacetic acid; E_m , membrane potential; $[Ca^{2+}]_c$, cytoplasmic Ca^{2+} concentration; $[Ca^{2+}]_o$, extracellular Ca^{2+} concentration; $[Ca^{2+}]_o$, extracellular Ca^{2+} concentration; $[Ca^{2+}]_o$, extracellular Ca^{2+} concentration; PIPES, piperazine-N,N'-bis(2-ethanesulfonic acid); R_m , membrane resistance; W-7, N-(6,aminohexyl)-5-chloro-1-naphthalenesulfonamide.

Fig. 1. Experimental setup for measuring Cl⁻ efflux using the open-vacuole method. Details are described in the text

Table 1. Concentrations of $CaCl_2$ added to the perfusion medium to adjust different values of pCa

<i>p</i> Ca	CaCl ₂ (mm)
<7.00	0
6.96	1.04
5.95	3.60
5.40	4.46
4.76	4.82

and R_m in vacuole-opened cells were done following Tazawa et al. (1975), and Tazawa and Shimmen (1980). The lateral chambers (*A* and *C*) were filled with the perfusion medium. Both cell ends in the lateral chambers were cut off, and the central chamber (*B*) was filled with isotonic APW containing 0.1 mM each of KNO₃, NaNO₃ Ca(NO₃)₂ and 4 mM Pb(NO₃)₂. Pb²⁺ was used to suppress the spontaneous membrane excitation (Kamitsubo, 1976; Shimmen & Tazawa, 1977). Pb²⁺ does not interfere with the dependence of the electrogenic H⁺ pump activity on the intracellular ATP concentration (Mimura, Shimmen & Tazawa, 1983).

The basic perfusion medium contained 20 mM PIPES, 5 mM EGTA, 6 mM MgCl₂, 250 mM sorbitol, 5% (wt/vol) Ficoll-70, 1 mM ATP and 0–4.83 mM CaCl₂. The pH of the medium was adjusted to 7.0 by KOH. Ficoll-70 was dialyzed against distilled water before use. The perfusion media containing various concentrations of Ca²⁺ were prepared by using Ca²⁺-EGTA buffer and listed in Table 1. The free [Ca²⁺] of the perfusion media were calculated from the apparent association constants of EGTA for Ca²⁺ and Mg²⁺, and of ATP for these ions. The purity of EGTA (98.32%) was taken into account for the calculation.

 E_m was measured as the potential difference between the central chamber (B) and the lateral chambers (A and C). Small constant current pulses were applied to the cell for the measurement of R_m .

The Cl⁻ efflux was measured as described in our previous paper (Shiina & Tazawa, 1987*b*). The central chamber was continuously perfused with isotonic APW. The Cl⁻ concentration of the outgoing medium was measured with a Ag-AgCl electrode. The flow rate of the medium was about 1 ml/min.

W-7 and α -NP were purchased from Sigma. ATP- γ -S was

Results

We showed a typical example of Ca^{2+} -dependent Cl^- efflux in Fig. 2. An increase in $[Ca^{2+}]_i$ depolarized E_m , decreased R_m and increased the Cl^- efflux. These changes caused by $[Ca^{2+}]_i$ were for the most part reversible. Neither the Cl^- efflux nor the E_m depolarization showed a time-dependent inactivation. Table 2 shows the average values of 8 experiments of 7 cells. The Ca^{2+} -dependent Cl^- efflux was observed in almost all cells tested, although magnitude of the Ca^{2+} -induced Cl^- efflux varied from cell to cell.

purchased from Boehringer Mannheim. Protein phosphatase-1

was a gift from Dr. H. Y. Lim Tung (Cornell University).

