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Abstract. We give conditions on the minimum number k of colors, sufficient for the existence 
of given types of properly edge-colored subgraphs in a k-edge-colored complete graph. The 
types of subgraphs we study include families of internally pairwise vertex-disjoint paths with 
common endpoints, hamiltonian paths and hamiltonian cycles, cycles with a given lower 
bound of their length, spanning trees, stars, and cliques. Throughout the paper, related 
conjectures are proposed. 

1. Introduction 

We study the problem of the existence of properly edge-colored subgraphs of 
various types in edge-colored complete graphs. The types of subgraphs we are 
interested in include families of internally pairwise vertex-disjoint paths with com- 
mon endpoints, hamiltonian paths and hamiltonian cycles, cycles with a given 
lower bound of their length, spanning trees, stars, and cliques. 

Various approaches have been proposed in the literature for this problem. The 
first one consists of giving algorithms which check the existence of a given properly 
edge-colored subgraph in a given edge-colored graph. Results in this direction are 
presented in [1], [2], {-61 [121 [13]. In another approach, conditions of various 
types (such as color-degrees, structural conditions etc.) are established, sufficient 
for the existence of given edge-colored subgraphs [1, 3-6, 9, 11, 12, 16]. 

Here, we propose sufficient conditions on the minimum number of colors guar- 
anteeing the existence of properly edge-colored subgraphs of various types in 
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edge-colored complete graphs. Some results in this direction have been given in 
118]. 

Notation 

Formally, in what follows, unless ortherwise specified, we denote the vertex set, the 
edge set, the order (i.e., the number of vertices) and the number of edges of a graph 
G, by V(G), E(G) and n(G), respectively. When just one graph is under discussion, 
we usually write V, E and n instead of V(G), E(G) and n(G), respectively. 

Let A, B be nonempty (not necessarily disjoint) subsets of K The graph induced 
in G by A is denoted by G[A]. The set of all edges that have one endpoint in A and 
the other one in B is denoted by AB. If A = {x}, then for simplicity we write xB 
instead of {x} B. 

A k-edge-coloring of G is a mapping c from E onto the set of "colors" 
{1, 2 . . . .  , k}. For any e ~ E(G), c(e) is the color of the edge e. Throughout this paper, 
"coloring" is understood to be edge-coloring. We let G c denote a graph G colored 
by a k-coloring c. A subgraph of G c is said to be properly colored, if any two 
adjacent edges of it are in different colors. A subgraph of G c is said to be totally 
multicolored (for short, TMC), if any two edges of it are in different colors. 

In the sequel, unless otherwise specified, the term "path" denotes a simple path 
of length at least 2. 

Results 

In Section 2, the types of subgraphs we study are families of internally pairwise 
vertex-disjoint, properly colored paths with common endpoints. We show that the 
minimum number k of colors ensuring the existence of at least l + 1 such paths 
between any two distinct vertices of a k-colored complete graph K~ is (l + 1)n - 
½(l 2 + 3l) in case n > ~(l + I), and it is n + l(21 + 1) otherwise. We also show that 
for n > 31 - 1 the minimum number k of colors such that for any 21 distinct 
vertices xl ,  x2 . . . . .  x~, yl ,  Y2 . . . . .  y~ of a k-colored complete graph K~ there exists at 
least one properly colored path between xi and y:, for each i, i = 1, 2 . . . . .  l, such 
that all these paths are pairwise internally vertex-disjoint is at least f(n, l)= 
In + ½(3l 2 - 7l) + 2. 

In Section 3, the types of subgraphs we study are hamiltonian paths, hamil- 
tonian cycles as well as cycles with a given lower bound of their length. We show 
that the minimum number k of colors such that every k-colored complete graph K~ 
contains a properly colored hamiltonian cycle is ½(n - 1)(n - 2) + 2 whereas the 
minimum number k of colors such that every k-colored complete graph K~ 
contains a properly colored hamiltonian path is ½(n - 3)(n - 4) + 2, provided that 
n is sufficiently large compared to k. We also show that for n > l > 2, if a complete 
graph K~ is colored with at least ½tn colors, then it contains a properly colored 
cycle of length at least l + 1. 

In Section 4, the subgraph under study is the clique. We show that the mini- 
mum number k of colors such that there exists a properly colored clique on t 
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vertices, t > 3, in a k-colored complete  graph K~ is n 2 q- o(n2), where b = 

Finally, in Section 5, the types of subgraphs we study are spanning trees as well 
as stars of an arbi t rary order. We show that  the minimum number  k of colors such 
that  there exists at least one properly colored spanning tree in a k-colored complete 
graph K~ is at most  [~(n 2 -t- 1)1 and it is at least least at-(n 2 - 6n + 24) for n even 
and at least 1(/ '12 - -  4n + 19) for n odd. We also show that  the min imum number  k 
of colors such that there exists a totally mult icolored spanning star in a k-colored 

 om ,oto L- J 1 wo t at m o mum 
number  k of colors ensuring the existence of a totally mult icolored star with r 
edges in a k-colored complete graph K~ is at least 1.½(n(r - 2) + 4)J and at most  
L½(n(r - 2) + r + 2)J. 

2. Properly Colored Paths 

The main result of this section is a formula for the minimum number  of colors 
ensuring a fixed number  of internally pairwise vertex-disjoint, proper ly  colored 
paths joining any two vertices. 

