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Summary. We analyze the electrical and mechanical stress in the 
bounding membrane of a cell (or vesicle) in suspension which is 
deformed by an external applied field. The membrane is treated 
as a thin, elastic, initially spherical, dielectric shell and the analy- 
sis is valid for frequencies less than the reciprocal of the charging 
time (i.e. less than MHz), or for constant fields. A complete 
analytic solution is obtained, and expressions are given which 
relate the deformation, the surface tension and the transmem- 
brahe potential difference to the applied field. We show that 
mechanical tensions in the range which lyse membranes are in- 
duced at values of the external field which are of the same order 
as those which are reported to lyse the plasma membranes of 
cells in suspension. 
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Introduction 

The rupture of  the p lasma membrane  of an isolated 
single cell has important  consequences  for that cell. 
Permanent  physical  rupture of  a cell 's  p lasma mem- 
brane (lysis) may  be caused by mechanical  stresses 
in the plane of  the membrane ,  or by electric fields 
across the membrane .  Lysis  due to isotropic sur- 
face tension may  occur,  for example,  if a cell expe- 
riences a decrease  in the osmotic  pressure of  the 
supporting medium.  The surface tensions necessary 
to produce  lysis are typically 5 m N / m  (Evans & 
Skalak, 1980; K w o k  & Evans ,  1981; Wolfe & Ste- 
ponkus,  1981; Gruen & Wolfe, 1982) but depend on 
the duration of  application (Rand, 1964; Wolfe, 
Dowger t  & Steponkus,  1985). Electrical b reakdown 
of p lasma membranes  has been studied by several  
investigators (e.g. Neumann  & Rosenheck,  1972; 
Knight & Baker ,  1982). It  is less common  in physio- 
logical examples ,  al though it has been suggested 
that some of  the cells which are damaged in rapidly 
frozen solutions are lysed by the large transient 
electric fields which are produced at moving ice in- 
terfaces (Steponkus et al., 1984). Local,  transient 

rupture of  p lasma membranes  in the presence of 
deliberately applied sublethal electric fields is also 
interesting because  it allows the artificial fusion of 
cells, and also allows the introduction into cells of  
such materials as drugs or DNA.  The propert ies  of  
cells in electric fields are also important  in the con- 
sideration of sublethal fields. It  is known that such 
fields cause  cells to become  transiently permeable ,  
or " l e a k y "  (Knight & Baker ,  1982). Further,  suble- 
thal permeabil i ty allows for the loading of cells with 
drugs for specific delivery (Zimmermann,  Pilwat & 
Vienken, 1980). 

Membranes  will rupture in the absence of me- 
chanical stresses if the t r ansmembrane  potential  is 
about  one-half  to one volt (the value depends on the 
duration of application). I t  is interesting to note that 
the membrane  capaci tance is typically 10 m F / m  2 
(within a factor  of  two; reviewed by Smith, 1977), 
so the area energy density of  electrical energy for 
lysis is typically 5 m J / m  2, which is very similar to 
the mechanical  energy density (5 mN/m) ,  necessary 
for rupture.  It  is important ,  however ,  to distinguish 
between lysis produced by an electrical field applied 
directly across  the membrane ,  and electromechan-  
ical lysis caused by the combined electrical and me- 
chanical s tresses exerted on the membrane  of a cell 
exposed  to an external  field. In this paper  we shall 
argue that, under  specific conditions, lysis of  a cell 
in the presence  of an electric field is largely due to 
isotropic mechanical  surface tension produced in 
deforming the cell rather  than due to the electric 
field produced across  the membrane .  The analysis 
may be applied to both  constant  (d-c) and suffi- 
ciently low f requency alternating (a-c) fields. 

The electrostat ics of  a thin, spherical, dielectric 
shell in an electric field which is uniform at infinity 
have been applied to cells in suspension since the 
work  of  Fricke and Morse  (1925) and Cole (1928). 
Since then all published work on lysis of  cells in 
suspension has implicitly assumed that lysis in an 
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Fig. 1. This sketch shows the equipotentials near a thin spheroi- 
dal dielectric shell in a field which is uniform at infinity. The 
thickness of the shell has been very much exaggerated. The elec- 
tric field acting on the induced charge at the interior face is 
greater than that at the exterior face, and thus a net force is 
produced which acts to elongate the shell in the direction of the 
field. In terms of the generalized co-latitude v we refer to the 
points on the ellipsoid at v = 0 and v = rr as the "poles" and the 
circle at v = ~ as the "equator" 

electric field is due solely to the direct electrical 
effects on the membrane.  The observation by Ste- 
ponkus (personal communication) that isolated 
protoplasts are deformed in the presence of an a-c 
electric field indicates the presence of mechanical 
stresses in the membrane.  These stresses are pro- 
duced when the charges induced by an applied elec- 
tric field interact with that field. To our knowledge a 
detailed analysis of  the electromechanical  stresses 
and strains produced in the plasma membrane of a 
cell in a suspension upon which is imposed an elec- 
tric field has never  been published. This paper 
presents an analysis of  the electrostatics, mechani- 
cal stresses and deformation of a cell in a uniform 
electric field. 

