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Abstract. It is proved that for any tree T the vertices of T can be placed on the surface of a sphere 
in R 3 in such a way that adjacent vertices have distance 1 and nonadjacent vertices have distances 
less than 1. 

1. Introduction 

The sphericity of a g raph  G, sph(G), is the smallest  integer n such that  the vertex set 
V(G) of G can be embedded  in Euclidean n-space R" in such a way that  lu - v[ < 1 
if and  only ifuv ~ E(G), where I I is the Euclidean norm.  In  mos t  cases, to determine 
sph(G) is difficult, and certain bounds  on sph(G) for var ious types of  graphs  are 
considered e.g. in [1, 2, 3, 4, 5]. 

In [2] it was p roved  tha t  sph(F~ < 8[log n] for any  forest F on n vertices, where 
ff is  the complemen t  o fF .  This result was essentially improved  in [6] to sph(F 0 < 6. 
Here  we further  improve  this result to sph(F-) < 3. We also give an example  of  a 
tree T whose complemen t  has sphericity 3, which shows that  the upper  bound  3 is 
best  possible. 

2. Embeddings of Trees 

Let T be a rooted  tree with root  u. The  level of a vertex v of  T is the number  of  
edgrs  in the pa th  f rom the roo t  u to v. Any vertex in that  pa th  is called an ancestor 
of v. A proper ances tor  of  v is any  ancestor  excluding v. 

Theorem 1. For any rooted tree T, we can embed the vertices of T in the plane R 2 in 
such a way that (1)and (2) hold. 
(1) The Euclidean distances between adjacent vertices are equal to 1. 
(2) The Euclidean distances between non-adjacent vertices of distinct levels are 
greater than 1. 

Proof. Let T be a roo ted  tree with n + 1 vertices. Label  the vertices of  T in the 
following way: Regarding  T as a symmetr ic  digraph,  take an Euler  tour  s tar t ing 
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Fig. 1 

from the root, and then label the vertices with 0, 1, 2 . . . . .  n in the order of the first 
visit in that Euler tour, 0 is the root. See Fig. 1. Note the following fact: 
(#)  For two vertices b, c (0 < b < c _< n), let a be their latest common ancestor, 
and let ai , . . ,  is (is = b), ajl...Jr (Jr = e) be the two paths from a to b, c. Then 

a < i l  < " ' < i ~ < J l  < " ' < J t .  

Now take n unit vectors 

u( i)= cOS~n,Sin , i = l ,  2 , . . . , n  

in R z. Note that all these vectors are in the positive quadrant. Define f :  V(T) ~ R 2 
by 

f(0) = (0,0), f ( j ) = Z u ( i )  for j  > 0, 

where the summation is taken over all the ancestors i of j other than 0. Hence, 
if i,j (i < j) are adjacent in T, then f ( j )  = f(i) + u(j). Thus this embedding clearly 
satisfies the condition (1) of the theorem. To see that the condition (2) holds, 
let b, c (b < c) be two non-adjacent vertices of distinct levels, a be their latest 
common ancestor, and ail . . ,  is (is = b), aj~...j, (j, = c) be the two paths from a to 
b, c as in (#). Then it follows from (#)  that for every 1 < r /<  s, 1 < v < t, 

u(ii)-u(i~) > u(il) 'u(jv) > O, 

0 < u(j,)'u(in) < u(jt)'u(jv). 

Since the levels of b, c are different, we have s # t. If s < t then 

> 1, 

whence If(j,) - f(i,)l > 1. I fs  > t then 

( f ( J ' ) - - f ( i ' ) ) ' u ( i i )=u( i i ) ' u ( ' 1 )+  (,=~2 u ( i , ) -  ,=~iu(:,))" u(ii) 

> 1 ,  

whence If(is) -- f(j,)[ > 1. Thus the condition (2)is also satisfied. [] 
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Remark. Denote  by S, the sphere of radius r centered at the origin in R 3. Similarly 
to the above construction,  we can embed the vertices of T on Sr so that  the 
condit ions (1)(2) of  Theorem 1 hold, provided that  r is sufficiently large. 

Theorem 2. For any tree T, there exists an embedding of the vertex set of  T in R 3 
such that the distances between adjacent vertices are equal to d, and the distances 
between non-adjacent vertices are less than d, with a f ixed  d > O. 

Proof. Choose  a vertex of T as a root. Then, as stated in the above remark, 
there is an embedding f :  V(T) ~ S, satisfying the condit ions (1) (2) of Theorem 1, 
provided that  r is sufficiently large. We may further assume that  f (V (T ) )  is lying 
on a spherical cap of angular  radius < 3 0  °. N o w  define a new embedding 
g: V(T) ~ Sr by 

~f(v) if the level of v is even 

g(v) = ~f(v)* if the level of v is odd, 

where f(v)* is the point  ant ipodal  to f(v). If u, v are adjacent in T, then their 
levels are different by 1, so ] g ( u ) -  g(y)J = ((2r) 2 -  1) 1/2. Suppose now u, v are 
non-adjacent.  If the difference of their levels is even, then g(u), g(v) are contained in 
a sperical cap of angular  radius < 30 °, and hence [g(u) - g(v)l < r < ((2r) 2 - 1) 1/2. 
If the difference of the levels of u and v is odd, then since I f ( u ) -  J[v)[ > 1, 
we have Ig(u) - g(v)l < ((2r) 2 - 1) 1/2. Thus, letting d = ((2r) 2 - 1) 1/2, we have the 
theorem. []  

Corollary. For any forest F, sph(F~ _< 3. 

