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Abstract. The influence of maneuvering on the chaotic response of a fluttering buckled plate on an aircraft has been 
studied. The governing equations, derived using Lagrangian mechanics, include geometric non-linearities associated with 
the occurrence of tensile stresses, as well as coupling between the angular velocity of the maneuver and the elastic degrees 
of freedom. Numerical simulation for periodic and chaotic responses are conducted in order to analyze the influence of the 
pull-up maneuver on the dynamic behavior of the panel. Long-time histories, phase-plane plots, and power spectra of the 
responses are presented. As the maneuver (load factor) increases, the system exhibits complicated dynamic behavior 
including a direct and inverse cascade of subharmonic bifurcations, intermittency, and chaos. Beside these classical routes 
of transition from a periodic state to chaos, our calculations suggest amplitude modulation as a possible new mode of 
transition to chaos. Consequently this research contributes to the understanding of the mechanisms through which the 
transition between periodic and strange attractors occurs in dissipative mechanical systems. In the case of a prescribed time 
dependent maneuver,  a remarkable transition between the different types of limit cycles is presented. 
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Nomenclature  

a = plate length 
a, = u / h  
D = plate bending stiffness 
E = modulus of elasticity 
g -acce lera t ion  due to gravity 
h = plate thickness 
j~ , j z , j ,  = base vectors of the body frame of reference 
K = spring constant 
M = Mach number 
n = 1 + wv~,/g 
N, - a p p l i e d  in-plane force 
P - Pc = aerodynamic pressure 
p = Apaa/Dh 

q = pv~/2 
Q, = generalized Lagrangian forces 
R = rotation matrix 
R, = N, aZ/D 

t = time 
3- = kinetic energy 
u = plate deflection 
u = displacement of the structure 
u, = modal amplitude 
v. = velocity 
x = coordinates in the inertial frame of reference 
z = coordinates in the body frame of reference 

a = I t S +  Eh) 
V M  ~" - 1 

s = elastic energy 
A = 2qa3/[3D 
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tx = pa /p ,  h 

- P o i s s o n ' s  r a t i o  

~" = m a t e r i a l  c o o r d i n a t e s  

p - a i r  d e n s i t y  

p,, = p la t e  d e n s i t y  

r / a = t ~ h a  

~ ,  = p r e s c r i b e d  f u n c t i o n s  

~br = s i n ( r r r z / a )  

w = a n g u l a r  ve loc i ty  

f~ = w a / v .  

1~ = s k e w - s y m m e t r i c  m a t r i x  f o r m  o f  the  a n g u l a r  ve loc i ty  

1. Introduction 

This paper deals with the chaotic behavior of a fluttering panel on a maneuvering airplane. Such a 
system is interesting from the dynamic point of view because it combines a maneuver (which 
manifests itself as forced excitations, as well as more complicated coupling, including parametric 
excitation), and flow-induced oscillations on a system with two fixed points (buckled plate). As a 
result of combining the force-induced and flow-induced oscillations, this system is a rich source of 
static and dynamic instabilities and of associated limit-cycle motions. In the past, several 
approaches have been used for the separate treatment of these problems. Very simple models 
have been used for the simple problem of the forced vibration of a buckled plate (essential to the 
understanding of the more complicated system under consideration, Dowell and Ilgamov, [4]). 
For example, in Dowell and Pezeshki [5], and Pezeshki and Dowell [8], and [9], Duffing's 
equation has been used as a model for the sinusoidally excited buckled plate. Yano [14], and [15] 
investigated different cases of a van der Pol-Mathieu  type equation used to model a beam 
subjected to a periodic axial force and simultaneously to a flow-induced vibration. He included 
quadratic and cubic non-linearities in the parametric term and only cubic non-linearities in the 
restoring force. Zavodney and Nayfeh [10], and Zavodney et al. [11], analyzed the response of a 
one degree of freedom system with quadratic and cubic non-linearities to a fundamental harmonic 
parametric excitation. They found solutions characterized by period multiplying bifurcations and 
chaos. For the problem under consideration, the non-linear partial differential equation is 
approximated, by Galerkin or Rayleigh-Ritz  methods, as a set of ordinary differential equations 
which are then solved for specific initial conditions by numerical integration techniques. An 
excellent review of the work using this approach is given in Dowell and llgamov [4]. A dissipative 
partial differential equation modeling a buckled beam was considered by Holmes and Marsden 
[6]. They presented one of the very few analytical results available on chaos in a continuous 
system. 