Theory 

We shall assume that the plasma membrane may be 
described as a thin, initially uniform dielectric shell 
separating two solutions whose conductivity is 
much greater than that of the membrane. (This is a 
fairly accurate model for describing the macro- 
scopic properties of  a large number of  cell types.) A 
uniform electric field is applied to the suspending 
solution, inducing charge distributions on the mem- 
brane surfaces. The membrane (here treated as a 

capacitive element) and the solution (here a resis- 
tive element) have a charging time or time constant 
T which is of the order  of DoC where D is a typical 
dimension of the system (e.g. the radius of the cell), 
p is the resistivity of the conducting medium and C 
is the capacitance per unit area of the membrane. 
For  frequencies much less than 1/T, the impedance 
of  the capacitor (the membrane) is much greater 
than the resistance of the solutions through which it 
is being charged, the charge distribution is in phase 
with the field, and the charge distribution at any 
time is that of  the steady-state (d-c) calculation. 
TakingD = 10/~m, p = 10 f~m, and C = 10 mF �9 m 2 
gives 1/T = 1 MHz.  At frequencies higher than this, 
the field in the membrane and that in the external 
solution are no longer in phase, and the electric field 
in the external solution cannot be neglected in com- 
parison with that in the membrane.  A discussion of 
the electrical behavior of the membrane-solution 
system at high frequencies is given by Sackmann et 
al. (1984). 

At low fields, no appreciable current flows 
across the membrane,  and the cell interior is an 
equipotential volume. (At high fields, the membrane 
may become leaky and different boundary condi- 
tions apply. We shall discuss this possibility later.) 
The interactions of  the electric field with the in- 
duced charges on the membrane deform the cell and 
impose mechanical stresses in the membrane. It will 
be assumed that the cell deforms to the spheroidal 
shape shown in Fig. 1. The assumption that a cell 
will deform to a spheroid is in empirical agreement 
with microscopic observations of deformed cells 
(Steponkus and Barnaby,  unpublished observa- 
tions). It might be argued, however,  that an ap- 
proach using the calculus of variations could be 
used, given the boundary conditions, to determine 
the shape ab initio. The difficulties associated with 
solving Laplace 's  equation with these boundary 
conditions (a complicated problem even in spheroi- 
dal coordinates),  would make this calculation te- 
dious, if indeed possible. 

Briefly, the elements of our analysis are as fol- 
lows: first, the electrostatic solution yields the 
forces acting on both faces of the membrane. These 
do not quite cancel, and the resultant force tends to 
elongate the cell in the direction of the electric field. 
To deform from a spherical shape, the cell both 
decreases its volume (this is opposed by an internal 
pressure excess) and increases its area (this is op- 
posed by membrane surface tensions due to its elas- 
ticity). The internal pressure excess,  the net electric 
force per unit area and the surface tensions are re- 
lated by the generalized Young-Laplace law. The 
membrane area is increased not only by the surface 
tension produced in it as it deforms, but also by the 
action of  the normal electric forces acting on both 
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surfaces. Analysis of all the above effects together 
produces a set of simultaneous equations which is 
solved to give the deformation produced by any ap- 
plied field. 

Explicitly, the system must conform to the fol- 
lowing constraints: 

I. ELECTROSTATICS. Except at interfaces, the 
potential dp must satisfy Laplace's equation (in 
spheroidal coordinates) subject to the following 
boundary conditions: 

a. The gradient of qb must be uniform at 2. 
b. The gradient of (P in the normal direction 

vanishes on the solution side of membrane-solution 
interfaces. 

c. cp = constant at the membrane's inner sur- 
face. 

2. ELECTROSTRICTION. The field acting normal 
to the surface acts on the induced charge to com- 
press the membrane along the normal. The inho- 
mogeneous field in the membrane is also responsi- 
ble for a tangential variation in membrane stress. 
The thickness and area of the membrane may vary. 
It is assumed in the main text that the membrane 
has a constant volume, i.e. that Poisson's ratio is 
1/2, but the general case is treated in Appendix 1. 
Change in area is thus dependent to first order on 
variations in membrane thickness, as is the electric 
field in the membrane. All other quantities vary as 
higher orders of the proportional change in thick- 
ness and such variations are ignored because of the 
small size of the changes in thickness that can be 
withstood by the membrane. 

3. ELASTICITY. The membrane is treated as a 
"fluid mosaic." Thus lateral diffusion is permitted, 
and only isotropic surface tensions are allowed; 
these obey an elastic law. 

4. VOLUMETRIC COMPRESSIBILITY. An effec- 
tive bulk modulus is attributed to the cellular inte- 
rior. The real bulk modulus of the cellular contents 
is so much larger ( -2  GPa) than the pressures con- 
sidered here that the extent of compression of the 
contents is negligible. The membrane is, however, 
semipermeable, and so a positive pressure inside 
the cell causes water to leave the cell. A time z 
characteristic of the approach to osmotic equilib- 
rium depends on the cell size and the hydraulic con- 
ductivity of the membrane, and may be seconds to 
minutes (e.g. Wolfe, Dowgert & Steponkus, 1986). 
For times very much less than z, the volume may be 
regarded as constant, and this condition may be ob- 
tained from the analysis by setting the bulk modulus 
infinite. For an ideal osmometer in osmotic equilib- 
rium, it is readily shown that the bulk modulus 
equals the osmotic pressure of the suspending solu- 
tion. Setting the bulk modulus equal to the osmotic 
pressure yields the behavior which is predicted for 
osmotic equilibrium. 