The Ca²⁺-dependent depolarization of E_m was always observed. However, an increase in the $[Ca^{2+}]_i$ from pCa 5.4 to pCa 4.8 caused a large increase in the Cl⁻ efflux without a further depolarization of E_m . Furthermore, the Ca²⁺-induced depolarization usually reached the value of about +10 mV. Because we used Cl⁻-free solution for the external medium, the equilibrium potential of Cl^{-} ($E_{Cl^{-}}$) would be more positive than +10 mV. We cannot understand this discrepancy between the measured E_m and the calculated E_{CI^-} . The same discrepancy was also observed in Ca²⁺ channel of Characean plasmalemma (Lunevsky et al., 1983; Beilby, 1984; Shiina & Tazawa, 1987a). Since there is a considerably large resistance along the cell (R_s) , the exact value of R_m could not be measured. Thus, we could not know the relationship between the amount of Cl⁻ efflux and the decrease of R_m . Ca²⁺-dependent Cl⁻ efflux was also seen in tonoplast-free Chara cells (data not shown).

A-9-C, which inhibits the Cl⁻-channel activation during membrane excitation (Tyerman, Findlay

рСа	E_m (mV)	No. ^a (>50 mV)	$J_{\rm Cl^-}$ (μ mol/m²/sec)	No. ^b (>1 μ mol/m ² /sec)
>7		0/8		0/8
7.0	-0.9 ± 0.4	0/8	0	0/8
6.0	6.4 ± 4.9	0/8	$0.05 \pm 0.04 \ (0-0.27)$	0/8
5.4	107.9 ± 5.9	8/8	$5.83 \pm 2.53 (0-20.81)$	5/8
4.8	114.2 ± 5.2	8/8	$12.78 \pm 4.64 \ (0.51 - 37.50)$	7/8

Table 2. Average values of Ca²⁺-dependent E_m depolarization and Cl⁻ efflux

^a Number of experiments in which a large E_m depolarization was seen.

^b Number of experiments in which a large Cl⁻ efflux was seen.

Fig. 2. E_m and R_m (lower trace), and Cl⁻ efflux (upper trace) in response to changes in $[Ca^{2+}]_i$ in a tonoplast-free cell of *Nitellopsis*. Downward reflection of the upper trace means the increase in the Cl⁻ efflux. Small current pulses were applied to the cell for the measurement of R_m

& Paterson, 1986; Shiina & Tazawa, 1987b), also reduced both the Cl⁻ efflux and the E_m depolarization, which were caused by the $[Ca^{2+}]_i$ increase (Fig. 3). Ca²⁺-activated Cl⁻ efflux was reduced from 16.8–8.4 µmol/m²sec to 5.5–0 µmol/m²sec by 1 mM A-9-C treatment (4 experiments). Reduced Cl⁻ efflux was partially reversed by removal of A-9-C. E_m depolarization by $[Ca^{2+}]_i$ increase was also seen in all cells tested (8 experiments of 4 cells) (Table 2). However, their reversibilities could not be seen.

In our preliminary results, Ca²⁺-dependent Cl⁻ efflux was not affected by the intracellular application of calmodulin antagonist, W-7 (100 μ M) (2 experiments of 2 cells) nor protein phosphatase-1 (2 U/ml) (2 experiments of 2 cells) nor ATP- γ -S (1 mM) (4 experiments of 2 cells) nor protein phosphatase inhibitor, α -NP (1 mM) (10 experiments of 4 cells) (*data not shown*). Depletion of [ATP]_i did not change the amount of Ca²⁺-dependent Cl⁻ efflux (5 experiments of 3 cells) (*data not shown*).

Discussion

Although a large Cl⁻ efflux is observed during membrane excitation of normal cells, it has been reported that Cl⁻ efflux can not be detected in tonoplast-free cells (Kikuyama et al., 1984). Linear depolarization of E_m under voltage-clamp conditions caused only the voltage-dependent activation of Ca²⁺ channel in tonoplast-free cells (Shiina & Tazawa, 1987*a*). These facts clearly demonstrate that Cl⁻ channel in tonoplast-free cells can not be activated only by E_m depolarization.