We are interested here in highly maneuverable aircraft. One feature of these aircraft is that 
the angular velocity can be much higher than in more conventional aircraft. As a consequence, a 
body frame of reference connected with the aircraft cannot be assumed to be in pure translation, 
and the governing equations should be written in a rotating frame of reference. This implies that 
there is a coupling between the rigid-body and the flexible-body motion. Note that the effect of 
maneuvering on the dynamic response of a fluttering panel is not discussed by Dowell and Ilgamov 
[4]. The influence of maneuvering on a periodic response of a fluttering buckled plate was 
analyzed by Sipcic and Morino [12], and [13]. The current paper deals with the chaotic behavior of 
a fluttering panel on a maneuvering plane. 
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The study has been divided into two main areas, theoretical and numerical. In Section 2 the 
governing equations are derived in the 'body' frame of reference following the procedure of 
Lagrangian mechanics. Numerical results are presented in Section 3. The governing equations are 
integrated numerically, using a fourth-order Runge-Kut ta  algorithm. In order to understand the 
dynamics, the character of the solution has been examined, in physical terms, in Subsection 3.1. 
The effect of varying the load factor was studied in great detail, only representative results are 
presented in Subsection 3.2. In examining and discussing the results, attention is drawn to the 
routes to chaos. Long time histories, phase-plane plots, and power spectra of the responses were 
the dynamics tools used to study the system considered here. Finally, a prescribed time dependent 
maneuver is considered in Subsection 3.3. 

2. The Equation of Motion 

Consider a thin plate having length a, thickness h, and undergoing cylindrical bending in response 
to one sided airflow, see Figure 1. As mentioned before the plate motion is expressed in terms of 
the rigid-body translation and rotation of the body reference frame, and a deformation. Indicating 
the coordinates in the inertial frame with x, the coordinates of the origin P(, of the body frame 
with x o, the body-axis coordinates of a point P in the body frame at time t = 0  (reference 
condition) with z, and the body-axis components of the displacement of the structure with respect 
to a reference condition with u, we have 

x( s c~, t) = x.(t) + R(t)[z( ~ ) + u( ~:", t )] ,  (1) 

Buckled plate of a maneuvering airplane 

O / 
R 

,, = (, - 1)g 

Fig. 1. Airplane in a pull-up, 
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where ~:" is a system of material coordinates (i.e., a system of coordinates, in general curvilinear, 
that is convected with the material point). Typically, these coincide numerically with the 
components z; of z. Note that the matrix R represents a rigid-body rotation. Next let us assume 
that a deformation is given as a linear combination of prescribed functions, (br, with unknown 
coefficients, i.e., 

U( r t)  = E " r ( t ) + r (  ~ ( ' ) "  ( 2 )  
r 

In the rest of this section the equations of motion for the elastic degree of freedom, u~, are 
obtained by the use of Lagrange's equations in the form 

d 03- 03. Oe 
- -  + - -  = Q r ,  (3) dt 8ti r i)ll r Otr r 

where .3- is the kinetic energy, e is the elastic energy, and Q,. are the generalized Lagrangian 
forces. 

2.1. Kinetic Energy 

The kinetic energy is given by 

ifff -- ~ ,. pllvll: dV.  (4) 

The velocity v of a point {:" may be obtained from Equation 1, as 

v( ~", t) = O___xx ~" = x(,(t) + R(t){~q(t)[z({:") + u( ,f" t)] + fi( ~", t)} 
at - ' " 

(5)  

where ,q is the skew-symmetric matrix form of the angular velocity, and x,(t) is the velocity % of 
the origin Po coordinatized in the inertial frame of reference. In what follows the constant velocity 
pull-up maneuver will be assumed. If the base vectors of the body frame of reference are J l, J2, J3, 
see Figure 1, then v, = - v , j ~ ,  and the angular velocity to = - w j 2 .  Furthermore,  the prescribed 
functions (br are all in the direction J3. Making use of these assumptions and substituting (2) and 
(5) into (4) it is found that 

1 , 1 ~ 1 1 
,~- = ~ "IU 0 -}- -~ 0.)- E m r s l l r "  s -- UO0) E Srl' r -}- -2 o)2Jo -}- 5 2 'Nt..,l'lrl" Q + OJ E brL'~ r , 

r. s r r.s r 

where, 

s,:/ff,, o<dV ,,,=fff,, o~:d~. 