Theorem 2.1. The minimum number k of colors such that there exist at least l + 1 
internally pairwise vertex-disjoint properly colored paths between any two distinct 
vertices of a k-colored complete graph K~ is 

+ + + 

[n + l(21 + 1) /f n _< ~(l + 1). 

Proof. First, we describe two construct ions showing that k has to be at least 
as large as given in the above formula.  For  the first case, n >_ ~(l + 1), let V 1 = 
{zi[1 _< i _< l}, V 2 = {till _< i < n - l -  2}, V 3 = {x,y} be three pairwise disjoint 
sets of vertices and let V denote their union. Consider  the complete graph K n on V 
and color its edges as follows: 

c(tix ) = c(tiy ) = i, i = 1, 2 , . . . ,  n -  I -  2, 

c(tltj) = min({i,j}), i,j = 1, 2, . . . ,  n - l - 2, i C j .  

The colors of all other  edges are taken to be pairwise distinct and greater than 
n - l - 2. The number  of colors in this coloring of K,  is 

gl(n,l) = (n-- l -  2) + ~(l + 2)(I + 1) + (n - -  l -  2)l = (l + 1 ) n -  ~l(l + 3) - 1. 

Clearly, any properly colored path  between x and y must contain at least one 
vertex in V 1 and therefore K n does not  contain I + 1 internally pairwise vertex- 
disjoint properly colored paths between x and y. 
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For the second case, n < ~(l + 1), let V[ = {v~ll < i < 21 + 1}, Vg = {v~12l + 
2 < i _ <  n -  2}, V~ = { x , y }  be three pairwise disjoint sets of vertices and let V 
denote their union. Consider the complete graph K'n on V and color its edges as 
follows: 

c(v~x) = c(viy)  = i, i = 1, 2 . . . .  , n - 2, 

c ( x y )  = n - 1. 

The colors of the edges which have both endpoints in V[ are taken to be pairwise 
distinct and greater than n - 1. For any edge v~vj, v~ # 19, having one endpoint in 
V~ and the other one in V~ U 1I[ we set c(v~vj) = m in ( { i , j } ) .  

The number of colors in K'n is g2(n, I) = n - 1 + (21 + 1)l. As any properly 
colored path between x and y must contain at least two vertices in V~, we conclude 
that K;  does not contain 1 + 1 such paths. 

Notice that gl(n,l) -> gz (n , l )  if, and only if, n > ~(l + 1). The lower bounds 
follow because in order to ensure l +  1 internally pairwise vertex-disjoint 
properly colored paths between x and y, the value of k can not be less than 
m a x { g l ( n , l ) , g z ( n , l ) }  + 1. 

Consider now a complete graph K~, on a vertex set V, with an arbitrary coloring 
c with at least k = f ( n ,  1) colors. Let x, y be any two distinct vertices in V. For 
later use, we first show that the assertion is valid for l = 0 and any n. Let V = 
{x ,  y,  t l ,  t2 . . . . .  t,_2} be the vertex set of K~. Suppose there is no properly colored 
path between x and y. Then c ( x t d  = c(yt~) and c(t~ti) is identical either to c(xt~) or 
to c(xt i ) ,  for all i, j ~ {1, 2 , . . . ,  n - 2}, i ~-j. It follows that the number of colors in 
K~n is I {c (x t , ) l i  = 1,2, . . . ,n  - 2} t3 {c ( xy ) } l  _< n - 1 a contradiction to the fact that 
the edges of K~ are colored by f ( n ,  O) = n colors. 

Now we distinguish between two cases: 

C a s e  1. There exists z ~ V such that x z y  is a properly colored path. 

We proceed by induction on I. Suppose that any K~_~ colored with at least 
f ( n  - 1, I - 1) colors contains at least I internally pairwise vertex-disjoint alternat- 
ing paths between any two distinct vertices. Since f ( n  - i ,  l - 1) = f ( n ,  l )  - ( n  - 1), 
if the first formula applies, and f ( n  - 1, l - 1) = f ( n ,  l) - 41 <_ f ( n ,  l) - (n - 1), in 
the second case (assuming that n < ~(1 + 1) and I >__ 1), the induction hypothesis 
yields that K~, - z contains at least I internally pairwise vertex-disjoint properly 
colored paths between x and y. Considering also the path x z y  we conclude that KS 
contains at least l + 1 internally pairwise vertex-disjoint properly colored paths 
between x and y. 

C a s e  2. e ( zx )  = c(zy) for all z ~ V \ { x , y } .  

We are going to show that K~ contains at least l + 1 internally pairwise vertex- 
disjoint properly colored paths between x and y each of which has length 3. Let r 
denote the number of colors in the edge set { x z l z  ~ V k { x ,  y} }. Clearly, 

l < r < n - 2 .  (I) 

In order to simplify notation we denote these colors by 1, 2, . . . ,  r. We partition 
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V \ { x , y }  into blocks V1, V2 . . . . .  V, according to the color in which its. vertices 
"view" the vertex x (or y): 

Vii= { z e  V \ { x , y } [ c ( z x ) = c ( z y ) = i } ,  i =  1,2 . . . . .  r. 

Let G denote the subgraph of K~ obtained by deleting the edge x y  and all edges 
with color less than or equal to r. Clearly, the number of colors of G is at least 
f (n ,  l) - r - 1. Taking into account (1) we obtain that G has at least f (n,  l) - 
(n - 1) colors and of course, at least so many edges. Thus, by the ErdSs-Gallai  
theorem [8], G admits a matching of size I + 1. The edges of such a matching yield 
l + 1 internally pairwise vertex-disjoint properly colored paths between x and y. 

