Graphs and Combinatorics

© Springer-Verlag 1988

Embedding of Trees in Euclidean Spaces

H. Maehara¹, J. Reiterman², V. Rödl² and E. Šiňajová²

i Ryukyu University, Nishihara, Okinawa, 903-01 Japan

2 Czech Technical University, Husova 5, Praha 1, Czechoslovakia

Abstract. It is proved that for any tree T the vertices of T can be placed on the surface of a sphere in $R³$ in such a way that adjacent vertices have distance 1 and nonadjacent vertices have distances less than 1.

1. Introduction

The *sphericity* of a graph G, sph (G) , is the smallest integer n such that the vertex set $V(G)$ of G can be embedded in Euclidean *n*-space R^n in such a way that $|u - v| < 1$ *if* and only *if* $uv \in E(G)$, where $\vert \vert$ is the Euclidean norm. In most cases, to determine $sph(G)$ is difficult, and certain bounds on $sph(G)$ for various types of graphs are considered e.g. in $\lceil 1, 2, 3, 4, 5 \rceil$.

In [2] it was proved that sph $(F) \leq 8 \lceil \log n \rceil$ for any forest F on n vertices, where \overline{F} is the complement of F. This result was essentially improved in [6] to sph(\overline{F}) ≤ 6 . Here we further improve this result to sph(\bar{F}) \leq 3. We also give an example of a tree T whose complement has sphericity 3, which shows that the upper bound 3 is best possible.

2. Embeddings of Trees

Let T be a rooted tree with root u . The *level* of a vertex v of T is the number of edges in the path from the root u to v . Any vertex in that path is called an *ancestor* of v. A *proper* ancestor of v is any ancestor excluding v.

Theorem 1. For any rooted tree T, we can embed the vertices of T in the plane \mathbb{R}^2 in *such a way that* (1) and (2) *hold.*

(1) *The Euclidean distances between adjacent vertices are equal to 1.*

(2) *The Euclidean distances between non-adjacent vertices of distinct levels are greater than 1.*

Proof. Let T be a rooted tree with $n + 1$ vertices. Label the vertices of T in the following way: Regarding T as a symmetric digraph, take an Euler tour starting

from the root, and then label the vertices with $0, 1, 2, \ldots, n$ in the order of the first visit in that Euler tour, 0 is the root. See Fig. 1. Note the following fact: (#) For two vertices b, c ($0 < b < c \le n$), let a be their latest common ancestor, and let $ai_1...i_s$ $(i_s = b)$, $aj_1...j_t$ $(j_t = c)$ be the two paths from a to b, c. Then

$$
a
$$

Now take n unit vectors

$$
\mathbf{u}(i) = \left(\cos\frac{i\pi}{2n}, \sin\frac{i\pi}{2n}\right), \qquad i = 1, 2, \ldots, n
$$

in R^2 . Note that all these vectors are in the positive quadrant. Define $f: V(T) \rightarrow R^2$ by

$$
f(0) = (0,0),
$$
 $f(j) = \sum u(i)$ for $j > 0$,

where the summation is taken over all the ancestors i of j other than 0. Hence, if *i, j* ($i < j$) are adjacent in *T*, then $f(j) = f(i) + u(j)$. Thus this embedding clearly satisfies the condition (1) of the theorem. To see that the condition (2) holds, let b, c ($b < c$) be two non-adjacent vertices of distinct levels, a be their latest common ancestor, and $ai_1...i_s$ ($i_s = b$), $aj_1...j_t$ ($j_t = c$) be the two paths from a to b, c as in (#). Then it follows from (#) that for every $1 \le \eta \le s$, $1 \le v \le t$,

$$
\mathbf{u}(i_1) \cdot \mathbf{u}(i_\eta) > \mathbf{u}(i_1) \cdot \mathbf{u}(j_\nu) > 0, \\
0 < \mathbf{u}(j_t) \cdot \mathbf{u}(i_\eta) < \mathbf{u}(j_t) \cdot \mathbf{u}(j_\nu).
$$

Since the levels of b, c are different, we have $s \neq t$. If $s < t$ then

$$
(f(j_t) - f(i_s)) \cdot \mathbf{u}(j_t) = \mathbf{u}(j_t) \cdot \mathbf{u}(j_t) + \left(\sum_{\nu=1}^{t-1} \mathbf{u}(j_{\nu}) - \sum_{\eta=1}^{s} \mathbf{u}(i_{\eta})\right) \cdot \mathbf{u}(j_t)
$$

> 1,

whence $|f(j_i) - f(i_s)| > 1$. If $s > t$ then

Í

$$
(f(j_s) - f(i_t)) \cdot \mathbf{u}(i_1) = \mathbf{u}(i_1) \cdot \mathbf{u}(i_1) + \left(\sum_{n=2}^s \mathbf{u}(i_n) - \sum_{v=1}^t \mathbf{u}(j_v)\right) \cdot \mathbf{u}(i_1)
$$

> 1,

whence $|f(i_s) - f(j_t)| > 1$. Thus the condition (2) is also satisfied.

