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Abstract. It is proved that for any tree T the vertices of T can be placed on the surface of a sphere
in R? in such a way that adjacent vertices have distance 1 and nonadjacent vertices have distances
less than 1.

1. Introduction

The sphericity of a graph G, sph(G), is the smallest integer n such that the vertex set
V(G) of G can be embedded in Euclidean n-space R" in such a way that [u — v| < 1
if and only if uv € E(G), where | |is the Euclidean norm. In most cases, to determine
sph(G) is difficult, and certain bounds on sph(G) for various types of graphs are
considered e.g. in [1,2,3,4,5].

In [2] it was proved that sph(F) < 8[logn] for any forest F on n vertices, where
F is the complement of F. This result was essentially improved in [6] to sph(F) <6
Here we further improve this resuit to sph(F) < 3. We also give an example of a
tree T whose complement has sphericity 3, which shows that the upper bound 3 is
best possible.

2. Embeddings of Trees

Let T be a rooted tree with root u. The level of a vertex v of T is the number of
edgés in the path from the root u to v. Any vertex in that path is called an ancestor
of v. A proper ancestor of v is any ancestor excluding v.

Theorem 1. For any rooted tree T, we can embed the vertices of T in the plane R? in
such a way that (1) and (2) hold.

(1) The Euclidean distances between adjacent vertices are equal to 1.

(2) The Euclidean distances between non-adjacent vertices of distinct levels are
greater than 1.

Proof. Let T be a rooted tree with n + 1 vertices. Label the vertices of T in the
following way: Regarding T as a symmetric digraph, take an Euler tour starting
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Fig. 1

from the root, and then label the vertices with 0, 1, 2, ..., n in the order of the first
visit in that Euler tour, 0 is the root. See Fig. 1. Note the following fact:

(#) For two vertices b, ¢ (O <b<e< n), let a be their latest common ancestor,
and let ai, ... i (i; = b), aj, ...j; (j, = ¢) be the two paths from a to b, c. Then

a<ipg <o <ig<j; < <.
Now take n unit vectors
. it |, in .
u(l)=<cos%,sm~2~;>, i=12..,n

in R%. Note that all these vectors are in the positive quadrant. Define f: V(T) —» R?
by

f0)=(0,0, f(j)=Xu() forj>0,
where the summation is taken over all the ancestors i of j other than 0. Hence,
if i, j (i < j) are adjacent in T, then f(j) = f(i) + u(j). Thus this embedding clearly
satisfies the condition (1) of the theorem. To see that the condition (2) holds,
let b, ¢ (b < c) be two non-adjacent vertices of distinct levels, a be their latest

common ancestor, and ai, ... i (i, = b), aj, ...j, (j, = ¢) be the two paths from a to
b, c asin (#) Then it follows from (#) that forevery 1 <5 <s5,1<v<t,

u(iy)-u(i,) > ufi;)-u(j,) >0,
0 < u(j)-ufiy) < u(j)u(i)
Since the levels of b, ¢ are different, we have s # t. If s < ¢ then
U~ 76903 = w0300 + (5 i) = 3 o))
> 1,

whence | f(j,) — f(is)l > 1. If s > t then

(700 — ) -uli) = i) ) +

> 1,
whence | f(i,) — f(j,)] > 1. Thus the condition (2) is also satisfied. O
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Fig. 2

Remark. Denote by S, the sphere of radius r centered at the origin in R3. Similarly
to the above construction, we can embed the vertices of T on S, so that the
conditions (1) (2) of Theorem 1 hold, provided that r is sufficiently large.

Theorem 2. For any tree T, there exists an embedding of the vertex set of T in R?
such that the distances between adjacent vertices are equal to d, and the distances
between non-adjacent vertices are less than d, with a fixed d > 0.

Proof. Choose a vertex of T as a root. Then, as stated in the above remark,
there is an embedding f: V(T) — &, satisfying the conditions (1) (2) of Theorem 1,
provided that r is sufficiently large. We may further assume that f(V(T)) is lying
on a spherical cap of angular radius <30°. Now define a new embedding
g: V(T)— S, by

() = f(v)  if the level of v is even
U= Uy if the level of v is odd,

where f(v)* is the point antipodal to f(v). If u, v are adjacent in T, then their
levels are different by 1, so |g(u) — g(y)| = ((2r)* — 1)¥2. Suppose now u, v are
non-adjacent. If the difference of their levels is even, then g(u), g(v) are contained in
a sperical cap of angular radius <30°, and hence |g(u) — g(v)| <r < ((2r)* — 1)*~
If the difference of the levels of u and v is odd, then since |f(u) — flv)| > 1,
we have |g(u) — g(v)| < ((2r)* — 1)"2. Thus, letting d = ((2r)* — 1), we have the
theorem. O

Corollary. For any forest F, sph(F) < 3.