[] 

Conjecture 2.2. Let  n > 31 - 1 and x l ,  x2 . . . . .  xt, Yl ,  Y2, " " ,  Yl be any 21 distinct 
vertices of  a k-colored complete graph K~. The minimum number k o f  colors such 
that there exist  at least one properly colored path between x~ and y~, i = 1, 2 . . . . .  l, 
such that all these paths are pairwise internally vertex disjoint is f (n ,  l) = In + 
½(3l z -- 7l) + 2. 

We describe a construction showing that k has to be at least as large as given in the 
above formula. Consider 4 pairwise disjoint sets: 

V x = {xili = 1,2 . . . . .  l}, 

Vy = {y,[i = 1,2 . . . . .  I}, 

1"1 = {v,Ii = 1 , 2 , . . . , 1 -  1}, 

g 2 = {will = 1,2 , . . . ,n  - 31 + I}. 

Let V = V~ U Vy U I,'1 U V 2 and consider a complete graph K,  with vertex set E We 
define a coloring c on K n as follows: 

c(w~wj) = min({i,j}), i , j  = 1, 2 . . . . .  n - 31 + 1, i ¢ j .  

c(wiV~) = c(w~Vy) = {i}, i = 1, 2 . . . . .  n - 3l + 1. 

All other edges of Kn are colored in a totally multicolored way using new colors. 
The number of colors in K~ is 

n - 3 l + l  + ½ ( 3 l - 1 ) ( 3 l - 2 ) + ( l - 1 ) ( n - 3 l + l ) = I n + ½ ( 3 l  2 - 7 l ) + 1 .  

Any properly colored path with endpoints x~ and y~ must contain at least one 
vertex of V1. Our assertion follows, as K~ does not contain one properly colored 
path between x~ and y~ for every i = 1, 2 . . . . .  l, such that they all form a set of 
pairwise internally vertex-disjoint paths. 

3. Properly Colored Hamiltonian Paths and Cycles 

In this section we concentrate on properly colored paths and cycles of various 
lengths. The most interesting case is where this length is equal to the order of the 
graph in question, i.e., where a hamiltonian path or cycle has to be found. 



350 Y. Manoussakis et al. 

Theorem 3.1. The minimum number k of colors such that every k-colored complete 
graph K~ contains a properly colored hamiltonian cycle is ½(n - 1)(n - 2) + 2. 

Proof. Assigning color 1 to all edges incident to a fixed vertex x ~ V(K~), and a 
distinct color ~ 1 to each edge not incident to x, we see that ½(n - 1)(n - 2) + 1 
colors in K~, are not enough to ensure the existence of a properly colored hamil- 
tonian cycle. 

Suppose now that Kn is a complete graph colored with at least ½(n - 1)(n - 2) + 
2 colors. Clearly, it has a totally multicolored spanning subgraph G with 
½(n - 1)(n - 2) + 2 edges. Then, by Ore's theorem 1"141 G contains a hamiltonian 
cycle. This cycle is clearly totally multicolored and thus properly colored. [ ]  

Theorem 3.2. The minimum number k of colors such that every k-colored complete 
graph K~ contains a properly colored hamiltonian path is ½(n - 3)(n - 4) + 2, pro- 
vided that n is sufficently large compared to k. 

Proof. In order to show that k cannot be smaller, consider a complete graph 
Kn-3 whose edges are colored with the colors 1, 2 . . . . .  ½(n - 3)(n - 4). Extend 
Kn_ 3 to K~ by adding three new vertices xl ,  x2, x3 and assigning the color 
½(n - 3)(n - 4) + 1 to all new edges. Since no new vertex can be an internal vertex 
of a properly colored path, K,  contains no properly colored hamiltonian path and 
therefore k > ½(n - 3)(n - 4) + 2. 

In order to prove the converse inequality, suppose n is large and assume that at 
least m = ½(n - 3) (n - 4) + 2 colors appear in K~. From each color class i we arbi- 
trarily select an edge ei and denote by G the spanning subgraph of K~ whose edge 
set is {ei li = 1, 2 . . . . .  m}. Let dl, dz . . . . .  d~ denote the degree sequence of G arranged 
in a non-decreasing order: dl < d2 --<"" <dn.  There are many ways to select G. We 
shall assume that the triple (dl,d2, d3) is lexicographically maximum. Since G is 
totally multicolored, if it is also hamiltonian, then K~ will contain a properly 
colored hamiltonian path. 

Suppose G is not hamiltonian. Then, by a theorem of P6sa 1-15], there exists an 
n 

integer t, 1 < t < ~, such that G contains at least t vertices of degree at most t. 

Therefore dt < t. Notice that the complement of G contains as few as ½n(n - 1) - 
n 

½(n - 3)(n - 4) - 2 = 3n - 8 edges, therefore, t < 3 follows. Moreover, d4 > ~ - c 

( holds for some constant c. For  d2 -< 2 or d 3 < 3, also d4 > ~ - c or d4 > ~n - c 

can be shown, respectively.) In order to simplify the notation, we assume that the 
/ 

vertices of K~ are relabelled in such a way that the vertex xi has degree di in G. 

Case I. d2 > 3 and d 1 > 2. 

Now t = 3 and d3 = 3. Let x~ be an arbitrary vertex not adjacent to x3 in G. 
Adding the edge x3x~ to G, we obtain by P6sa's theorem that the new graph 
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contains a hamiltonian cycle C. Removing the edge x3x~ from C we obtain a 
properly colored hamiltonian path of K~. 

