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Abstract. The influence of maneuvering on the chaotic response of a fluttering buckled plate on an aircraft has been
studied. The governing equations, derived using Lagrangian mechanics, include geometric non-linearities associated with
the occurrence of tensile stresses, as well as coupling between the angular velocity of the maneuver and the elastic degrees
of freedom. Numerical simulation for periodic and chaotic responses are conducted in order to analyze the influence of the
pull-up maneuver on the dynamic behavior of the panel. Long-time histories, phase-plane plots, and power spectra of the
responses are presented. As the maneuver (load factor) increases, the system exhibits complicated dynamic behavior
including a direct and inverse cascade of subharmonic bifurcations, intermittency. and chaos. Beside these classical routes
of transition from a periodic state to chaos. our calculations suggest amplitude modulation as a possible new mode of
transition to chaos. Consequently this research contributes to the understanding of the mechanisms through which the
transition between periodic and strange attractors occurs in dissipative mechanical systems. In the case of a prescribed time
dependent maneuver, a remarkable transition between the different types of limit cycles is presented.

Key words: Aeroelastic flutter, influence of maneuvering. chaotic vibrations. routes to chaos. dissipative dynamical
systems, computational methods.

Nomenclature

a = plate length

a, =u,lh

D = plate bending stiffness

E = modulus of elasticity

g = acceleration due to gravity

h = plate thickness

ji-Js.j. = base vectors of the body frame of reference
K = spring constant

M = Mach number

n =1+ wy/g

N, = applied in-plane force
p—p. = aerodynamic pressure

P = Apa’i Dh

q =pu, 12

0, = generalized Lagrangian forces
R = rotation matrix

R, =N, a'ID

t = time

v = kinetic energy

u = plate deflection

u = displacement of the structure
u, = modal amplitude

v, = velocity
= coordinates in the inertial frame of reference
= coordinates in the body frame of reference

X

z

a = Ka/(Ka + El)
B =VM -1

£

A

= elastic energy
=2qa’iBD
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=palp,h

= Poisson’s ratio

= matcrial coordinates
= air density

= platc_density

=1\ Dip, ha'

= prescribed functions
=sin(rmz/a)

= angular velocity

= walv,

= skew-symmetric matrix form of the angular velocity

I,

A

=R
|

1. Introduction

This paper deals with the chaotic behavior of a fluttering panel on a maneuvering airplane. Such a
system is interesting from the dynamic point of view because it combines a maneuver (which
manifests itself as forced excitations, as well as more complicated coupling, including parametric
excitation), and flow-induced oscillations on a system with two fixed points (buckled plate). As a
result of combining the force-induced and flow-induced oscillations, this system is a rich source of
static and dynamic instabilities and of associated limit-cycle motions. In the past, several
approaches have been used for the separate treatment of these problems. Very simple models
have been used for the simple problem of the forced vibration of a buckled plate (essential to the
understanding of the more complicated system under consideration, Dowell and Ilgamov, [4]).
For example, in Dowell and Pezeshki [5], and Pezeshki and Dowell [8], and [9]. Duffing’s
equation has been used as a model for the sinusoidally excited buckled plate. Yano [14], and [15]
investigated different cases of a van der Pol-Mathieu type equation used to model a beam
subjected to a periodic axial force and simultaneously to a flow-induced vibration. He included
quadratic and cubic non-linearities in the parametric term and only cubic non-linearities in the
restoring force. Zavodney and Nayfeh [10]. and Zavodney er al. [11], analyzed the response of a
one degree of freedom system with quadratic and cubic non-linearities to a fundamental harmonic
parametric excitation. They found solutions characterized by period multiplying bifurcations and
chaos. For the problem under consideration, the non-linear partial differential equation is
approximated, by Galerkin or Rayleigh—-Ritz methods, as a set of ordinary differential equations
which are then solved for specific initial conditions by numerical integration techniques. An
excellent review of the work using this approach is given in Dowell and Ilgamov [4]. A dissipative
partial differential equation modeling a buckled beam was considered by Holmes and Marsden
(6]. They presented one of the very few analytical results available on chaos in a continuous
system.