(6) 

(7) 

Substituting (6) into (3) the equations of motion become 

SrO'V,, + br~' + E " , / i  - g 'o:mr,,,~ + 2 L  = 0 ,  . (8) 
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2.2. Elastic Energy 

Consider once more a thin two-dimensional, simply supported plate having length a and thickness 
h and undergoing cylindrical bending in response to one sided airflow, see Figure I. In such a case 
the axial extension, v, can be written to first order  approximation as 

if = - d z .  (9) v(z) -2 , Oz/ 

Thus the elastic energy is 

F f( D ( "  2 a E h  1 i~u 
dz  + (10) 

where D is a plate bending stiffness, a is a support factor which accounts for the effective stiffness 

of the supporting structure defined by 

Ka 
c~ - (11) 

Ka + Eh 

and K is a spring constant per unit spanwise length of panel. Substituting (2) into the elastic 

energy, Equation 10, and differentiating with respect to u one obtains 

a Eh 
0e _ O Z e,.,u, + ~ T a  Z k ...... ,u,u,, ,u,.  (12) 
Oa r 

where 

f, f. k . . . . .  , = r  
�9 ) " ) f 

a 

qSfl); dz er~ = r d z .  (13) 

2.3. General ized  Lagrangian Forces 

Assume that the plate is exposed to an in-plane tensile load, N,. to a static pressure difference 
across the plate, AP, and that the exciting dynamic pressure difference is given by quasi-steady 

aerodynamic theory,  i.e. (see Bisplinghoff and Ashley [1]), 

_ _  M 2 - 2  1 Ou 1 2q Ou + _ _  (14) 
P - P~ = f l  Oz M z -  1 uo at " 

where q = OV~ / 2 is the dynamic pressure, M is the Mach number,  and /3 = ~ / M  2 - [. Following 
the conventional procedure of Lagrangian mechanics, i.e., calculating the virtual work performed 
by the external forces as they act through the virtual displacement caused by the variation in the 

generalized coordinate u r, the expression for the generalized force Qr is 

2q~ 
Q.r = - N r  E~. ,l,.stt.~ q- APPr  - ~ .. (/(~Pr.~ -~- ~ s / } r s )  " (15) 

where 
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nr , .  = (j~tr{~'v d z  Pr = ~, de Prs  = ( ] ) r 6  'f dz ]S r s  __ - 1 ~b~b~ dz . (16) 
' I " ) I ' / 3 2 U [  I ) �9 

Substituting (12) and (15) into the equations of motion (8), one obtains 

a E h  
SrO) O 0 ~- b , &  + E ]~Vlr.,[is. - E oO-mr.,.U s + O E er.,-U.,. + ~-a E k ..... llt.,.ltmltl + N,. ~ ,  nrs/ l . ;  

-{- 2q13 ~. ( U s  P r s  "~ /~ ~"/Ors ) .  = ApPr" (17) 

2.4.  D i m e n s i o n l e s s  E q u a t i o n s  

In order  to recast Equation 17 in a dimensionless form, we introduce the following dimensionless 
parameters  and coordinates: 

ar h r t 

pa  

# - p , , , h  " 

w a  2qa  3 N , a  2 A P a  4 
- A - R ,  - P = - -  

vc~ / 3 D  " D D h  

(18) 

Fur thermore,  since the plate is simply supported,  we will allow the prescribed functions to be 

(~r = s in ( r r r z /a )  . (19) 

Substituting Equation 19 into (7), (13), and (16), and thence into (17), the equation of motion in 
dimensionless matrix form reads 