Case 2. d 2 > 3 and dl < 1. 

Now G - x 1 contains a hamiltonian cycle C. Consider the graph H = C + x l x . .  
The two edges of C incident to x.  are in distinct colors, and at most one of them 
can be in color c(x~x.). Removing it from H we obtain a properly colored hamil- 
tonian path of K~. 

Case 3. d 2 < 2, d 3 > 4 and all edges meeting {xl,x2} are in the same color. 

By the maximality of (dl, d 2, da), the color c(xlx2)  is represented by the edge x l x  2 
in G, i.e., it does not occur on the edges of G' = G - {xl,x2}. Moreover, G' is 
hamiltonian: let C be one of its hamiltonian cycles, and choose two consecutive 
vertices x,, xj on C. Clearly C - x~xj + {xlxi ,  x2xj} is a properly colored hamil- 
tonian path of K~. 

Case 4. d 2 _< 2, d a > 4 and at least two color classes meet {xl,x2}. 

Choose an edge e joining {xl, x2} with a hamiltonian cycle C of G - {x~, x2} such 
that c(e) ~ c(x~x2). As in Case 2, an edge can be removed from C + e to obtain a 
properly colored path with one endpoint in {x 1, x2}. This path can be completed 
to a properly colored hamiltonian path of K~ by adding the edge x t x  2 to it. 

From now on, we can assume d 2 < 2 and d 3 < 3. It follows that at least two 
colors meet T = { x l , x 2 , x 3 } ,  and the graph G' = G - T contains a hamiltonian 
cycle C (as G' has minimum degree n -  c for some constant c). Moreover, the 
colors appearing on the edges of the triangle T are represented inside T, and the 
color classes meeting T are not represented by the edges of G'. 

Case 5. T is monochromatic. 

Let x3x  i be an edge with c(x3x~) ~ c(xlx2),  and xixj an edge of C. Since the color 
c(x,xj) is not assigned to any edge meeting {x~, x 3 }, C - x~xj + {x~ x j, x2x  a, x 3 x,} 
is a properly colored hamiltonian path of K~. 

Case 6. T is not monochromatic. 

There exists an edge in T, say xl  x 2, whose color is not repeated inside T. If all edges 
joining {xl,x2} with C are in color c(xlx2),  then we can find a properly colored 
hamiltonian path P with endpoints xl ,  x 2 in G - x 3 in the same way as described 
in Case 3, and P + x l x  3 is a properly colored hamiltonian path of K~. On the 
other hand, if some edge, say, x~x,,  i > 4, has c(xlx~) ~ c(x~x2), we can traverse the 
vertices of C + x~x~ by a properly colored path P, and P + {x~x2,x2xa}  is a 
properly colored hamiltonian path of K~. []  

It remains an open problem to determine the smallest integer n o such that the 
conclusion of Theorem 3.2 is valid for all n > n o. To see that for n = 4 and n = 5, 
½(n - 3)(n - 4) + 2 colors do not suffice, one can take a triangle x~x2x3 in color 1, 
joining it to a vertex x4 with three edges in color 2, and (for n = 5) color all edges 
xsx~, I N i < 4, in color 3. 
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It is interesting to see what happens if, instead of hamiltonian cycles and paths, 
we consider cycles and paths of a given length l, 3 _< l < n - 1. For the case of 

nl 
paths, Simonovits and S6s [18] have proved that if K~, is colored with at least -- 

2 
colors and n >_ no(l), then K~ admits a totally multicolored path of length l + 3. 

For the case of cycles we prove the following: 

In 
Theorem 3.3. Let  n > 1 > 2. I f  K~ is colored with at least -~ colors, then it contains a 

properly colored cycle of  length at least l + 1. 

Proof. For n = l + 1, K~ is totally multicolored, therefore each of its hamiltonian 
cycles is properly colored and the assertion is obviously valid. Hence, if n > I + 2 
and there exists a vertex whose removal decreases the number of colors by at most 
½1, then we can apply induction on n. 

Suppose, on the contrary, that for every v ~ V(K~) there are more than ½1 colors 
having the property that for each of them, say, color i, all edges of color i are 
incident to v: Choose a subgraph G of K~ such that each color occurs precisely once 
in G, and the largest connected component of G has as many vertices as possible. 
By our assumption on the vertices, G has minimum degree 6(G) at least ½(l + 1). 

Let G1 be the largest component of G. Suppose first that I V(Gt)] > l + 2. If G~ 
is 2-connected, then it contains a cycle of length at least 2~(G1) > l + 1 (see [7]), 
and the proof is done. Hence, assume that v is a cut-vertex of G1. Let P(v, u) and 
P(v, w) be two nonextendible paths starting at v, where u and w belong to distinct 
components of G1 - v. Since both u and w have at least ½(l - 1) neighbors on the 
path P = P(u, v) O P(u, w), different from v, P contains more than l + 1 vertices. 
Denote by ut, u2 and w~, w 2 the neighbors of u and w which are closest and second 
closest to u and w, respectively, on P. If c(uut), c(uw), c(wwt) are pairwise distinct 
then P + uw is a properly colored cycle of length at least l + 2. Otherwise, if, say, 
c(uul) = c(uw), then the u z - w segment of P together with the edges uu 2 and uw 
form a properly colored cycle of length at least l + 1. 