We are interested here in highly maneuverable aircraft. One feature of these aircraft is that
the angular velocity can be much higher than in more conventional aircraft. As a consequence, a
body frame of reference connected with the aircraft cannot be assumed to be in pure translation,
and the governing equations should be written in a rotating frame of reference. This implies that
there is a coupling between the rigid-body and the flexible-body motion. Note that the effect of
maneuvering on the dynamic response of a fluttering panel is not discussed by Dowell and lligamov
[4]. The influence of maneuvering on a periodic response of a fluttering buckled plate was
analyzed by Sipcic and Morino [12], and [13]. The current paper deals with the chaotic behavior of
a fluttering panel on a maneuvering plane.
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The study has been divided into two main areas, theoretical and numerical. In Section 2 the
governing equations are derived in the ‘body’ frame of reference following the procedure of
Lagrangian mechanics. Numerical results are presented in Section 3. The governing equations are
integrated numerically, using a fourth-order Runge—Kutta algorithm. In order to understand the
dynamics, the character of the solution has been examined, in physical terms, in Subsection 3.1.
The effect of varying the load factor was studied in great detail, only representative results are
presented in Subsection 3.2. In examining and discussing the results, attention is drawn to the
routes to chaos. Long time histories, phase-plane plots, and power spectra of the responses were
the dynamics tools used to study the system considered here. Finally, a prescribed time dependent
maneuver is considered in Subsection 3.3.

2. The Equation of Motion

Consider a thin plate having length a, thickness 4, and undergoing cylindrical bending in response
to one sided airflow, see Figure 1. As mentioned before the plate motion is expressed in terms of
the rigid-body translation and rotation of the body reference frame, and a deformation. Indicating
the coordinates in the inertial frame with x, the coordinates of the origin P, of the body frame
with x,, the body-axis coordinates of a point P in the body frame at time =0 (reference
condition) with z, and the body-axis components of the displacement of the structure with respect
to a reference condition with u, we have

(&7, 1) =x,(1) + R(N[z(£7) +u(&°, )], (1)
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Fig. 1. Airplane in a pull-up.
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where £° is a system of material coordinates (i.e., a system of coordinates, in general curvilinear,
that is convected with the material point). Typically, these coincide numerically with the
components z; of z. Note that the matrix R represents a rigid-body rotation. Next let us assume
that a deformation is given as a linear combination of prescribed functions, &,, with unknown
coefficients, i.e.,

u(& 1) =2 u (b, (£°). (2)

r

In the rest of this section the equations of motion for the elastic degree of freedom, u,. are
obtained by the use of Lagrange’s equations in the form
d 7 99  de
_— = = + — = Qr R (3)
dr du, du, du,

where 7 is the kinetic energy, ¢ is the elastic energy, and Q, are the generalized Lagrangian
forces.

2.1. Kinetic Energy

The kinetic energy is given by

7=3 /][, el av. @

The velocity v of a point £ may be obtained from Equation 1, as

o(e" =2

at

po = Xo(0) F ROO{QO[2(£7) +u( €7 D] +a(£" )} (5)

where €} is the skew-symmetric matrix form of the angular velocity, and x,() is the velocity v, of
the origin P, coordinatized in the inertial frame of reference. In what follows the constant velocity
pull-up maneuver will be assumed. If the base vectors of the body frame of reference are j , j.. js.
see Figure 1, then v, = —v,j,, and the angular velocity @ = —wj,. Furthermore, the prescribed
functions ¢, are all in the direction j;. Making use of these assumptions and substituting (2) and
(5) into (4) it is found that

_ SO 1 1 . ,
T =35 mug+ 5w > m, U U~ Uyw > su, + 3 wJ, + 3 > m, U, + o > bu,, (6)
-~ r.s r r.y r

| =

where.

m=f”‘,pdV m,‘\-=”f‘,pcb,¢xdv bF”J",pZdndV
s,=ffj‘.pd>,dv J‘,:fJ'f"pz:dV, (7)