5. TENSION AND PRESSURE. W e  t r e a t  the m e m -  

b r a n e  as a thin shell, thus, at any point in the mem- 
brane, the net normal force per unit area, the mem- 
brane bifacial surface tension and the local 
curvature are related by the Young-Laplace equa- 
tion. (We thus neglect curvature stresses in the 
membrane in comparison with stresses in the plane 
of the membrane. For small vesicles or organelles 
whose radii are comparable with the membrane 
thickness, this approximation would be invalid.) 

Analysis 

We use the prolate spheroidal coordinates u, v and 
4) which are related to Cartesian coordinates by 

x = f s i n h  u sin v cos 4) 

y = f s i n h u s i n v s i n 4 )  

z = f c o s h  u cos v 

u ~ O  

0 < v < ~  (1) 

and we use the convenient substitution 

ix = cosh u, and p = cos v. 

In the general case, the inner and outer surfaces are 
spheroids of differing eccentricities. We give the 
inner and outer surfaces eccentricities 1//xi and 1/ixo 
where f i x o  - f i x i  = h .  (In practice, the membrane 
thickness h is very much less than the dimensions of 
the cell, and can vary by only a few percent without 
rupture. Further, the variation in thickness occurs 
only in second- and higher-order terms in the analy- 
sis.) 

ELECTROSTATICS 

Provided that the conductivity of the membrane is 
very much smaller than those of the cell interior 
and the suspending medium, the current flowing 
through the membrane is negligible in comparison 
with that in the external medium. It follows that the 
interior face of the plasma membrane (fix = f i x i )  is 
an equipotential (which we choose to be zero l) and 
that the field is perpendicular to the membrane at 

1 In a living cell in the absence of an imposed electric field, 
the potential difference across the membrane is usually uniform 
and small (less than about 0.1 V), with the cytoplasm negative. 
Because of the finite time constant of the membrane, the sudden 
application of an external field cannot produce an abrupt change 
in the total charge on the inner membrane surface. In this calcu- 
lation we set the cytoplasmic potential equal to zero to retain 
symmetry in the equations. The original transmembrane poten- 
tial perturbs this symmetry and imposes a larger field across the 
membrane at the high �9 pole than at the low qb pole. 



132 G. Bryant and J. Wolfe: Electromechanical Stresses in Membranes 

the outer surface (fix = f/s > f/s Remote from the 
cell, the field is in the v = 0 direction and has the 
value E= everywhere. We require a solution to La- 
place's equation 

V2q~ = O. (2) 

In the spheroidal geometry of Eq. (1), Laplace's 
equation becomes 

( / s  __ 1)(1 - v 2) 0 

(3) 

The solution is separable, and may be ex- 
pressed as sums of Legendre functions of the first 
and second kind. It may be shown that, subject to 
the above boundary conditions and to radial sym- 
metry about v = 0, the general solution is 

0 = 0  

[/s163 QI(/s  U 
Op = E~ f C 2 L- ~ii 

= E ~ f [ I x  - GQ1(/s v 

/s < /s 

/s < /s < /s 

/s < /s 

where 

/s (1+< 
Q1 = 2 In \ ~ - f /  - 1 

1 (/s + 1)1-, 
Cl = /s + ~ l n \ / s  1/3 

1 - C~ Q1(/s 
/s 

C2 = Q 1 ( / s  Q~(/s163 (4) 

That this is a solution may be verified by substitu- 
tion; the analysis is given in greater detail by Bryant 
(1985). 

The potential drop across the membrane V as a 
function of the generalized co-latitude v is obtained 
from Eqs. (4). These equations may also be manipu- 
lated to give expressions for the electric field and 
charge distributions at the membrane surfaces (Bry- 
ant, 1985). These expressions are not explicitly re- 
quired for the current analysis, however, because 
the electric forces can be expressed in terms of the 
transmembrane potential difference and the mem- 
brane specific capacitance (derivation in Appen- 
dix I). 

We use the expressions thus obtained for all the 
results reported in this paper. We have also solved 
the problem using the mechanical constraints for a 

small finite eccentricity but using the solution of 
Laplace's equation for spherical geometry, which is 
algebraically much simpler (Maxwell, 1892). We 
have used this case as a limit to check the general 
calculations, but it has other uses. Because the 
membrane lyses at small eccentricities, the results 
are not very different from the general solutions, 
and are rather easier to compute. This analysis is 
reported by Bryant (1985). 

THE N E T  LOCAL ELECTRIC FORCE 

ON THE MEMBRANE 

An applied electric field induces surface charges of 
opposite sign on each face of a membrane as shown 
in Fig. 1. The electric field acts on each of these 
surface charges (and on the displacement charges at 
the dielectric boundary) and the normal compo- 
nents of the two forces 2 are in opposite directions. 
As we shall show, the normal components do not 
cancel exactly. 