Suppose next that [V(G~)[ < l +  1. In this case G contains more than one 
component, and each of them is hamiltonian. Let HI and H 2 be hamiltonian cycles 
in G 1 and G 2 respectively, and choose two edges ulv 1 in H 1 and/./2/) 2 in H 2. If the 
color of u~u2 were present on some edge e of Ht UH2, then G - e + ulu 2 would 
have a component larger than G, a contradiction. Thus, H1 U H: + {ut u2, vt v2 } - 
{U 1131,/22/22} is a properly colored cycle of length [ V(Gt)[ + [g(Gz)[ > 26(G) + 2 > 
1+3 .  [] 

Notice that the above proof does not ensure the existence of a cycle of length 
exactly l + 1. It would be interesting to see under what conditions such a cycle 
exists. Notice also that the lower bound of the above theorem does not seem to be 
optimal. In particular, in the sequel we define on a set V of n vertices two/c-colored 
complete graphs K~ 1 and K~ 2 none of which admits a properly colored cycle of 
length l + 1 whereas they both admit a cycle of length I. 

Definition of/C2. Partition V into two blocks, V t = {v~li = 1,2, . . . ,n  - I} and 
I"2 = {viii = n - l + 1,n - I + 2 . . . . .  n} and color the edges as follows: 
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Let c(v~vj) = min({i,j}), for any two distinct vertices v~, vj of V1, and c(vivl) = i, for 
any vi e V1 and v~ ~ I"2. Finally, color the edges with both endpoints in V z in a 
totally multicolored way using colors greater than n - l. Thus, K~' is colored with 
½1(l + 1) + n - t colors. 

Definition of K~ z. Partition V in two blocks V~ and V2 so that V1 contains n - ½1 
1 

vertices and V z contains ~ vertices. All edges with both endpoints in Vt are colored 

1 and all the other edges are colored in a totally multicolored way with colors 
greater than 1. Thus, K~ 2 is colored with ½1n - ~l ( l  + 3) + 1 colors. 

Based on the above graphs, we propose the following: 

Conjecture 3.4. Let n > k > 2 and 1 > 4. Assume that K~ is colored with at least k 
colors, where 

k =  f ~ l ( l+ 1 ) + n - l +  1 

~ l n -  ~-~l(l+ 3 ) + 2  

10/2 - -  61 - -  18 
/ j ' n <  

6 ( l -  3) 

1012 - 61 - 18 
/fn___ 

6 ( l -  3) 

Then, K ~. admits a properly colored cycle of length l + 1. 

4. C l iques  

First we state a known result [18] concering totally multicolored triangles, for 
which we give a new proof. 

Lemma 4.1. The minimum number k of colors such that there exists a totally multi- 
colored triangle in a k-colored complete K~ is n. 

Proof. First we prove that there exists an (n - 1)-coloring of K,  yielding no totally 
multicolored triangle. Let V = {vl . . . .  , v,} be the vertex set of K,. For  i = 1, 2 . . . . .  
n - 1, color i all edges incident to v i which are not colored so far. It is easy to see 
that in this coloring no totally multicolored triangle occurs. 

Consider now a complete colored graph K~ having the property that  the num- 
ber of its colors is at least equal to its order. Let G be a subgraph of minimum order 
m having the above property. Clearly, 3 _< m < n. From the minimality of G, it 
follows that for any v ~ V(G), there exist x, y ~ V(G) with c(vx) ~ c(vy) such that 
neither c(vx) nor c(vy) appears in G -  v. Hence {v,x,y} induces on G a TMC 
triangle (which is in fact G itself). []  

Theorem 4.2. Let t >_ 3 be a f ixed integer and n ~ ee. The minimum number k of 
colors such that there exists a properly colored clique of  order t in a k-colored 

complete graph K~ is ° - - ~ n "  + o(n=), where b = [½(t - 1)J. 
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Proof. Let b = 1_½(t- 1)J. Color a complete graph Kn as follows: Partition its 
/ / P - I  

vertex set V into b blocks Vo, V, . . . . .  V~_, each c o n t a i n i n g / ~ / o r  i ~ /  vertices. 

For i = 0, 1, 2 , . . . ,  b - 1, we color all edges with both endpoints in V~ using I Vd - 1 
new colors, so that no MTC triangle occurs. Further, to each edge joining two 
blocks V~, Vj, i ~ j, we assign a new distinct color. The largest properly colored 
complete subgraphs in this coloring have 2b < t - 1 vertices, showing that fewer 

than n 2 + o(n 2) colors are not enough to ensure a properly colored K,. 

Next, we prove that for every fixed e > 0, and for n large enough with respect 

to t and z, ( ~ - ~  + On2 colors in K~ are su~cient for the existence of a 

properly colored K~ in K~. Take an edge from color class of K~,. In the graph of 
\ 

( ~ +  e )n  2 edges obtained in this way, for an arbitrarily fixed s and for a 
/ 

large n, by the Erd6s-Stone theorem [10], there exists a complete (b + 1)-partite 
subgraph K~,, ..... ~ with s vertices in each class. We take s = 2 b+l. 

Denote by V the vertex set of K~,s ..... s and by V t, V2, . . . ,  Vb+~ its vertex classes. 
We apply the procedure that follows. 