/i + 6fi + Ga + f(a) + y~)2a = p + Od + ~)v, (20) 

where a = {ar}  , G = [gr . , ] ,  d = (dr},  u (Vr}' P = (Pr}"  f =  {J';}' and 

g,~ = 2A 
r - - S  

d = - 2  ( - l y  ( / 3 A ) ' 2 a  
r "n'r /~ / 

O r = - - 2  [3A a [ 1 - ( - 1 )  r ]  

/x /7 rrr 

s = 3r2rr4ce(1 - •2)ar E s2a~, 
s 

rs , [1 - ( - 1 )  r+'] + [(rTr)-R,. + (r~-) ]~r~- ~ -- /32 

t O r = 2 P  [ 1 - ( - 1 )  r] 3/-  /3A 
7rr # 

I / 2  

(21) 

with s, r = 1 . . . . .  N.  Equations 20 are a set of ordinary, nonlinear differential equations in time. 
The cubic non-linearities are of geometric origin and are associated with the occurrence of tensile 
stresses in the middle surface. The coupling between the rigid-body rotation of the frame of 
reference and the elastic degrees of f reedom is represented by the fifth term. This set of equations 
have been solved by a direct numerical integration. Note that by assuming f~ = 0, Equations 20 
properly reduce to the classical panel flutter equations (see e.g.,  Bolotin [2], or Dowell [3]). 
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3. Numerical Experimentation 

In this research numerical simulations are conducted in order to analyze the chaotic behavior of a 
fluttering panel on a maneuvering airplane. Equations 20 are simulated on the digital computer  
using a fourth order  Runge -Ku t t a  algorithm. For the sake of clarity, the factor f~ is expressed in 
terms of the load factor n = 1 + ~ov~/g, as ~ =  ( n -  1)ag/v{. The load factor for aeronautical 
applications is in the range 1 to 6. For all of the results reported here, t.L/M = 0.023, c~ = 1, 
u = 0 . 3 ,  h/a=O.O08, M=1.3 ,  ag/v~=1.45• 10 5 and the plate response is calculated at 

z/a = 0.75. In order  to eliminate the influence of the initial conditions from the maneuvering, the 
same initial conditions are prescribed for all cases by setting, at : 1.0 (corresponding to a positive 
velocity of the first degree of freedom).  Previous calculations of Paolozzi, Peroni,  and Sipcic [7] 
have shown that at least six degrees of f reedom (i.e., number  of modes) has to be used in order  to 
properly capture the dynamic behavior of the system. This is why the computations presented here 

are performed using six degrees of freedom. 

3.1. Character of the Solution in the Presence of  a Maneuver 

For the sake of clarity, before addressing the general results, the key types of responses are 
introduced from a physical point of view. The buckled plate is a part of the maneuvering airplane 
(see Figure 1). Depending on the value of the load factor and other  parameters,  one or two stable 
fixed points may be obtained in the phase plane (u, z~). The first fixed point corresponds to the 
undeformed position, the other two to the up buckled or down buckled plate position. The stable 
plate motion, generally speaking, consists of vibration around up buckled, down buckled position, 

and ksnapping through'  motion. 
Figure 2 shows selected phase-plane plots of the panel responses in the non-maneuvering 

case. When the buckled plate is excited by the one sided airflow, one finds one global limit cycle 
orbit around both buckled fixed points, and three more complicated periodic limit cycles, see 
Dowell [4], or Paolozzi, Peroni,  and Sipcic [7]. In the first case of simple harmonic response the 
plate is 'snapping through" around both buckled positions. More complicated periodic response 

are combination of the plate vibration around up buckled, or down buckled position, and 

'snapping through'  motion. 
Influence of the maneuver  on the periodic plate response has been studied by Sipcic and 