Proof. Let  F be a forest. Embed  F in a tree T as an induced subgraph, and place 
the vertices of  T i n  R 3 as in Theorem 2. Then, for u, v ~ V(F), lu - v] = d if uv ~ E(F) 
and lu - vl < d if uv q~ E(F). This implies sph(ff) < 3 since may regard d = 1 by 
changing scale. [ ]  

3. An Example 

For  every tree T, let T '  be the tree obtained from T by adding a new vertex v' and 
a new edge vv' for each vertex v of T. 

Let  T be the tree of Fig. 2. 
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Proposition. sph(-~) = 3. 

Proof. Since sph(-T) < 3, we have only to prove sph(T') > 2. Suppose sph(T') = 2 
and consider a placement of V(T' )  on R 2 such that lu - vl > 1 i f fuv ~ E(T') .  

Observation 1. Every vertex v ~ V ( T ) i s  exterior to the convex hull of V(T)  - {v}. 
Indeed, ifv ~ V(T)  is represented as alv  1 + .... + akV k with ~ a i  = 1, al > 0 and 

v # v~ ~ V(T),  then since v'v~, i = 1 . . . .  , k are nonedges of T', it follows that 
Iv' - v~l < 1. Then also Iv' - vl < 1, a contradiction for v'v is an edge of T'. 

Observation 2. If four points xl,  x2, x3, x4 form a convex quadrilateral in R 2 such 
that edges x 1 x2, x3 x4 have length > 1 then at least one of the diagonals x 1 x 3, x2 x4 
has length _> 1. 

Indeed, letting y be the intersection of the two diagonals, we have 

2 < Ix1 - x2[ + Ix3 - x41 < Ix1 - Y[ + Ix2 - Yl + lY - x3[ + lY - x41 

= Ix1 - x 3 l  + Ix2 - x41. 

As a corollary, we have: 
(,) Suppose VlV2, v3v 4 ~ E(T ' )  and v~v3, v2v 4 ~ E(T') .  Then vl, v2, v3, v4 cannot 
form a convex quadrilateral with edges v 1 v2, v3 v4 and diagonals vl v a, v2 v4 (such a 
quadrilateral will be called a forbidden quadrilateral). 

In what follows, when speaking about the string S of vertices of a convex 
polygon in R 2, 5 will be considered up to cyclic shift and inversion, and neighbors 
in the string will form the edges of the polygon. 

Let 5 6 be the string of vertices of the convex polygon generated by b~, c~ 
(i = 1,2,3)(cf. Observation 1). 
(1) 5 6 does not contain any substring of the form bic, (or c,bi) 

Indeed, otherwise choose j # i and observe that either b~, c,, bj, cj or b,, c,, cj, bj 
form a forbidden quadrilateral. 
(2) 56 does not contain any substring of the form b, ekbjb k (or by symmetry, CkbjC,Cj). 

Indeed, otherwise, by (1), we have k # i, j and Ck, bk, ci, bi form a forbidden 
quadrilateral. 
(3) If 5 6 contains a substring of the form b, ckbj (or by symmetry, ckbjci) then 56 is 
a cyclic shift of bickbjCibkCj. 

Indeed, by (1), k # i, j. Then b, ckbj cannot be extended to b, ckbjb, by (2) or to 
b~ckbfj by (1). Thus it extends to b~ckbjC, which cannot be extended to b, ckbjC~C J by 
(2), hence the only possibility is b, ckbjC, bkC~. 
(4) If ~6 contains a substring bfbjbk then it is a cyclic shift of b~bjbkC,CjCk . 

In fact, bibjb k cannot be extended to bibjbkc k by (1) and the extension bibjbkCj 
would lead to a forbidden quadrilateral bjcjcibi. Thus ~6 contains bibjbkci. Further 
~6 5~ bibjbkCiCkCj for the latter yields a forbidden quadrilateral bkCkCib ~. Thus 
5 6 = bibjbkCiCjc k. 
(5) Without loss of generality, 56 is one of the strings 

(~) b~c2b3ClbEC3, (fl) b~b~bac~c~ca. 

Consider the 7-gon ~7 spanned by a, bl, c~ (i = 1, 2, 3). 
(6) 56 is of the form (fl). 
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Indeed, otherwise 57 contains a substring Ckabi(or blaCk) and then bj, cj, hi, a 
form a forbidden quadrilateral.  
(7) $7 does not  contain a substring b~abj, for otherwise b~, a, bj, cj form a forbidden 
quadrilateral.  

As a corollary,  we have: 
(8) 57 is, wi thout  loss of generality, one of the strings 

(7) blb2baclac2c3, (~) ablb2baclc2c3. 

Let 58 be the 8-gon spanned by a, b~, ci, d2 (i = 1, 2, 3). 
(9) Case (7)is impossible. 

In fact, if c~, a are neighbors of d E in 58 then dE, C2, bl, C 1 form a forbidden 
quadrilateral.  If c~, b 3 are neighbors of d 2 in 58 then dE, C2, Ca, b3 is a forbidden 
quadrilateral.  In all remaining cases, c2, d2, b3, a form a forbidden quadrilateral.  
(10) Case (~)is impossible. 

Indeed, if the neighbors of d E in 58 are a, bx then d2, C2, Cl, b 1 form a forbidden 
quadrilateral.  In all remaining cases a, b 1, c2, d2 or a, bl, d2, C 2 form a forbidden 
quadrilateral.  

The  p roof  is finished. [ ]  

Acknowledgment. Many thanks to P. Frankl for valuable remarks. 
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