However, a large Cl⁻ efflux was induced by an increase in $[Ca^{2+}]_i$ using the open-vacuole method (Fig. 2). This result clearly demonstrates the presence of a Ca2+-activated Cl--channel in the plasmalemma of *Nitellopsis* cells. The critical $[Ca^{2+}]_i$ for Cl⁻-channel activation was about 4.0 μ M (pCa = 5.4) in Nitellopsis (Fig. 2). This value is almost the same order of magnitude as the maximum increase in $[Ca^{2+}]_c$ during the action potential, which was measured in normal cells of Chara (6.7 μ M) and Nitella (43 μ M). Depolarization of E_m during the action potential was almost coincident with an increase in $[Ca^{2+}]_c$ (Williamson & Ashley, 1982). Thus, the transient increase in $[Ca^{2+}]_c$ during the action potential seems to be enough to activate the Ca²⁺-activated Cl⁻-channel in normal Characean cells. However, the Ca2+-activated Cl- efflux was not strictly coupled with the E_m depolarization. The Cl⁻ efflux increased much without a significant change in E_m depolarization as shown in Fig. 2. Furthermore, the peak value of E_m depolarization by $[Ca^{2+}]_i$ increase was not consistent with the calculated E_{Cl^-} . We could not understand these discrepancies. Some other ion channels may also be activated by either $[Ca^{2+}]_i$ increase or E_m depolarization and make the behavior of E_m complicated.

Beilby and Coster (1979a,b) observed two timeseparated, transient inward currents under voltage clamp, and analyzed them based on the Hodgkin-Huxley equations. They assumed the initial current

Fig. 3. Effects of A-9-C on E_m and R_m (lower trace), and Cl⁻ efflux (upper trace) induced by an increase in $[Ca^{2+}]_i$. Downward reflection of the upper trace means the increase in the Cl⁻ efflux. Small current pulses were applied to the cell for the measurement of R_m

as I_{Cl^-} and the subsequent one as an unknown cation current (probably $I_{\text{Ca}^{2+}}$). Based on the channel-inhibitor experiments, however, Lunevsky et al. (1983) assumed that $I_{\text{Ca}^{2+}}$ precedes I_{Cl^-} in *Nitellopsis*. We previously reported that the Cl⁻-channel activation was strongly dependent on the Ca²⁺-channel activation (Shiina & Tazawa, 1987b). Furthermore, our present experiment clearly demonstrated that a large Cl⁻ efflux is induced by elevating the intracellular Ca²⁺ concentration. These results strongly support the hypothesis of Ca²⁺-induced Cl⁻-channel activation.

In our preliminary results, any agent that would affect the calmodulin action or protein phosphorylation did not interfere with the Ca²⁺-activated Cl⁻ efflux. Thus, the Cl⁻ channel in *Nitellopsis* plasmalemma may be directly activated by Ca²⁺. Further detailed experiments should be necessary to know the activation mechanism of the Cl⁻ channel.

The free $[Ca^{2+}]_i$ at the peak of the initial light emission of aequorin observed in the tonoplast-free cells were estimated to be 3.2 μ M when cells were bathed in an external solution containing 0.1 mM Ca²⁺ (Kikuyama & Tazawa, 1983). Thus, the Cl⁻ channel in the tonoplast-free cells is also expected to be activated by an increase in $[Ca^{2+}]$; during action potential. However, the Cl⁻ channel is not activated in tonoplast-free cells (Kikuyama et al., 1984; Shiina & Tazawa, 1987a). This discrepancy is accounted for in the following way. Kikuyama and Tazawa (1983) used a perfusion medium containing 1.0 mM EGTA, because they could not measure the transient Ca²⁺ increase by using a medium containing 5.0 mм EGTA (M. Kikuyama & M. Tazawa, personal communication). Thus, chelation of Ca²⁺ by excessive EGTA may restrain the increase in $[Ca^{2+}]_i$ in tonoplast-free cells. In fact, the $[Ca^{2+}]_i$ increase estimated in the presence of 5 mM EGTA is 10^{-9} M, when the Ca²⁺ influx of tonoplast-free cells during the action potential is 1.51 μ mol/m²/sec

(Shiina & Tazawa, 1987*a*). This value is too small to activate the Cl⁻ channel. Thus we conclude that the disappearance of the Cl⁻-channel activation during an action potential in tonoplast-free cells is not due to an impairment of the Cl⁻ channel but by an inhibition by EGTA of the $[Ca^{2+}]_i$ increase.