Morino [12], and [13]. In order  to perform the maneuver  an airplane has to be exposed to normal 
force, i.e., another  parameter  of interest is the uniform static pressure differential across the plate. 
In the absence of a maneuver ,  the plate would deform to some static equilibrium position under 
the pressure differential. While maneuvering, the inertial forces due to the maneuver  decrease the 
deformation of the plate due to the static pressure differential. For sufficiently large flow velocity, 
this equilibrium position becomes unstable. The plate then begins to oscillate about the unstable 
equilibrium position, eventually reaching a new stable dynamic equilibrium shape (a limit cycle). 
A variety of limit cycles may be found as shown in Sipcic and Morino [12], [13]. A particularly 
important finding is that in the range A = 353 to 361 the occurrence of a maneuver  can change the 
character of the panel response from a fixed point in the non-maneuvering case (n = 1), to a limit 
cycle in the maneuvering case (n = 2), (see Figure 3). The maneuver  can also suppress the 
periodic character of the motion, transforming the response into a fixed point, and all motion 
ceases. Finally, there is also the possibility of a chaotic response, but these will be discussed in 

what follows. 
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Limit  cyc le 

P 
i 

-o2e, - o  870r o 87oE-oi 

L i m i t  cycle 

-~ "'" -~ "t/h ~176 ' ~ 

/ i ~  = - 2 . 7 " n  "2, R.~ = - - 3 . 5 a  "2, 

L i m i t  c y c l e  L i m i t  cyc le  

- ' "  - ~  o...a ' " - '  '" - ~  -~176  ~  

P ~  = _ 4 . 0 . x 2  P ~  = - 5 . 0 ~  -2,  

Fig. 2. Representative phase plane orbits for A = 150, n = 1.00, and different values of in-plane loads. 

3.2. Routes to Chaos 

In the following we will discuss how maneuvering transforms the response from the steady state 

regime to the chaotic regime. The emphasis will be on the understanding of the mechanisms 

through which a chaotic regime establishes. We have chosen the system parameters such that there 

are two equilibrium positions for the non-maneuvering case. For this base case of A = 150, and 

R x = - 3 . 5 ~  -2, the load factor was varied from the non-maneuvering response to a value for which 

the inertial forces due to maneuvering suppress the plate motion, transforming the response into a 

fixed point. Figures 4(a) to 4(t) (discussed in details in the following subsections) shows the phase 

portraits of distinct attractors together with the power spectrum plots discovered during numerical 

experimentation. Time traces of selected responses are shown in Figure 5. 

3.2.1. Intermittency and Transient Chaos 

We begin with the non-maneuvering (n = 1) response shown in Figures 4(a) and 5(a). The motion 

has a nonchaotic character with three closed orbits in evidence. For the maneuvering case up to 
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PANEL RESPONSE ,* = 120 

ii, 

-lAg5 2.104 5,703 9.302 12,90 16,S0 

Dimensionless  TLme 

PANEL RESPONSE n = 2.00 

-1.49$ 2.104 5.703 9.302 12.90 16.50 

Dimemsio~e~ Ti~ae 

Fig. 3. Panel  r e sponse  for a = 355, and R ,  = [).0. and P = 60.0. 

n = 1.66, we see what appears  to be a chaotic response. The power  spectrum shows large 

fundamental  frequency components  accompanied by less broad band noise than that for the true 
chaotic response,  see Figures 4(b) and 4(c). Fur thermore ,  the time traces show the periodic 

motion with a short bursts of chaotic transient, see Figure 5(c). All this suggests that this is a 

region of transient chaos. At the value of the load factor n = 1.67, a new stable at tractor  appears  
(see Figure 4(d)), where the inertial forces due to maneuver ing have suppressed one of the three 

orbits that appears  for the non-maneuver ing  case. This trajectory experiences a cascade of 
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Fig. 4. Phase-plane portraits  and the accompanying frequency spectra of the s y s t e m  response. The m a n e u v e r  varies  from 

n = 1.00, to n = 3.00. 
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period-doubling bifurcations culminating in chaos. This process is discussed in following sub- 

section. 