For  each i = 1, 2 . . . . .  b + 1 do sequentially the following: 

(1) Select arbitrarily 2 b+l-~ pairwise disjoint pairs (u o, vo) in Vi, j = 1, 2 . . . . .  2 b+t-~. 
(2) F o r j  = 1, 2, . . . .  2 b+l-i delete from K~.~....., the (at most one) vertex z ~ V\V i for 

which either c(zuo) = c(uov~ i) or c(zv~i ) = c(uov~j), and if z has already been 
selected in a previous pair (ui,y, Viy), (for some i' < i), then also delete the other 
member of its pair. 

The fact that ~ 2 p = 2 ~+t - 1 ensures that it is possible to execute the above 
O<p<q 

procedure and that at the end of the execution, in each V~, at least one pair, say, 
(u~, vD, remains undeleted. 

Indeed, in the beginning, V~ contains 2 b+t vertices, i = 1, 2, . . . .  b + 1. In the first 
iteration, i = 1, we can easily execute instructions (1) and (2). Suppose we have 
executed up to the (i - 1)-th iteration. Before executing the i-th iteration observe 
that at most Y', 2 p = 2 b+l - 2 b+2-i vertices have been deleted from V~. Thus, 

b-i+ 2 <p<b 
V~ contains at least 2 ~+2-i vertices, enough to execute instruction (1) in the i-th 
iteration. 

On the other hand, for any i = 1, 2 . . . . .  b, from the (i + 1)-th iteration up to the 

end, due to instructions of type (2), at most ~ 2 p = 2 b+l -~ - 1 pairs of V~ have 
O:~p<b-i 

been deleted and thus at least one pair of V i, say, (ui, v~) there remains undeleted. 
Note also that Vb+1 contains one pair of vertices and no deletion of pair occurs 
there. 

Since K~, ..... , was totally multicolored, the vertex set {u:ll < i <  b + 1}U 
{v~ll < i < b + 1} induces a properly colored complete subgraph of 2b + 2 > t 
vertices in K~. [] 
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We do not know whether the coloring constructed in the above proof contains 
the largest number of colors without a properly colored Kr  It shows, however, that 
the number of colors needed for a properly colored K, is strictly larger than that 
for a totally multicolored Kto_~)al, though the two numbers are asymptotically the 
same as n ~ oo (cf. [9]). We should also note that if t is close to n, more precisely 
if t > -~n + 1, then the minimum number of colors required for a properly colored 

K, i s t h e s a m e a s t h a t f o r a T M C K r l n b o t h c a s e s ,  t h e v a l u e i s ( ~ ) - ( n - t ) a n d  

the extremal construction consists of n - t + 1 monochromatic pairwise vertex- 
disjoint paths in distinct colors each of length 2 and a distinct new color for every 
other edge. 

5. Trees and Stars 

In this last section we consider properly colored spanning trees and stars. The main 
result is the following: 

Theorem 5.1. The minimum number k of colors such that there exists at least 
one properly colored spanning tree in a k-colored complete graph K~ is at most 
['~(n 2 + 1)] and it is at least ~(n 2 - 6n + 24)for n even and at least ~(n 2 - 4n + 19) 
for n odd. 

Proof. We first prove the lower bound. Consider a complete graph K,  with vertex 
set V =  (vl,v2 . . . .  ,v,}. Partition V into two blocks V 1 and V 2 with respective 

n n n - 1  n + l i f n i s o d d .  We color K~ as cardinalities ~ - 1, ~ + 1 if n is even, or T '  

follows: All edges with both endpoints in VI are colored in a totally multicolored 
way whereas all other edges are colored with the same new color. The number of 

l ( n  ) ( 2 )  l ( n - l ~ ( n - 3 ~  
colors used is~ ~ - 1  - 2  + l if n is even and it is ~ \ 2 ] \  2 J + 1 i f  

n is odd. Clearly, in any properly colored spanning tree, all vertices in V 2 must be 
matched with distinct vertices of V t, but this is impossible because [ V t [ < [ V z 1. 

We prove next the upper bound by induction on n. The assertion is obvious for 
n = 3, and it is also easy to verify for n = 4 (take any two disjoint edges and join 
them by an edge colored distinctly from each of them). 

From now on we assume n >_ 5 and that the theorem holds for every coloring 
of K,_~ and Kn_2, and we will show that it holds for every coloring of K~. Call a 
vertex v critical for a color i if all edges of color i are incident to v, and denote by 
r(v) the number of colors for which v is a critical vertex. If r(v) > 0, then v is called 
a critical vertex. Moreover, a color is said to be critical if it has at least one critical 
vertex. 

We distinguish between four cases: 

Case 1. K~ contains a critical vertex v with r(v) < ¼(n - 1). 
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The assertion follows by induction on n. We have at least [~(n2- t  - 1 ) ] -  
1.¼(n - 1)] > [~((n -- 1) 2 + 1)] colors in K~ - v; thus, by the induction hypothesis, 
it contains a properly colored spanning tree (of order n - 1) which can be extended 
to a properly colored spanning tree of K~, by adding an edge incident to v colored 
with a color for which o is critical. 

Case 2. There are critical vertices in K~, all of them satisfy r(v) > ¼n, but not all 
vertices are critical. 

Let w be a non critical vertex. If K~ - w contains a vertex v which is critical for 
at least [½n] colors, then we can construct explicitly a properly colored spanning 
tree of K~ as follows: Choose a subset 111 = {u~[i = 1,2,. . . , t} of V(K~) with 
t > r(v)-  1 > [-½n] - 1 such that the edge set {vu~li = 1,2,. . . , t} contains one edge 
of each color (:~ c(vw)) for which v is a critical vertex in K~,-  w. Clearly, 
IVlt-J{v,w}l > ½ n +  1. Let {z,[i= 1,2 . . . .  ,s} denote the set V(K~)\(V1U{v,w}). 
Clearly, s < ½n - 1 and thus, s < t. Then the set of edges {vw} U {uu~[i = 1,2 . . . . .  t} U 
{u~z~ti = 1, 2 . . . . .  s} forms a properly colored spanning tree of K'~. 