Substituting (6) into (3) the equations of motion become

. .. R de
S,wu, T b o+ > m . — 2, wm, u, + P 0,. (8)
R § r
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2.2, Elastic Energy

Consider once more a thin two-dimensional, simply supported plate having length a and thickness
# and undergoing cylindrical bending in response to one sided airflow, see Figure 1. In such a case
the axial extension, v, can be written to first order approximation as

1 :<au)2
v(z)= > L pys dz. (9)
Thus the elastic energy is
Dj d u . akh PJ“(@)} ]3 .
dz+ 5120 \az) 4 (10)

where D is a plate bending stiffness, « is a support factor which accounts for the effective stiffness
of the supporting structure defined by

___Ka .
“~ Ka+ En (i1
and K is a spring constant per unit spanwise length of panel. Substituting (2) into the elastic

energy, Equation 10, and differentiating with respect to u, one obtains

de aEh
Y D z er\“\ + 2 kr\lnlll\ mul (12)
au, 2a
where
o « o
ki = |, #0502 [ di01az e, = sroraz. (13)

2.3. Generalized Lagrangian Forces

Assume that the plate is exposed to an in-plane tensile load, N, to a static pressure difference
across the plate, AP, and that the exciting dynamic pressure difference is given by quasi-steady
aerodynamic theory, i.e. (see Bisplinghoff and Ashley [1]).

2q [ou M =2 1 du
p—p1=—‘1[,—+ . —,—]. (14)
B Loz M —-1wv, dt

where g = pv; /2 is the dynamic pressure, M is the Mach number, and g =V M* — 1. Following
the conventional procedure of Lagrangian mechanics, i.e., calculating the virtual work performed
by the external forces as they act through the virtual displacement caused by the variation in the
generalized coordinate u,, the expression for the generalized force Q, is

2 -
Qr = _N\‘ z nr:\‘“.\' + APpr - Fq z (u.\'pr.r + u.\'pr_\‘) N (15)

where
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2

B —1
IBZUU

nr.\' = J;) d):'(b:‘ dZ pr = J” ¢r dZ pr.s‘ = ﬁ] ¢r¢; dZ ﬁr.\' = ﬁ) d)rd)_\' dz ° (16)

Substituting (12) and (15) into the equations of motion (8), one obtains

. . 2 aEh
Ser“ + brw + 2 ’nr.\'u.\' - Z w~mr.\'“.\‘ + D E em‘u‘\‘ + 2—(1 E/ krsmlu.\'um“[ + N\' 2 "I”ll_‘.
S § s, §
2q -
+ g 2 (wp, +iip,) = APp, . (17)

2.4. Dimensionless Equations

In order to recast Equation 17 in a dimensionless form, we introduce the following dimensionless
parameters and coordinates:

u D \'"? wa 2ga’ N.a’ APa*
R P LA T -y
“Tw o TN\ Uy BD > Dh
- P
‘L pl”h . (18)

Furthermore, since the plate is simply supported. we will allow the prescribed functions to be
¢, =sin(rrz/a). (19)

Substituting Equation 19 into (7). (13), and (16), and thence into (17), the equation of motion in
dimensionless matrix form reads

a+8a+Ga+fla)+yQa=p+Qd+Qv, (20)

where a={a,}, G=[g . d={d }.v={v}. p={p,}. f={f}. and

i . , 2 1 A 172
8 =20 = (1= (1 )+ [ R, + ('), o= B (2]
' r—s ' ' B M
d=-2 (0 (&)l fa
’ T “ h
BA a [1-(=1)] [1-C1D) BA
= -2 - = - 72 = _ = — —
Ur TR mr p,=2P mr Y m
f=3r"(1 - v)a, 2 5% . (21)
withs, r=1,..., N. Equations 20 are a set of ordinary, nonlinear differential equations in time.