The pressure p exerted by electric fields acting 
on an incompressible fluid satisfies 

Vp = - 1 E 2 V e  + p E  

(Durand 1953; Landau & Lifschitz, 1960). The total 
electric force per unit area (P~) exerted on each face 
of the membrane is readily calculated by integration 
across the dielectric boundary and the region con- 
taining the induced charge. This integration (Ap- 
pendix 1) gives 

P ,  = eEl~2  (5) 

where En is the normal component of the field in the 
membrane at the interface and where e is the per- 
mittivity of the membrane. The normal component 
of the electric force per unit area Pn acts towards 
the interior of the membrane in all cases. The net 
force per unit area PE acting on both faces is thus 

PE = e ( E  2 - E2)/2 (6) 

2 The tangential component of the field at the interior mem- 
brane face is zero, but the tangential component of E at the 
exterior face is zero only at the poles. In the external solution, 
ions (including those providing the surface charge) move in re- 
sponse to the applied field with a velocity which is constant at 
any point in space. The equal and opposite force is provided by 
the drag in the solution. Nonetheless, because the membrane 
thickness is much smaller than the cell radius, the tangential 
component of the field is negligible in comparison with the nor- 
mal component everywhere except at the equator, where the 
latter is zero. 
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where Ei and Eo are the normal fields at the inner 
and outer surfaces, respectively. PE acts outwards 
at both poles and is zero at the equator.  

(Ei - Eo) is very much less than Eo,  so PE is 
very much less than P~. Noting that Ei ~- Eo ~ V / h  
and substituting C = e/h (where C is the capacitance 
per unit area) in Eq. (5) gives the convenient  ex- 
pression: 

P ,  = C V 2 / 2 h .  (7) 

sion for area deformation in response to stresses Pn 
and y is 

(A - Ao)/Ao = (3, + o-hPn/(1 - o-))/ka (9) 

where o- = Poisson's  ratio. 
For  an incompressible solid (or = 1/2) or for an 

incompressible fluid interior bound by surfaces gov- 
erned by a surface elasticity law (Eq. 8), Eq. (9) 
becomes 

E L A S T I C I T Y  A N D  E L E C T R I C  D E F O R M A T I O N  

OF T H E  M E M B R A N E  

Electric fields and mechanical tensions both act to 
increase membrane area. Biological membranes 
studied to date deform elastically over  short periods 
and have low (~< 1 mN/m) or zero bifacial tensions 
in normal physiological conditions. 

As mentioned above,  electrical forces acting on 
the two charged faces of  the membrane in each case 
act towards the membrane interior. These act to 
decrease the membrane thickness h. We assume 
that the membrane has a negligible volume com- 
pressibility. (The volumetric moduli of bulk al- 
kanes, which are similar to the interior of the lipid 
bilayer region, are of the order GPa). The area A 
must therefore increase in the presence of a field. 
We impose the constraint of  constant membrane 
volume by setting h A  = hoAo where the subscript 
refers to the undeformed membrane.  

The area A of a given quantity of membrane in 
the absence of  an electric field is determined by a 
mechanical equilibrium between attractive and re- 
pulsive intermolecular forces. This is achieved at an 
area A = Ao at which the total energy U is a mini- 
mum (defined as zero). U ( A )  may be approximated 
near the minimum by a Taylor  expansion. The as- 
sumption of  an elastic law corresponds to neglect- 
ing the third and higher order terms. Thus 

U = k a ( A  - Ao)2/2Ao 

and taking derivatives the bifacial surface tension is 

3, = ka (A  - Ao) /Ao .  (8) 

Membranes are anisotropic and their response 
to combinations of stresses in different directions 
is, in principle, quite complicated ( see  Evans & 
Skalak, 1980). To the knowledge of  the authors, 
however,  the components  of  the stress tensor of 
biological membranes are not yet known. Assuming 
isotropy in the normal direction, the general expres- 

(A - Ao)/Ao = (3, + hP,,)/ka = (3, + CV2/2)/ka (10) 

( see  Appendix 1). 
From Eq. (9), we may write 

d A  _ 3' + o 'CV2/2(1 - o-) 

dAo ka 
+ 1 (11) 

where differential elements of area d A  have been 
used in place of  A because in the current case 3, and 
V vary continuously over  the surface. The total area 
A of the cell membrane (whose area is Ao under 
negligible electrical and mechanical stress) is then 

A = f d A  = f d A o [ ( y  + o C V Z / 2 ( 1  - o'))/kA + 1] = g4crR  z (12) 
over area 

where R is the radius of the undeformed spherical 
cell and g is a numerical factor. The solution to the 
general case is outlined in Appendix 2. In the main 
body of text only the case o- = 1/2 will be consid- 
ered. 

D I S T R I B U T I O N  OF T E N S I O N  IN T H E  M E M B R A N E  

Mechanical equilibrium of any element of the mem- 
brane requires (Appendix 1) that the normal pres- 
sure Pn = (CVZ/2h) and the tension y are related by 

d y  = - h  �9 dPn 

so over  the whole surface 

3, + CV2 /2  = constant.  