Remark. Denote by S, the sphere of radius r centered at the origin in R^3 . Similarly to the above construction, we can embed the vertices of T on S_r so that the conditions $(1)(2)$ of Theorem 1 hold, provided that r is sufficiently large.

Theorem 2. For any tree T, there exists an embedding of the vertex set of T in \mathbb{R}^3 *such that the distances between adjacent vertices are equal to d, and the distances between non-adjacent vertices are less than d, with a fixed* $d > 0$ *.*

Proof. Choose a vertex of T as a root. Then, as stated in the above remark, there is an embedding $f: V(T) \to S_r$ satisfying the conditions (1) (2) of Theorem 1, provided that r is sufficiently large. We may further assume that $f(V(T))$ is lying on a spherical cap of angular radius $\langle 30^\circ \rangle$. Now define a new embedding $g: V(T) \rightarrow S_r$ by

$$
g(v) = \begin{cases} f(v) & \text{if the level of } v \text{ is even} \\ f(v)^* & \text{if the level of } v \text{ is odd,} \end{cases}
$$

where $f(v)^*$ is the point antipodal to $f(v)$. If u, v are adjacent in T, then their levels are different by 1, so $|g(u)-g(y)| = ((2r)^2 - 1)^{1/2}$. Suppose now u, v are non-adjacent. If the difference of their levels is even, then $g(u)$, $g(v)$ are contained in a sperical cap of angular radius $\langle 30^\circ, \text{ and hence } |g(u) - g(v)| \langle r \rangle \langle (2r)^2 - 1 \rangle^{1/2}$. If the difference of the levels of u and v is odd, then since $|f(u)-f(v)| > 1$, we have $|g(u) - g(v)| < ((2r)^2 - 1)^{1/2}$. Thus, letting $d = ((2r)^2 - 1)^{1/2}$, we have the theorem. \Box

Corollary. For any forest F, $sph(\overline{F}) \leq 3$.

Proof. Let F be a forest. Embed F in a tree T as an induced subgraph, and place the vertices of T in R^3 as in Theorem 2. Then, for $u, v \in V(F)$, $|u - v| = d$ if $uv \in E(F)$ and $|u - v| < d$ if $uv \notin E(F)$. This implies $sph(\overline{F}) \leq 3$ since may regard $d = 1$ by changing scale. \Box

3. An Example

For every tree T, let T' be the tree obtained from T by adding a new vertex v' and a new edge *vv'* for each vertex v of T.

Let T be the tree of Fig. 2.

Proposition. $\text{sph}(\overline{T'}) = 3$.

Proof. Since $\text{sph}(T') \leq 3$, we have only to prove $\text{sph}(T') > 2$. Suppose $\text{sph}(T') = 2$ and consider a placement of $V(T')$ on R^2 such that $|u - v| \ge 1$ *iff* $uv \in E(T')$ *.*

Observation 1. Every vertex $v \in V(T)$ is exterior to the convex hull of $V(T) = \{v\}$.

Indeed, if $v \in V(T)$ is represented as $a_1v_1 + \cdots + a_kv_k$ with $\sum a_i = 1, a_i \ge 0$ and $v \neq v_i \in V(T)$, then since $v'v_i$, $i = 1, ..., k$ are nonedges of T', it follows that $|v'-v_i| < 1$. Then also $|v'-v| < 1$, a contradiction for $v'v$ is an edge of T'.

Observation 2. If four points x_1 , x_2 , x_3 , x_4 form a convex quadrilateral in R^2 such that edges x_1x_2, x_3x_4 have length ≥ 1 then at least one of the diagonals x_1x_3, x_2x_4 has length ≥ 1 .

Indeed, letting y be the intersection of the two diagonals, we have

$$
2 \le |x_1 - x_2| + |x_3 - x_4| < |x_1 - y| + |x_2 - y| + |y - x_3| + |y - x_4| \\
 = |x_1 - x_3| + |x_2 - x_4|.
$$

As a corollary, we have:

(*) Suppose v_1v_2 , $v_3v_4 \in E(T')$ and v_1v_3 , $v_2v_4 \notin E(T')$. Then v_1 , v_2 , v_3 , v_4 cannot form a convex quadrilateral with edges v_1v_2 , v_3v_4 and diagonals v_1v_3 , v_2v_4 (such a quadrilateral will be called a *forbidden quadrilateral).*

In what follows, when speaking about the string S of vertices of a convex polygon in R^2 , \Im will be considered up to cyclic shift and inversion, and neighbors in the string will form the edges of the polygon.

Let \mathcal{S}_6 be the string of vertices of the convex polygon generated by b_i , c_i $(i = 1, 2, 3)$ (cf. Observation 1).