The transient increase in Cl⁻ efflux during an action potential is suppressed by A-9-C (Shiina & Tazawa, 1987b). Thus, the inhibitory effect of A-9-C on the Ca²⁺-activated Cl⁻ efflux suggests that both Cl⁻ effluxes are induced by the same Cl⁻ channel. The Cl⁻ efflux measured using the open-vacuole method was about 3 μ mol/m²/sec, when the $[Ca^{2+}]_i$ was 4 μM . This value is the same order of magnitude as the Cl⁻ efflux measured during an action potential in the normal Nitellopsis cells (3 μ mol/m²/sec or more). Thus the [Ca²⁺]_c increase during the action potential of normal cells is estimated to be around 4 μ M or more, which is similar to the values (6.7 μ M) measured by Williamson and Ashley (1982) with aequorin light emission using Chara cells.

Mimura and Tazawa (1983) reported that an increase in $[Ca^{2+}]_i$ in tonoplast-free cells caused depolarization of E_m and a decrease in R_m without a significant Cl⁻ efflux in *Nitellopsis*. We do not know the reason for the discrepancy between these data and ours. Other Ca²⁺-dependent processes such as Ca²⁺-activated Ca²⁺-channel may also be involved in this phenomenon and they may change seasonally.

We conclude that there is a Ca^{2+} -dependent Cl^{-} -channel in the *Nitellopsis* plasmalemma. This channel seems to be opened during membrane excitation by a small increase in $[Ca^{2+}]_c$, which is caused by a preceding voltage-dependent Ca^{2+} -channel activation in the plasmalemma.

The authors wish to thank Dr. T. Shimmen, Dr. T. Mimura (Department of Biology, University of Tokyo) and Dr. R. Wayne

T. Shiina and M. Tazawa: Ca2--Dependent Cl- Efflux

(Section of Plant Biology, Cornell University) for their critical reading of this manuscript. We also thank Dr. H. Y. Lim Tung (Clayton Foundation Biochemical Institute, The University of Texas) for the kindly gifts of protein phosphatase-1. This work was supported by a Grant-in-Aid for Special Project Research (Grant No. 60223011) from the Coordination Funds for the Promotion of Science and Technology from the Science and Technology Agency of Japan, and by a Grant-in-Aid for Special Project Research (Grant No. 61215007) from the Ministry of Education, Science and Culture.

References

- Beilby, M.J. 1984. Calcium and plant action potentials. *Plant Cell Environ.* 7:415–421
- Beilby, M.J., Coster, H.G.L. 1979a. The action potential in Chara corallina: II. Two activation-inactivation transients in voltage clamps of the plasmalemma. Aust. J. Plant Physiol. 6:323-335
- Beilby, M.J., Coster, H.G.L. 1979b. The action potential in *Chara corallina*: III. The Hodgkin-Huxley parameters for the plasmalemma. *Aust. J. Plant Physiol.* 6:337–353
- Findlay, G.P. 1970. Membrane electrical behavior in Netellopsis obtusa. Aust. J. Biol. Sci. 23:1033-1045
- Findlay, G.P., Hope, A.B. 1964. Ionic relations of *Chara australis:* IX. Analysis of transient membrane currents. *Aust. J. Biol. Sci.* 17:400-411
- Gaffey, C.T., Mullins, L.J. 1958. Ion fluxes during the action potential in Chara. J. Physiol. (London) 144:505-527
- Haapanen, L., Scogland, C.R. 1967. Recording of the ionic efflux during single action potential in *Nitellopsis obtusa* by means of high-frequency reflectometry. *Acta Physiol. Scand.* 69:51-68
- Hope, A.B., Findlay, G.P. 1964. The action potential in *Chara*. *Plant Cell Physiol*. **5**:377–379
- Kamitsubo, E. 1976. Studies on mechanism of protoplasmic streaming in Characean cells IV. (in Japanese) Proc. Annu. Meeting Bot. Soc. Jpn. 4:71
- Kikuyama, M., Oda, K., Shimmen, T., Hayama, T., Tazawa, M. 1984. Potassium and chloride effluxes during excitation of *Characeae* cells. *Plant Cell Physiol.* 25:965–974
- Kikuyama, M., Tazawa, M. 1983. Transient increase of intracellular Ca²⁻ during excitation of tonoplast-free Chara cells. Protoplasma 117:62-67
- Kishimoto, U. 1964. Current voltage relations in Nitella. J. Physiol. (London) 14:515-527
- Lunevsky, V.Z., Zherelova, O.M., Vostrikov, I.Y., Berestovsky, G.N. 1983. Excitation of *Characeae* cell membrane