The cubic non-linearities are of geometric origin and are associated with the occurrence of tensile
stresses in the middle surface. The coupling between the rigid-body rotation of the frame of
reference and the elastic degrees of freedom is represented by the fifth term. This set of equations
have been solved by a direct numerical integration. Note that by assuming = 0, Equations 20
properly reduce to the classical panel flutter equations (see e.g., Bolotin [2], or Dowell [3]).
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3. Numerical Experimentation

In this research numerical simulations are conducted in order to analyze the chaotic behavior of a
fluttering panel on a maneuvering airplane. Equations 20 are simulated on the digital computer
using a fourth order Runge—Kutta algorithm. For the sake of clarity, the factor € is expressed in
terms of the load factor n =1+ wuv,/g, as Q= (n — 1)ag/v,. The load factor for aeronautical
applications is in the range 1 to 6. For all of the results reported here, u/M =0.023, a =1,
v=0.3, h/a=0.008, M=13, ag/v,=145x10"", and the plate response is calculated at
z/a=0.75. In order to eliminate the influence of the initial conditions from the maneuvering, the
same initial conditions are prescribed for all cases by setting, @, = 1.0 (corresponding to a positive
velocity of the first degree of freedom). Previous calculations of Paolozzi, Peroni. and Sipcic 7]
have shown that at least six degrees of freedom (i.e., number of modes) has to be used in order to
properly capture the dynamic behavior of the system. This is why the computations presented here
are performed using six degrees of freedom.

3.1. Character of the Solution in the Presence of a Maneuver

For the sake of clarity, before addressing the general results, the key types of responses are
introduced from a physical point of view. The buckled plate is a part of the maneuvering airplane
(see Figure 1). Depending on the value of the load factor and other parameters, one or two stable
fixed points may be obtained in the phase plane (u, ). The first fixed point corresponds to the
undeformed position, the other two to the up buckled or down buckled plate position. The stable
plate motion. generally speaking. consists of vibration around up buckled, down buckled position.
and ‘snapping through™ motion.

Figure 2 shows selected phase-plane plots of the panel responses in the non-maneuvering
case. When the buckled plate is excited by the one sided airflow, one finds one global limit cycle
orbit around both buckled fixed points, and three more complicated periodic limit cycles, see
Dowell [4], or Paolozzi, Peroni. and Sipcic [7]. In the first case of simple harmonic response the
plate is ‘snapping through' around both buckled positions. More complicated periodic response
are combination of the plate vibration around up buckled. or down buckled position. and
‘snapping through’ motion.

Influence of the maneuver on the periodic plate response has been studied by Sipcic and
Morino [12], and [13]. In order to perform the maneuver an airplane has to be exposed to normal
force. i.e., another parameter of interest is the uniform static pressure differential across the plate.
In the absence of a maneuver, the plate would deform to some static equilibrium position under
the pressure differential. While maneuvering, the inertial forces due to the maneuver decrease the
deformation of the plate due to the static pressure differential. For sufficiently large flow velocity.
this equilibrium position becomes unstable. The plate then begins to oscillate about the unstable
equilibrium position, eventually reaching a new stable dynamic equilibrium shape (a limit cycle).
A variety of limit cycles may be found as shown in Sipcic and Morino [12], [13]. A particularly
important finding is that in the range A = 353 to 361 the occurrence of a maneuver can change the
character of the panel response from a fixed point in the non-maneuvering case (n = 1). to a limit
cycle in the maneuvering case (n=2), (see Figure 3). The maneuver can also suppress the
periodic character of the motion, transforming the response into a fixed point, and all motion
ceases. Finally, there is also the possibility of a chaotic response. but these will be discussed in
what follows.
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Fig. 2. Representative phase plane orbits for A = 150, n = 1.00. and different values of in-plane loads.

3.2. Routes to Chaos

In the following we will discuss how maneuvering transforms the response from the steady state
regime to the chaotic regime. The emphasis will be on the understanding of the mechanisms
through which a chaotic regime establishes. We have chosen the system parameters such that there
are two equilibrium positions for the non-maneuvering case. For this base case of A =150, and
R, =—3.57" the load factor was varied from the non-maneuvering response to a value for which
the inertial forces due to maneuvering suppress the plate motion, transforming the response into a
fixed point. Figures 4(a) to 4(t) (discussed in details in the following subsections) shows the phase
portraits of distinct attractors together with the power spectrum plots discovered during numerical

experimentation. Time traces of selected responses are shown in Figure 5.