On the other hand, if no vertex of K~ - w is critical for more than [½n] - 1 
colors, we can apply induction on n. Let v be a critical vertex. We have at least 

[ ~ ( n 2 + l ) ] - ( [ ~ n ] - l ) > [ ~ ( ( n - 2 ' 2 + a ) ]  

colors in K~ - {v, w} and thus, by the induction hypothesis, it contains a properly 
colored spanning tree (of order n - 2). Add the edge vw and another edge incident 
to v colored with a color different from c(vw) for which v is critical, to obtain a 
properly colored spanning tree of K~,. 

Case 3. For every vertex v in K~, r(v) > ¼n. 

We construct a spanning subgraph G by selecting exactly one edge from each 
critical color in such a way that G has as few connected components as possible 
and the smallest among the orders of the components is as large as possible. 
Clearly, G has at most three components because the degree of every vertex in G is 
at least ¼n and therefore each component contains at least ¼n + 1 vertices. 

If G is connected, then obviously any one of its spanning trees is a properly 
colored (in fact, a totally multicolored) spanning tree also in K~,. Assume next G has 
three components G1, G2, G3. Since any two components contain together at least 
2(¼n + 1) vertices, the order of each component is at most ½n - 2. Notice that the 
degree of each vertex is at least half the order of its corresponding component, thus 
by Dirac's theorem I-71 every component has a hamiltonian cycle. In particular, 
each G~ is 2-connected. 

Now pick arbitrarily ul in V(G1), u2 and u~ in V(G2) and u 3 in V(G3), such that 
u2 :~ u~. We claim that neither G1 nor G2 contains the color c(ulu2) and also 
neither G2 nor G 3 contains the color c(u'zu3). To show this, suppose that an edge 
xy of G~ has color c(u~u2). Since G~ has a hamiltonian cycle, G~-  xy is a 
connected graph and so is (Gx - x y  + ulu2)U G2, contradicting the assumption 
that G has the smallest possible number of components. Thus G~ does not contain 
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the color c(ul u2). We can verify the other two cases in a similar way. It follows that 
(GI + ulu2) U (G2 + u;ua) U Gs is a properly colored connected spanning subgraph 
from which we can easily construct a properly colored spanning tree of K~. 

Let us suppose therefore that G consists of two components GI, G2. The order 
n~ of at least one component, say, G~, is not greater than ½n. If d is the degree of an 
arbitrary vertex of Gi we have d > ¼n. It follows that d _> ½n~. Thus, by Dirac's 
theorem, G1 contains a hamiltonian cycle. Add an arbitrary edge u~u 2 with 
u~ ~ V(G~), i = 1, 2. There exists at most one edge x y  of G with the same color 
as ulu2. Define G' = G + u~u2 if there is no such edge xy.  I f x y  is in G1, then de- 
fine G ' =  G + u l u 2 - x y .  If x y  is in G2 but it is not adjacent to ulu  2 then 
define G' = G + ulu~. Finally, suppose x y  is in G2 and it is adjacent to UlU2, say, 
x = u2. Now consider the subgraph H = G2 - xy.  If H is connected, then define 
G' = (G~ + u~ u2)U H, otherwise denote the components of H by G~ (containing x) 
and G~ (containing y). By the choice of G, G~ has at most as many vertices as G~ 
(thus, it has at most ½n vertices) and therefore it contains a hamiltonian cycle. Now 
consider an edge u'iu~ with u~ ~ V(G1), u~ # ul and u'z ~ V(G~). If there exists 
an edge e' adjacent to u'~u; and having the same color with it, then define 
G' = (G~ + u~ u2)U G'z U (G~ + u'~u'z) - e' otherwise define G' = (G~ + u~ u2)U G~ U 
(O'~ + u~u'z). 

In every case, G' is a properly colored connected spanning subgraph from 
which we can easily construct a properly colored spanning tree of K7,. 

Case 4. K~ contains no critical vertex. 

First, we suppose that KT, contains a vertex v such that for some color i the/-degree 
of v is equal to one. Let w be the unique vertex of K~ for which c(vw) = i. Then, we 
remove w from K~ and the assertion follows easily by induction on n. Indeed, the 
number of colors in Ken - w is ]'~(n 2 + 1)] > ['~((n - 1) 2 + 1)] and thus, by the 
induction hypothesis, KS - w has a properly colored spanning tree (of order n - 1) 
which by the addition of the edge vw can be extended to a properly colored 
spanning tree of KS. 

Next, assume that for every color i the/-degree of any vertex of K,~ is either 0 or 
at least 2. Then, the number of colors in any star of K~n cannot exceed L½(n - 1)J. 
Notice that the current case can only appear for n > 7. If n = 5 or n = 6, K~ must 
contain a color class with a vertex of degree i. In K~ the 10 edges are split into 4 
color classes, one of which should contain at most 2 edges. In K~, if each color class 
has size at least 3 with minimum degree 2, then the 15 edges are partitionned into 
5 color classes, each of which is a monochromatic triangle. This is impossible 
because each vertex of K~ has degree 5. 