as a result of activation of calcium and chloride channels. J. Membrane Biol. **72:**43–58

- Mailman, D.S., Mullins, L.J. 1966. The electrical measurement of chloride fluxes in Nitella. Aust. J. Biol. Sci. 19:385-398
- Mimura, T., Shimmen, T., Tazawa, M. 1983. Dependence of the membrane potential on intracellular ATP concentration in tonoplast-free cells of *Nitellopsis obtusa*. *Planta* 157:97–104
- Mimura, T., Tazawa, M. 1983. Effects of intracellular Ca²⁺ on membrane potential and membrane resistance in tonoplastfree cells of *Nitellopsis obtusa*. *Protoplasma* 118:49–55
- Mullins, L.J. 1962. Efflux of chloride ions during the action potential of Nitella. Nature (London) 196:986-987
- Oda, K. 1976. Simultaneous recording of potassium and chloride effluxes during an action potential in *Chara corallina*. *Plant Cell Physiol.* 17:1085-1088
- Shiina, T., Tazawa, M. 1987a. Demonstration and characterization of Ca²⁺ channel in tonoplast-free cells of *Nitellopsis ob*tusa. J. Membrane Biol. **96**:263-276
- Shiina, T., Tazawa, M. 1987b. Ca²⁺-activated Cl⁻ channel in plasmalemma of Nitellopsis obtusa. J. Membrane Biol. 99:137-146
- Shimmen, T., Tazawa, M. 1977. Control of membrane potential and excitability of *Chara* cells with ATP and Mg²⁺. J. Membrane Biol. 37:167-192
- Tazawa, M., Kikuyama, M., Nakagawa, S. 1975. Open-vacuole method for measuring membrane potential and membrane resistance of *Characeae* cells. *Plant Cell Physiol.* 16:611–622
- Tazawa, M., Shimmen, T. 1980. Action potential in *Characeae*: Some characteristics revealed by internal perfusion. *In*. Plant Membrane Transport: Current Conceptual Issues. R.M. Spanswick, W.J. Lucas, J. Dainty, editors. pp. 349–362. Elsevier, North Holland
- Tsutsui, I., Ohkawa, T., Nagai, R., Kishimoto, U. 1987a. Role of calcium ion in the excitability and electrogenic pump activity of the *Chara corallina* membrane: I. Effects of La³⁺, verapamil, EGTA, W-7, and TFP on the action potential. J. Membrane Biol. 96:65–74
- Tsuitsui, I., Ohkawa, T., Nagai, R., Kishimoto, U. 1987b. Role of calcium ion in the excitability and electrogenic pump activity of the *Chara corallina* membrane: II. Effects of La³⁺, EGTA, and calmodulin antagonists on the current-voltage relation. J. Membrane Biol. **96**:75–84
- Tyerman, S.D., Findlay, G.P., Paterson, G.J. 1986. Inward membrane current in *Chara inflata*: II. Effects of pH, Cl⁻channel blockers and NH⁴₄, and significance for the hyperpolarized state. J. Membrane Biol. 89:153-161
- Williamson, R.E., Ashley, C.C. 1982. Free Ca²⁺ and cytoplasmic streaming in the alga *Chara*. *Nature* (*London*) **296:**647– 651

Received 2 August 1988