3.2.1. Intermittency and Transient Chaos
We begin with the non-maneuvering (n = 1) response shown in Figures 4(a) and 5(a). The motion
has a nonchaotic character with three closed orbits in evidence. For the maneuvering case up to
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PANEL RESPONSE n = 1.00

|

0.584

0.42)

0.258

A
]

-1.495 2.104 5.703 9.302 12.90 16.50

Dimensionless Time

Fig. 3. Panel response for A =355, and R, =0.0. and P =60.0.

n =166, we see what appears to be a chaotic response. The power spectrum shows large
fundamental frequency components accompanied by less broad band noise than that for the true
chaotic response, see Figures 4(b) and 4(c). Furthermore. the time traces show the periodic
motion with a short bursts of chaotic transient, see Figure 5(c). All this suggests that this is a
region of transient chaos. At the value of the load factor n = 1.67, a new stable attractor appears
(see Figure 4(d)), where the inertial forces due to maneuvering have suppressed one of the three
orbits that appears for the non-mancuvering case. This trajectory cxperiences a cascade of
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period-doubling bifurcations culminating in chaos. This process is discussed in following sub-
section.

3.2.2. Period-Doubling Bifurcation

A cascade of period-doubling bifurcation is presented in the sequence of Figures 4(d)-4(h). The
corresponding sequence of time traces is shown in the Figures 5(d)-5(h). The first bifurcation may
be seen for n = 1.83 (see Figure 4(e)) and is well established for n =1.90 (see Figure 4(f)). The
usual splitting of the trajectories can be seen in the phase portrait, and time traces, see Figures
4(f). and 5(f) respectively. The spectrum also shows the bifurcation with the presence of new
spectral lines. The new spectral lines show that the period has now doubled. Increasing n further
causes the previous pattern to repeat; a splitting of each of the previous harmonic bands into two
bands as shown in Figures 4(g) and 5(g). One anticipates that by continuing to increase n, the
same phenomenon will be repeated. We expect to see a cascade of bifurcations, each accompanied
by the period doubling associated with a subharmonic instability, leading to chaos. The numerical
calculations support this anticipation, showing the chaotic response for n =2.02.

3.2.3. The [nverse Cascade and More Chaos

We have seen that the approach to chaos via period doubling is a highly structured process.
Increasing the load factor still further we have observed another element of order in the dynamic
behavior of a fluttering plate. namely the inverse cascade of subharmonic bifurcations. Starting
from the chaotic response for n = 2.02, changing of the load factor has resulted in the sequence of
period-demultiplying bifurcations, see Figures 4(h)—(k). culminating in the new limit cycle, sec
Figure 4(k). Comparing this limit cycle with the plate response for n = 1.00, Figure 4(a). one can
sce that inertial forces due to maneuvering have suppressed the plate vibration around the up
buckled position.

In the load factor range n = 2.38-2.48, see Figures 4(k)—(n), the above limit cycle expericnces
a cascade of transitions culminating in chaos. The power spectrums show large fundamental
frequency components with new frequencies added to a narrow band around them, see Figure
4(m). Note that this is characteristic for the process of amplitude modulation of a periodic
response. Furthermore, the time traces show the amplitude modulated periodic motion. sec
Figures 5(k)-(n). All this suggests the amplitude modulation as a possible route of transition from
a periodic state to chaos. By the value of the load factor n =2.48 the chaotic stage is well
established.