To obtain the set of independent  equations for this 
problem, one need only apply the constraints to two 
points on the surface. The easiest cases are the pole 
and the equator  (subscripts p and e, respectively). 
Noting that V = 0 at the equator,  the following 
equation results: 

3,p = T e  - C V  2 / 2 .  (13) 
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GEOMETRY AND MECHANICAL CONSTRAINTS 

Consider the prolate spheroid shown in Fig. 1. The 
standard mensuration formulae for volume ~ and 
area A are: 

= ~Trab 2 

A = 2w[b 2 + ( a b "  sin-le)/e] 

(14) 

(15) 

where e = (1 - b2/a2) 1/2 is the eccentricity, and a 
and b are the semi-major and semi-minor axes, re- 
spectively. 

Equating the expressions for A from Eqs. (12) 
and (15) gives one of the constraints. Elongation of 
the cell in response to the electric forces must in- 
crease the area and/or decrease the volume. Al- 
though the electric field causes an increase in area 
itself, larger area increases are opposed by the elas- 
tic response of the membrane (Eq. 8). Reduction in 
the interior volume of the cell is opposed in the 
short term by the very large bulk modulus of aque- 
ous solutions, and in osmotic equilibrium by the 
changes in water activity produced by water efflux. 
As explained above, both these cases can be re- 
gained from the analysis if an effective bulk modu- 
lus/3 is assumed for the cell, where the change in 
volume A~d produced by a cytoplasmic (internal) hy- 
drostatic pressure P and the volume ~o when P = 0 
are related by 

A~/~ o = - P / f i .  (16) 

In order to apply the Young-Laplace equation 
to this problem we also need to know the curvature 
of the ellipsoid. Although curvature and tension 
vary continuously over the surface, only two inde- 
pendent relations among the parameters can be ob- 
tained from the Young-Laplace equation. Therefore 
one need only determine the curvature ~p at the pole 
(v = 0) and the curvature ~e at the equator (v = ~-/2). 
The curvature at any point is the sum of the recipro- 
cals of the principal radii of curvature. It may easily 
be shown that: 

~p = - 2 a / b  2 (17) 

~e = - l / b ( 1  + bZ/a2). (18) 

The Young-Laplace relation states that the nor- 
mal force per unit area acting at an interface is equal 
to the surface tension times the curvature in the 
interface. We apply it to the whole (very thin) mem- 
brane taking the bifacial surface tension and the cur- 
vatures from Eqs. (17) and (18). At the equator, the 
hydrostatic pressure P in the cell interior is the only 
normal force acting, but at the poles this is aug- 

mented by the normal component of the net electri- 
cal force per unit area P e .  Thus 

P = -~e "y~ (19) 

and 

P + PE = - ~ p . y p .  (20) 

To explain the simultaneous solution of the pre- 
ceding equations we shall combine them in summa- 
rized form. 

(i) Vp = Vp(E~,  lx, f )  a t v  = 0  

(ii) y~ = y ~ ( E ~ ,  /X) 

(iii) yp = y~ - CV~/2  

(iv) P n = P n ( E ~ , p c ,  P)  at v = 0 ; P ~  = 0  at 
v = ~-/2 

(v) P + PE = --~Y at v = 0 and at v = 7r/2 

(vi) f d A  = g4rrR 2 

(vii) Geometrical equations relating f , /x ,  a, b, h, A 
and R including: 

a = f/x, b = f~//x2 _ 1 

f/xo = f/xi - h, f = f ( / x ,  R ). 

The solution may be found by using various 
equations (vii) to e l iminatef f rom Eq. (i). Equations 
(iv) and (v) may be combined to yield an equation 
relating E~,/x, P, Ye, Yp. Using (i), (ii) and (iii) then 
leads to equations of the form 

P = P(E=,  ix) ye = ye(E~,  IX). 

For convenience we introduce the substitution 
(0 = E 2 / K 2 ,  where/s = f l / (RCF2)  and F2 = F2(/x) 
where the explicit function is given in Appendix 3. 

We can now substitute into Eq. (vi), and equate 
with the standard mensuration for a prolate 
spheroid. After this and some algebra the following 
solution results: 

K 4 ( 0  3 - ( 0  2 - (2 + /s + (/s - 1) = 0 (21) 

where 

K4 = K1K2/kA ,  K1 = K1(C, R , / X )  

K2 = g 2 ( c ,  R,/X),  K3 = K3(/X) 

and where the explicit forms of the constants K1, K2 
and K3 are given in Appendix 3. 

Thus the problem has an analytic solution, 
which for algebraic convenience is expressed with 
the deformation parameter /X as the independent 
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variable. The 3' and all other variables are readily 
found if the physical parameters  13, R, kA, and C are 
given, by finding a solution for the cubic Eq. (21). 