Now we apply Lemma 4.1. Since [~(n 2 + 1)] > n for n _> 7, KS contains a 
totally multicolored triangle with vertices, say, u, v, w. Let c(uv) = i, c(vw) = j and 
c(wu) = m. First remove vertex u. We do not lose any color because no vertex is 
critical. Then remove vertex v. By the assumption, there exists a vertex t in K~ such 
that c(wt) = j .  Therefore, we lose at most L½(n - 3).1 colors. Now, in K~ - {u,v} 
change the color of every edge of color j to color m. We have thus lost at 
most L½(n - 1).1 colors. Thus, the number of colors in KS - {u, v} is at least 

1 2 J'~(n + 1)] - L½(n - 1).] > ['~((n - 2) 2 + I)]. By the induction hypothesis, K~n - 
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{u, v} has a properly colored spanning tree (of order n - 2), with respect to the new 
coloring. Now, in the initial coloring of this tree, the vertex w has degree 0 in at 
least one of the colors j, m. If the j-degree of w is 0 then add the edges wv and vu, 
otherwise add the edges wu and uv to obtain a properly colored spanning tree 
of K~. [] 

Theorem 5.2. The minimum number k of  colors such that there exists a totally 
multicolored spannin9 star in a k-colored complete graph K~. is ½n(n - 3) + L½n] + 1. 

Proof. First we construct a coloring of K.  with ½n(n - 3) + L½nJ colors, containing 
no totally multicolored spanning star. Consider a complete graph K.  with vertex 

/ / 

V = { v l , v 2 , . . . , v , } .  Set q = / n  / a n d r = n ( m o d 3 ) , r < 3 .  Let C/denote the set 
i.. . .i 

triangle on the vertices va~-2, v3~-1, vai, i = 1, 2 . . . . .  q. We color the edges by the 
coloring c: E(K.)--* {1,2 . . . . .  ½n(n - 3) + q} defined as follows: c(Ci) = i, i = 1, 2, 
. . . ,  q. Further, if r = i then we put c(v, vl)  = c(v, v2) = q + 1 and if r = 2 then 
we put c(v.v,_~) = c(v ,_lvl)  = c(v, vl)  = q + 1. Next, we color all the other edges 
of K,  in a totally multicolored way, using new colors. There are 2q + r edges 
with a duplicate color, so the number of colors used is ½n(n - 1) - (2q + r) = 
½n(n - 3) + q and thus c is indeed a ½n(n - 3) + L½nJ-coloring of K~. Clearly, K~, 
contains no totally multicolored spanning star. 

Now, let K,  be colored with ½n(n - 3) + I.~n/+ 1 colors. We define a totally 
multicolored subgraph G with ½n(n - 3) + [½nJ + 1 edges choosing one edge of 
each color class. Then the sum of the degrees of the vertices of G is equal to 
n(n - 3) + 2 L½nJ + 2. 

If there exists a vertex v in G with degree n - i, then we can immediately have 
a totally multicolored spanning star in v. 

Hence, suppose that not all vertices in G have degrees smaller than n -  1. 
Denote by Vt the set of vertices with degree n - 2 in G. It follows that I Vll > 
2 L½nJ + 2, otherwise the degree sum would be too small. 

If there are two vertices v and u in V~ which are not adjacent in G, then we add 
the edge uv to G. Since G is a totally multicolored graph, we have a totally multi- 
colored spanning star either in v or in u, If this is not the case, then the subgraph 
of G which is induced by V1 is complete. Now we consider the set E(G) of the edges 
of the complement of G. Each vertex of V~ has degree 1 in G but there is no edge in / / 

E(G'-') wi th  b o t h  e n d p o i n t s  in Vlo I t  fo l lows tha t  IE(G), ~_~ 2 / 3 / - J  i- 2. C o n s e q u e n t l y ,  
i.. -_1 

the number of edges of K.  is 

L J IE(g.) l  = IE(G)i + IE(G)I _ ~n(n - 3) + n + 1 + 2 ~n + 2 

1 
> _ ~ n ( n -  1)+ 1, 

a contradiction. [] 
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Theorem 5.3. The minimum number k of colors ensuring the existence of  a totally 
multicolored star with r edges in every k-colored complete graph K~, is at least 
L½(n(r - 2) + 4)J and at most L½(n(r - 2) + r + 2)J. 

Proof. To see that [½n(r - 2 ) / +  1 colors are not always sufficient, consider an 
(r - 2)-regular graph G on n vertices if either n or r is even, and a graph G with 
n - 1 vertices of degree r - 2 and one vertex of degree r - 3 respectively. (For 
n even, this G can be obtained as the union of r -  2 perfect matchings in a 

r 
1-factorization of K,. If n is odd and r is even, G can be the union of ~ - 1 hamil- 

tonian cycles in a hamiltonian decomposition of K,. Finally, if both n and r are 
odd, G can be the union of ½(r - 3) hamiltonian cycles and a maximum matching 
of another hamiltonian cycle). Coloring all edges in the complement of G with the 
same (new) color, the assertion follows. 

Suppose now that K~ contains no totally multicolored star with r edges. Let v 
be an arbitrarily chosen vertex, and for each color not incident to v, choose an edge 
in K~--v .  The graph obtained in K~ , -  v has maximum degree at most r -  2, 
therefore the number of colors in K~, cannot exceed [½(n - 1)(r - 2 ) / +  r - 1 = 
L½(n(r - 2) + r)J. []  

We conjecture that the lower bound is the best possible. 
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