Proof. Let F be a forest. Embed F in a tree T as an induced subgraph, and place
the vertices of T'in R® as in Theorem 2. Then, for u,v € V(F), |u — v| = difuv € E(F)

and |u — v| < d if uv ¢ E(F). This implies sph(F) < 3 since may regard d = 1 by
changing scale. O

3. An Example
For every tree T, let T’ be the tree obtained from T by adding a new vertex v’ and

a new edge vv’ for each vertex v of T
Let T be the tree of Fig. 2.
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Proposition. sph(7") = 3.

Proof. Since sph(T’) < 3, we have only to prove sph(T’) > 2. Suppose sph(T") = 2
and consider a placement of ¥(T’) on R? such that [u — v| > 1iffuv e E(T").

Observation 1. Every vertex v € V(T) is exterior to the convex hull of V(T) — {v}.

Indeed, if v € V(T) is represented as a, v, + -+~ + a,v, with Y a; = 1, 4; > O and
v# U E V(T), then since v'v;, i=1, ..., k are nonedges of T, it follows that
|v" — v;| < 1. Then also |v" — v| < 1, a contradiction for v’v is an edge of T".

Observation 2. If four points x,, x,, x3, x, form a convex quadrilateral in R? such
that edges x x,, x;x, have length >1 then at least one of the diagonals x, x;, X, X,
has length >1. ’

Indeed, letting y be the intersection of the two diagonals, we have

2<Ixy =Xl %z = xql <xg —yl +1xy =yl + |y — x3| + |y — x,]
= [X1 — X3 + |x5 — x4].

As a corollary, we have:

(*) Suppose v;v,, v3v, € E(T') and v,v5, v,0, ¢ E(T’). Then vy, v,, vs, v, cannot
form a convex quadrilateral with edges v, v,, v3v, and diagonals v, v,, v,v, (sucha
quadrilateral will be called a forbidden quadrilateral).

In what follows, when speaking about the string S of vertices of a convex
polygon in R?, S will be considered up to cyclic shift and inversion, and neighbors
in the string will form the edges of the polygon.

Let S¢ be the string of vertices of the convex polygon generated by b;, c;
(i = 1,2,3) (cf. Observation 1). .

(1) S does not contain any substring of the form b;c; (or ¢;b;)

Indeed, otherwise choose j # i and observe that either b,, c;, b;, ¢; o1 b;, ¢;, ¢;, b
form a forbidden quadrilateral.

(2) Sedoes not contain any substring of the form b, ¢ b;by, (or by symmetry, ¢, bjc,-cj).

Indeed, otherwise, by (1), we have k # i, j and c,, b, c;, b; form a forbidden
quadrilateral.

(3) If S¢ contains a substring of the form b,c,b; (or by symmetry, c,b,c;) then Sq is
a cyclic shift of bc,b;c;byc;.

Indeed, by (1), k # i, j. Then b;c,b; cannot be extended to b,c,.b;b, by (2) or to
bicybic; by (1). Thus it extends to byc,b;c; which cannot be extended to b;c,b;cic; by
(2), hence the only possibility is b b;c;bec;.

(4) If S, contains a substring b;b;b, then it is a cyclic shift of b;bb.c;c;c;.

In fact, b;b;b, cannot be extended to b;b;bc, by (1) and the extension bbb,c;
would lead to a forbidden quadrilateral b;c;c;b;. Thus S¢ contains b;b;b,c;. Further
S¢ # bibbycicic; for the latter yields a forbidden quadrilateral byc,c;b;. Thus
S¢ = bibb.cicicy.

(5) Without loss of generality, S¢ is one of the strings

() bycabscybyes, (B) bybybscycocy.

Consider the 7-gon S, spanned by a, b;, ¢; (i = 1,2, 3).
(6) Se is of the form (f).
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Indeed, otherwise S, contains a substring c,ab; (or by ac;) and then b;, ¢;, b;, a
form a forbidden quadrilateral.
(7) S, does not contain a substring b,ab;, for otherwise b;, a, b;, c; form a forbidden
quadrilateral.

As a corollary, we have:
(8) S5 is, without loss of generality, one of the strings

(y) bybybsciacyes,  (8) abybybscicyes.

Let Sy be the 8-gon spanned by 4, b;, ¢;, d, (i = 1,2,3).
(9) Case (y) is impossible.

In fact, if ¢,, a are neighbors of d, in Sy then d,, c,, b, ¢, form a forbidden
quadrilateral. If ¢,, b, are neighbors of d, in Sg then d,, c,, 5, b, is a forbidden
quadrilateral. In all remaining cases, c,, d,, b;, a form a forbidden quadrilateral.
{10) Case (6) is impossible.

Indeed, if the neighbors of d, in Sg are a, b, then d,, ¢,, ¢;, b, form a forbidden
quadrilateral. In all remaining cases g, by, ¢,, d, or a, b, d,, ¢, form a forbidden
quadrilateral.

The proof is finished. O

Acknowledgment. Many thanks to P. Frankl for valuable remarks.
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