D i s c u s s i o n  a n d  C o n c l u s i o n s  

The use of  the laws of electrostatics in these calcu- 
lations limits the application of  the results to either 
d-c fields or to a-c fields with a f requency much less 
than the reciprocal  of  the charging time T of the 
m e m b r a n e - - t y p i c a l l y  about  1 M H z  (Sackmann et 
al., 1984). The  analysis is also restricted to uniform 
fields, i.e. to fields whose proport ional  variation is 
small over  a scale of  one cellular diameter.  In a 
uniform field, the electric forces acting on each end 
of  the cell are equal in magnitude but opposite in 
direction; they thus give rise to an elongation of the 
cell but, as the total electric force on the cell is zero, 
the cell does not move.  In nonuniform fields, the 
force acting outwards  is greater  at the end of the cell 
in the more  intense field, and so the net force acts to 
move  the cell towards  the region of most  intense 
field. This phenomenon  is (one type of) dielec- 
t rophoresis ,  which is discussed by Pohl (1978). In 
this paper  we limit our discussion to the deforma- 
tion and lysis of  cells in d-c or low-frequency fields 
which are uniform or near  uniform. 

THE DEPENDENCE OF THE DEFORMATION 
OF THE EXTERNAL ELECTRIC FIELD 

The most  convenient  variable for describing the de- 
format ion is the ratio a/b of  the major  and minor 
axes.  The product  E=R will be used to represent  the 
electric field (where R is the initial radius) since, to 
a good approximat ion,  several  other variables scale 
to R. 

Figure 2 shows a plot of  the deformation of the 
cell as a function of  the applied electric field. From 
the graph, it can be seen that for low electric fields, 
the axis ratio is approximate ly  proport ional  to the 
field (up to E=R about  300 mV). For  greater  E=R, 
the slope increases rapidly as the applied electric 
field is increased,  provided of  course that the cell 
survives such a deformation.  (The large deforma- 
tions (a/b) caused by relatively modes t  fields are in 
part  a result  of  the very weak  dependence  on the 
eccentr ici ty of  the a rea /vo lume ratio of  a spheroid. 
For  constant  volume,  an increase in area of  1% 
results when (a/b) is 1.28.) 

Figure 2 also shows the effect of  differing bulk 
moduli and cell size. As we have argued above,  the 
volumetr ic  modulus  of  the fluid itself is very large, 
but in osmotic  equilibrium, the effective bulk modu- 
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Fig. 2. The ratio of semi-major to semi-minor axes (a/b) is plot- 
ted against the scaled field E=R (the external field times the origi- 
nal radius). If the effective bulk modulus/3 is infinite, the curve is 
not strongly dependent on the size of the cell. For cells with R ~> 
10/xm, the effect of changing from 500 kPa to infinity is small. 
The effect is greater for smaller cells 

lus of  the cell volume is the osmotic  pressure.  For  a 
cell with R = 10/xm and 17 = 500 kPa (typical physi- 
ological values),  there is little difference between 
the two results. This is because  the hydrostat ic  
pressure which can be supported by the membrane  
of a large cell is much smaller than physiological 
values of  II  (Wolfe & Steponkus,  1983). Small cells, 
however ,  have larger curvatures  than large cells, 
so, f rom the Young-Laplace  equation, small cells 
are capable  of  supporting larger hydrostat ic  pres- 
sures, and thus will reduce their internal volumes 
by larger fractions as they approach osmotic equi- 
librium. This allows somewhat  larger deformations 
at the same value of E=R (Fig. 2). It  can neverthe-  
less be seen that, even at osmotic  equilibrium, the 
relation of  deformat ion to the scaled field is similar 
for cells of  a range of sizes and osmotic  pressures.  
This is a useful result: a single relation can be used 
for calculations for cells of  differing sizes, and will 
remain fairly accurate  for all but the smallest cells, 
(R ~ 5 /xm)  3, under  electric fields large enough to 
produce lysis. The rest  of  the calculations use the 
following values for the parameters :  R = 10 /xm, 
ka = 200 mN/m,  C = 8 mF/m 2 and/3 = 10 l~ Pa. (For 

3 Although large deformations involve lethal tensions for 
cells with elastic membranes, vesicles may be produced in solu- 
tions of very low osmotic pressure and may thus suffer greater 
deformations. For large electric fields the gradient of the defor- 
mation increases quickly with field. Indeed, this analysis predicts 
critical behavior at large deformation, i.e. an infinite slope in a/b 
vs. E=R. If the field were increased to this point and subse- 
quently decreased, the deformation would continue to increase. 
After this point it is not certain what would happen, as the first- 
order approximations begin to break down. Details are given by 
Bryant (1985). 
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Fig. 3. The potential difference across the membrane at the 
poles (Vp) is plotted as a function of the scaled field E=R. The 
dashed line shows the result for an undeformable sphere, i.e. Vp 
= 3E=R/2 

all practical purposes, this gives the same results as 
/3 = infinity.) 

MEMBRANE POTENTIAL DIFFERENCE AND LYSIS 

In any discussion of purely electric breakdown, the 
most important physical parameter is the trans- 
membrane voltage V which is maximal at the poles 
and zero at the equator. Figure 3 shows the maxi- 
mum potential difference (that is the polar voltage 
Vp) plotted against the field. (The mechanical stress 
is proportional to the square of the field so, for a-c 
fields, the root mean square value of the potential 
must be used.) For comparison, the calculated volt- 
age for a spherical membrane is also given (that is 
Vp = 3E~R/2). For any particular electric field the 
voltage across the membrane is higher than that cal- 
culated for a sphere. This can be qualitatively ex- 
plained by the elongation of the cell as Vp must 
increase with the product EaR. For low field, the 
electrostatics of the sphere give a reasonably good 
approximation. 