3.2.2. Period-Doubling Bifurcation 
A cascade of period-doubling bifurcation is presented in the sequence of Figures 4(d) -4(h) .  The 
corresponding sequence of time traces is shown in the Figures 5(d)-5(h) .  The first bifurcation may 
be seen for n -- 1.83 (see Figure 4(e)) and is well established for n = 1.90 (see Figure 4(f)). The 
usual splitting of the trajectories can be seen in the phase portrait ,  and time traces, see Figures 

4(f),  and 5(f) respectively. The spectrum also shows the bifurcation with the presence of new 
spectral lines. The new spectral lines show that the period has now doubled. Increasing n further  
causes the previous pattern to repeat: a splitting of each of the previous harmonic bands into two 

bands as shown in Figures 4(g) and 5(g). One anticipates that by continuing to increase n, the 
same phenomenon will be repeated.  We expect to see a cascade of bifurcations, each accompanied 
by the period doubling associated with a subharmonic instability, leading to chaos. The numerical 
calculations support this anticipation, showing the chaotic response for n = 2.02. 

3.2.3. The Inverse Cascade and More Chaos 
We have seen that the approach to chaos via period doubling is a highly structured process. 
Increasing the load factor still further we have observed another  element of order  in the dynamic 
behavior of a fluttering plate, namely the inverse cascade of subharmonic bifurcations. Starting 
from the chaotic response for n = 2.02, changing of the load factor has restllted in the sequence of 
period-demultiplying bifurcations, see Figures 4 (h) - (k ) ,  culminating in the new limit cycle, see 
Figure 4(k). Comparing this limit cycle with the plate response for n = 1.00, Figure 4(a), one can 

see that inertial forces due to maneuvering have suppressed the plate vibration around the up 
buckled position. 

In the load factor range n = 2.38-2.48, see Figures 4(k)- (n) ,  the above limit cycle experiences 
a cascade of transitions culminating in chaos. The power spectrums show large fundamental  
frequency components  with new frequencies added to a narrow band around them, see Figure 
4(m). Note that this is characteristic for the process of amplitude modulation of a periodic 
response. Fur thermore,  the time traces show the amplitude modulated periodic motion, see 
Figures 5(k)-(n) .  All this suggests the amplitude modulation as a possible route of transition from 
a periodic state to chaos. By the value of the load factor n = 2.48 the chaotic stage is well 
established. 

For the value of the load factor in the range of #z = 2.84-2.53, chaotic responses were 
observed. An unexpected limit cycle (at n = 2.54, Figure 4(o)) appears through a jump phenom- 
enon; we did not observe the gradual transition through the inverse cascade of bifurcations. Upon 
further examinations one may conclude that this is the limit cycle that exists in the non- 
maneuvering case (see Figure 2), after the maneuver  has suppressed one of the orbits. This limit 

cycle experiences a direct and inverse cascade of subharmonic bifurcations, see Figures 4(o)-(s) ,  
we did not observe chaos as a culmination of the period-doubling sequence. Further  increase of 
the load to n = 2.69 transforms the plate response to chaotic through a jump phenomenon,  see 
Figure 4(t). For the load factor in the range n = 2.69-2.98 the plate response is chaotic. When the 
load factor reaches n = 3.00 the inertial forces suppress the chaotic character  of the motion, the 
response is a fixed point, and all motion ceases. As n continues to increase, the deflection of the 
plate increases. 
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3.3. Nonautonomous Equations 

In the case when the angular velocity of maneuvering is a given function of time, the differential 
equations,  Equation 20, are nonautonomous  and they will be briefly considered in this subsection. 
Consider an airplane in a pull-up maneuver during the time interval (t~, t:). The angular velocity 
is given by to = too sin[o~(, , - t~)] ,  with a = ~r/([ e - t ~ ) .  Under these assumptions, the angular 
velocity at the beginning and at the end of the maneuver equals zero. For the case of k = 150, and 
R, = -3.07r-', the non-maneuvering,  n = 1.00, response of the plate is simple harmonic, see Figure 
6(a). Constant velocity pull-up maneuver, n = 2.00 transforms this response into a more compli- 
cated limit cycle with two orbits, see Figure 6(b). Now consider a sinusoidal maneuver with the 

P A N E L  R E S P O N S E  n = 1.00 PANEL IR.ESPONSE n = 2.00 
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, , /h 

Fig.  6(a) .  P a n e l  r e s p o n s e  f or  P = 0 .0 ,  R = -3 .07r - ' ,  w i t h  

o u t  m a n e u v e r i n g  (n = 1.00) .  