(1) \mathcal{S}_6 does not contain any substring of the form $b_i c_i$ (or $c_i b_i$)

Indeed, otherwise choose $j \neq i$ and observe that either b_i , c_i , b_j , c_j or b_i , c_i , c_j , b_j form a forbidden quadrilateral.

(2) \mathcal{S}_6 does not contain any substring of the form $b_i c_k b_j b_k$ (or by symmetry, $c_k b_j c_i c_j$). Indeed, otherwise, by (1), we have $k \neq i$, j and c_k , b_k , c_i , b_i form a forbidden quadrilateral.

(3) If \mathbb{S}_6 contains a substring of the form $b_i c_k b_j$ (or by symmetry, $c_k b_j c_i$) then \mathbb{S}_6 is a cyclic shift of $b_i c_k b_i c_i b_k c_j$.

Indeed, by (1), $k \neq i, j$. Then $b_i c_k b_i$ cannot be extended to $b_i c_k b_i b_k$ by (2) or to $b_i c_k b_j c_j$ by (1). Thus it extends to $b_i c_k b_j c_i$ which cannot be extended to $b_i c_k b_j c_i c_j$ by (2), hence the only possibility is $b_i c_k b_j c_i b_k c_j$.

(4) If \mathcal{S}_6 contains a substring $b_i b_j b_k$ then it is a cyclic shift of $b_i b_j b_k c_i c_j c_k$.

In fact, $b_i b_j b_k$ cannot be extended to $b_i b_j b_k c_k$ by (1) and the extension $b_i b_j b_k c_j$ would lead to a forbidden quadrilateral $b_i c_i c_i b_i$. Thus \mathcal{S}_6 contains $b_i b_j b_k c_i$. Further $\mathcal{S}_6 \neq b_i b_j b_k c_i c_k c_j$ for the latter yields a forbidden quadrilateral $b_k c_k c_j b_j$. Thus $\mathcal{S}_6 = b_i b_j b_k c_i c_j c_k$.

(5) Without loss of generality, \mathcal{S}_6 is one of the strings

 (α) $b_1c_2b_3c_1b_2c_3$, (β) $b_1b_2b_3c_1c_2c_3$.

Consider the 7-gon \mathcal{S}_7 spanned by a, b_i , c_i (i = 1, 2, 3).

(6) \mathbb{S}_6 is of the form (β) .

Embedding of Trees in Euclidean Spaces 47

Indeed, otherwise \mathcal{S}_7 contains a substring c_kab_i (or b_1ac_k) and then b_j , c_j , b_i , a form a forbidden quadrilateral.

(7) \mathcal{S}_7 does not contain a substring b_iab_j , for otherwise b_i, a, b_j, c_j form a forbidden quadrilateral.

As a corollary, we have:

(8) \mathcal{S}_7 is, without loss of generality, one of the strings

 (y) $b_1b_2b_3c_1ac_2c_3$, (δ) $ab_1b_2b_3c_1c_2c_3$.

Let \mathbb{S}_8 be the 8-gon spanned by a, b_i , c_i , d_2 (i = 1, 2, 3). (9) Case (γ) is impossible.

In fact, if c_1 , a are neighbors of d_2 in \mathcal{S}_8 then d_2 , c_2 , b_1 , c_1 form a forbidden quadrilateral. If c_1 , b_3 are neighbors of d_2 in \mathcal{S}_8 then d_2 , c_2 , c_3 , b_3 is a forbidden quadrilateral. In all remaining cases, c_2 , d_2 , b_3 , a form a forbidden quadrilateral. (10) Case (δ) is impossible.

Indeed, if the neighbors of d_2 in \mathcal{S}_8 are a, b_1 then d_2 , c_2 , c_1 , b_1 form a forbidden quadrilateral. In all remaining cases a, b_1 , c_2 , d_2 or a, b_1 , d_2 , c_2 form a forbidden quadrilateral.

The proof is finished. \Box

Acknowledgment. Many thanks to P. Frankl for valuable remarks.

References

- 1. Frankl, P., Maehara, H.: Embedding the n-cube in lower dimensions. Europ. J. Comb. 7, 221- 225 (1986)
- 2. Frankl, P., Maehara, H.: The Johnson-Lindenstrauss lemma and the sphericity of some graphs. J. Comb. Theory (B)(to appear)
- 3. Maehara, H.: Space graphs and sphericity. Discrete Appl. Math. 49, 55–64 (1984)
- 4. Maehara, H.: On the sphericity for the join of many graphs. Discrete Math. $\dot{7}$, $311-313$ (1984)
5. Reiterman J. Rödl, V. Šiňajová, E.: Geometrical embeddings of graphs. Discrete Math. (14
- Reiterman, J., Rödl, V., Šiňajová, E.: Geometrical embeddings of graphs. Discrete Math. (to appear)
- 6. Reiterman, J., Rödl, V., Šiňajová, E.: Embeddings of graphs in Euclidean spaces. Discrete & Computational Geometry (to appear)

Received: March 4, 1987 Revised: May 12, 1987