Figure 4 shows the bifacial surface tension at 
the poles (its minimum value) and at the equator as 
a function of the electric field. Note that potentially 
lethal membrane tensions (~>4 mN/m) are produced 
at E=R >- 240 mV. At this field, the transmembrane 
potential at the poles is about 350 mV and less else- 
where. The potentials reported to cause dielectric 
breakdown in membranes are in the range ~>500 mV 
(e.g. Coster & Zimmermann, 1975; Dressler et al., 
1983). It is thus quite possible that the mechanical 
tension produced by the fields necessary to produce 
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Fig. 4. The biracial surface tension (or mechanical energy per 
unit area) at the poles (yp) and at the equator (ye) are plotted as a 
function of the scaled field E=R. The electrical energy per unit 
area of membrane (CVV2) at the poles is shown on the same 
scale for comparison 

these potentials' contributes significantly to the 
membrane breakdown. 

In one theory of membrane lysis (Abidor et al., 
1979 and Petrov, Mitov & Derzhanski, 1980; after 
Derjaguin & Gutop, 1962), lysis depends on the sum 
of electrical and mechanical energy densities in the 
membrane; i.e. on Y + CV2/2. The maximum (po- 
lar) electrical energy density (CV2/2) is shown on 
the same scale in Fig. 4: it is substantially less than 
the mechanical energy density which takes values 
between yp and Ye- This theory suggests that the 
chance of lysis per unit area has a functional depen- 
dence on tension which is stronger than linear. If 
area-weighted average values are taken using such 
strong dependences, the relative importance of ten- 
sion is even greater (Bryant, 1985). 

At this point we call attention again to the as- 
sumption that the membrane has a conductivity 
which is much lower than that of the solutions on 
either side. As the tension approaches the value 
necessary to lyse the membrane, it is possible (and 
indeed likely) that the membrane becomes leaky 
and that a nonnegligible current flows through it, 
causing a finite potential difference across the cyto- 
plasm. In such a case, the electric deforming force 
would be rather less than that calculated here, and 
the transmembrane potential would be likewise re- 
duced. It is therefore possible that the application of 
modest electric fields cause transient increases in 
membrane permeability and the possible loss of in- 
ternal solutes. Such effects, like rupture, would be 
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due in large part to the mechanical stress and not 
simply a result of the electric field. 

This caveat does not change the qualitative con- 
clusion of this study: that mechanical stress induced 
in the membrane of a spherical cell in an applied 
electric field is at least as important in determining 
membrane lysis as is electric stress p e r  se .  We 
therefore conclude that measurements of the field 
necessary to lyse cells in suspension are not suffi- 
cient to calculate the transmembrane voltage which 
alone would cause membranes to break down. It is 
possible that estimates of breakdown potential 
gained from application of Laplace's equation to 
suspensions of cells in electric fields may need to be 
considered in the light of these findings. 

We thank Prof. P.L. Steponkus who suggested this investigation, 
and Dr. J. Smith with whom we had useful discussions. 
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Appendix  1: Stresses and Strains in a Membrane 
in an Electric Field 

The force dFdue to the presence of an electric field E which acts 
on a volume element d'c? with permittivity e and charge density p 
is 

_ , S , v ,  d F =  d,-~(pE ~lz- e) (AI) 

where the two terms are due to E acting on, respectively, the net 
charge and the induced dipoles in the media (Durand, 1953; Lan- 
dau & Lifshitz, 1960). We shall consider the normal component 
of the force per unit area p, due to a normal electric field E acting 
across an interface in the y - z plane, so Eq. (A1) gives 
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Fig. A1. The stresses acting on a small element of membrane: a 
square with side L and thickness h. y is the total surface tension 
(i.e. the force per  unit length acting to stretch the membrane) and 
P,, is the normal stress 

dp,  = Enpdx  - �89 (A2) 

Medium 1 occupies x < 0 and is an insulator with 19 = 0 for x < 0. 
Medium 2 (x > 0) is an ionic solution, and contains a charge 
distribution near x = 0 which is considered to be contained 
within 8 < x < I where I is several Debye lengths. The dielectric 
permittivity e is assumed to vary from e~ (the bulk value of  the 
insulator) to ~2 (the bulk value for the solution) over a range - 8  
< x < +8 which is very much smaller than the Debye length and 
so contains negligible charge. (The effects of  Born energies and a 
Stern layer prohibit substantial charge density near the dielectric 
boundary.) The total normal force per unit area Apn across the 
interface is 

1 r~t 
mpn = --,x|=-a 2 e 2 d e  + Jx|=~ Epdx .  

In the region - 8  < x < 8, the electric displacement D = eE  is 
constant  so de  = - D d E / E  2. For x > 8, e d E  = p d x  so 

Ap,, = =-8 -2 d E  + e E d E =  ~ D[E(8) - E ( -8 ) ]  

+ ~ -  [E2(/) - E2(8)]. 