-4.000 

-O.gT7 

6.000 15.200 34,790 34.390 43,990 
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LIMIT CYCLE n = 2.00 

l 

�9 0.~6s -0,959 .0.m 0.0r= 0.2~ 

Fig. 6(b}.  P a n e l  r e s p o n s e  for  P = 0 .0 ,  R = -3 .07r - ' ,  and  

c o n s t a n t  v e l o c i t y  p u l l - u p  m a n e u v e r  (n = 2 .00) .  
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Fig. 6(c). Pancl response for P = 0.0, R, = -3.117r:, and time dependent pull-up maneuver (amplitude ;i = 2.00). 

amplitude n = 2.00. As might be expected on physical grounds, our calculations show a disturb- 

ance of the simple harmonic limit cycle by the inertial forces due to the maneuver.  The 

remarkable results appear after the completion of the maneuver,  when the panel motion is a more 

complicated limit cycle with three closed orbits in evidence, see Figure 6(c). In order to 

understand this result, note that the conditions at the end of the maneuver correspond to the 

initial conditions for the non-maneuvering continuation of the flight. It is then apparent that the 

presence of maneuvering has moved the initial conditions into a basin of the attraction of the new 

attractor. In some regions of the initial condition space one may expect even more dramatic 

changes of the dynamical behavior due to time dependent maneuver,  especially close to the 

boundaries of the basin of attraction. It is clear that this study has to be related to the analysis of 

the influence of initial conditions. This may be a subject of future research. 
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4. Concluding Remarks 

A Lagrangian mechanics formulation in the rotating frame of reference for the aeroelastic analysis 

of a fluttering plate of a maneuvering aircraft has been derived. The formulation includes 
geometric non-linearities associated with the occurrence of tensile stresses in the middle surface, 
as well as the effect of the rigid-body rotation on the other  degrees of freedom. The general 
response of the system were simulated on the digital computer  by using a fourth-order Runge -  

Kutta algorithm. Long-time histories, phase plane plots, and power spectra have been used to 
characterize the responses. 

We have chosen system parameters  such that there are two equilibrium positions for the 
non-maneuvering case. The numerical simulations for periodic and chaotic responses are con- 

ducted in order  to analyze the influence of maneuvering on the dynamic behavior of the panel. It 
was shown that chaos could occur in a maneuvering case for system parameters in the actual flight 
range. The presence of a load factor 17 can transform the response from the fixed point into a 
simple periodic or even chaotic state. It can also suppress the periodic character of the motion, 
transforming the response into a fixed point, so that all motion ceases. 

For the base case of A = 150, and R, = - 3 . 5 r r  2, the load factor was varied from the 
non-maneuvering response to a value for which the inertial forces due to the maneuver  suppress 
the plate motion, in order  to study the mechanisms through which the transition between periodic 
and strange attractors occurs. As the maneuver  (load factor) increases, the system exhibits 
complicated dynamic behavior including a direct and inverse cascade of subharmonic bifurcations, 
intermittency, and chaos. Beside these classical routes of transition from a periodic state to chaos, 
our calculations suggest amplitude modulation as a possible new mode of transition to chaos. In 
the case of a prescribed time dependent  maneuver,  a remarkable transition between the different 
types of limit cycles is presented. The results indicate that the study of this deterministic system is 
important from the practical, and theoretical viewpoint. First. the fact that maneuvering can 
change the character of the panel response is of practical interest to aeroelasticians as it affects, 
for instance, fatigue analysis. Secondly, the techniques employed in this study can be extended to 
the problem of aeroelasticity of aircraft (with all non-linearities geometric, dynamic, and 
aerodynamic included). From the theoretical point of view, this physical system is a rich source of 
static and dynamic instabilities and of associated limit-cycle motions and it could be used for 
instance as a test case for assessing techniques for the study of nonlinear dynamics and chaos. 

Subjects for consideration in future research include the use of other stability concepts such as 
Liapunov exponents,  and Poincard maps. Application of complementary methods of differentiable 

dynamics, in particular, of center  manifold and bifurcation theory,  to analyze the problem from a 
qualitative viewpoint would be helpful. Knowledge of generic structures of attracting sets in 
N-space, might make the interpretation of numerical solutions of evolution equations considerably 

clearer. 
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