Now if ~(-8)  = e~ and ~(8) = ~2, and using e ( - 8 ) E ( - 8 )  = 
e(8)E(8), this becomes 

elE2(-8) ezE2(l) 
@~ ~ +  --2-- (A3) 

The membrane is an insulator so the normal component  of the 
current density near the interface is zero so E(l )  ----> 0 for l .~ R, 
and so the last term in Eq. (A3) is neglected. In the application to 
the spherical, thin, dielectric shell, the radius R is several thou- 
sand times greater than the thickness h. The ratio of  the normal 
field to the tangential field is infinite on the inner surface, and is 
of order R / h  on the outer surface everywhere away from the 
equator, where the normal component  of  E is zero. Thus the 
normal component  of  the force per unit area exerted by the field 
on each face of  the membrane is 

Y2 

r 
E2 

El 

u 

• 

Fig. A2.  Variation in the t ransmembrane electric field E and the 
tension -/ 

ee. ~ 
P,  = - ~ -  (A4) 

where e is the permittivity of the membrane and E.  is the normal 
component  of E at that face. Equation (A4) applies everywhere 
except  near the equator where P .  is negligible. 

C HANGES IN A R E A  

Figure A1 shows a thin square prism of  side L and thickness h 
subject to a normal stress P ,  to the square faces and normal 
stresses - y / h  to the outer four faces where 3' is the tensile force 
per unit length applied to these sides. If the material comprising 
the prism is isotropic with Young's  modulus Y and Poisson's  
ratio or, then the strain produced in L is 

AL (1 - o') y o-P,, 
L - ~ + ~ - "  (A5) 

For  small deformations,  the strain in the area (Ao = L 2) is AA/Ao 

= 2 A L / L  and putting kA = Yh/2(1 - o-) gives 

Ao kA y + (1 -- o-)J" 

Noting that P , h  = CV2/2  (see text), this gives the electromechan- 
ical stretching of  the membrane 

Ao - ka y + 2 CV2 " (A6) 

For  a material which is volumetrically incompressible, o- = 1/2 
and so Eq. (A6) becomes Eq. (10). [If the membrane interior is 
considered as an isotropic incompressible fluid then Eq. (10) is 
also obtained.] 

VARIATION IN y 

The induced dipoles in a dielectric medium are attracted towards 
the high-field regions of  an inhomogeneous field. Thus the elec- 
tric field draws material in the membrane towards the poles. This 
tendency is opposed by a variation in membrane tension--,, ,  is 
greatest away from the poles. Figure A2 shows an element of 
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membrane  subject  to variation with z of  t r ansmembrane  potential 
V and membrane  tens ion y. Suppose  it moves  a dis tance dz. The 
work done by the tensions Y2 and yt on opposite edges is (3'2 - 

r~eE2  1 E 2, yOldz. The increase in electrical potential energy is ~ z - re o 
hldz where  Ez = Vs/h and E~ = Vt/h are the t r ansmembrane  
fields. In mechanical  equilibrium with no other  forces acting 

- -  1 2 3'2 3'1 + ~eh(E2 - E~) = 0 
- -  1 2 �9 "" ")/2 Y l  = ~ C ( V 1  - V 2) (A7) 

or 

y + �89 2 = cons tan t  = ~Ye. 

[If the membrane  interior is considered as an isotropic fluid sub- 
ject  to a pressure  P ,  then  mechanical  equilibrium requires that 
h(P,  2 - P,z) = Y2 - y l ,  and Eq. (A7) follows directly.] 

Appendix 2: The Area Change due to Electric 
Compression 

From Appendix 1, 

A ( 

The second term is awkward,  but  may  be evaluated analytically. 
After  some algebra we have  

W + a  

8 \ 3 W  + a / \ l  - o- 

where  

+ ~/ . t  2 - 1 sin -1 D2/2 

2 + 2 sin-I D4C~ 

W = -"-~--A ' a = k - ~ z '  and D = \ ~ - ~ - 1 /  " 

Appendix 3: Expressions for the Coefficients of 
Equation (21) 

~XA Y + 2 C V z  ~ -  ~ 

a--7 = kA (A6) 

Using Eq.  (A7) this may  be rearranged to give: 

dA f 
Ao = ~l'~ufface 

ye + ~ C V  ~ - 1 

l +  
/CA 

For a membrane  which is not  lysing the tensions and electri- 
cal energies mus t  be m u c h  less than the elastic modulus ,  so Eq, 
(A8) can be approximated  

7e C V  2 o- 

Only the voltage te rm is a funct ion of  latitude, as V = Vp cos v 

K1 = 3CRZD4C~F1 

K 2 -  
BCF2 

D 2[/x 2 -  1 + ~/-/z 2 -  1 sin t ; 
K 3 = ~ -  L kt2 

K1 K2 
K 4 -  kA 

14~i = (2D 2 (2 /*2-  1)D1/2) -1 

F2 = FtDg/2c2 (2/*2 - 1] 
\ tz 2 / 

( /z2 ] 1/3 

D = 2/,2 _ 1/ 

C6 = (1 C,Q~(I,*)] 

1 
C3 - /a~5/3(~ 2 -- 1)2/3 