For the value of the load factor in the range of n =2.84-2.53, chaotic responses were
observed. An unexpected limit cycle (at n = 2.54, Figure 4(0)) appears through a jump phenom-
enon; we did not observe the gradual transition through the inverse cascade of bifurcations. Upon
further examinations one may conclude that this is the limit cycle that exists in the non-
maneuvering case (see Figure 2), after the maneuver has suppressed one of the orbits. This limit
cycle experiences a direct and inverse cascade of subharmonic bifurcations, see Figures 4(0)—(s):
we did not observe chaos as a culmination of the period-doubling sequence. Further increase of
the load to n =2.69 transforms the plate response to chaotic through a jump phenomenon. see
Figure 4(t). For the load factor in the range n = 2.69-2.98 the plate response is chaotic. When the
load factor reaches n = 3.00 the inertial forces suppress the chaotic character of the motion, the
response is a fixed point, and all motion ceases. As n continues to increasc, the deflection of the
plate increases.
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3.3. Nonautonomous Equations

In the case when the angular velocity of maneuvering is a given function of time, the differential
equations, Equation 20, are nonautonomous and they will be briefly considered in this subsection.
Consider an airplane in a pull-up maneuver during the time interval (¢, ¢,). The angular velocity
is given by w = w, sinfa(t — )], with a =7/(t, —t;). Under these assumptions, the angular
velocity at the beginning and at the end of the maneuver equals zero. For the case of A = 150, and
R, = —3.07", the non-maneuvering, n = 1.00, response of the plate is simple harmonic, see Figure
6(a). Constant velocity pull-up maneuver, n =2.00 transforms this response into a more compli-
cated limit cycle with two orbits, see Figure 6(b). Now consider a sinusoidal maneuver with the
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Fig. 6(a). Panel response for P=0.0, R, = =3.07" with Fig. 6(b). Panel response for P=0.0, R, = -3.07" and

out mancuvering (n7 = 1.00}). constant velocity pull-up maneuver (n = 2.00).
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amplitude n =2.00. As might be expected on physical grounds. our calculations show a disturb-
ance of the simple harmonic limit cycle by the inertial forces due to the maneuver. The
remarkable results appear after the completion of the maneuver, when the panel motion is a more
complicated limit cycle with three closed orbits in evidence, see Figure 6(c). In order to
understand this result, note that the conditions at the end of the maneuver correspond to the
initial conditions for the non-maneuvering continuation of the flight. It is then apparent that the
presence of maneuvering has moved the initial conditions into a basin of the attraction of the new
attractor. In some regions of the initial condition space one may expect even more dramatic
changes of the dynamical behavior due to time dependent maneuver, especially close to the
boundaries of the basin of attraction. It is clear that this study has to be related to the analysis of
the influence of initial conditions. This may be a subject of future research.
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4. Concluding Remarks

A Lagrangian mechanics formulation in the rotating frame of reference for the aeroelastic analysis
of a fluttering plate of a maneuvering aircraft has been derived. The formulation includes
geometric non-linearities associated with the occurrence of tensile stresses in the middle surface,
as well as the effect of the rigid-body rotation on the other degrees of freedom. The general
response of the system were simulated on the digital computer by using a fourth-order Runge—
Kutta algorithm. Long-time histories, phase plane plots, and power spectra have been used to
characterize the responses.

We have chosen system parameters such that there are two equilibrium positions for the
non-maneuvering case. The numerical simulations for periodic and chaotic responses are con-
ducted in order to analyze the influence of maneuvering on the dynamic behavior of the panel. It
was shown that chaos could occur in a maneuvering case for system parameters in the actual flight
range. The presence of a load factor n can transform the response from the fixed point into a
simple periodic or even chaotic state. It can also suppress the periodic character of the motion.
transforming the response into a fixed point. so that all motion ceases.

For the base case of A =150, and R, = —3.57", the load factor was varied from the
non-maneuvering response to a value for which the inertial forces due to the maneuver suppress
the plate motion, in order to study the mechanisms through which the transition between periodic
and strange attractors occurs. As the maneuver (load factor) increases. the system exhibits
complicated dynamic behavior including a direct and inverse cascade of subharmonic bifurcations,
intermittency, and chaos. Beside these classical routes of transition from a periodic state to chaos,
our calculations suggest amplitude modulation as a possible new mode of transition to chaos. In
the case of a prescribed time dependent maneuver. a remarkable transition between the different
types of limit cycles is presented. The results indicate that the study of this deterministic system is
important from the practical, and theoretical viewpoint. First. the fact that maneuvering can
change the character of the panel response is of practical interest to aeroelasticians as it affects,
for instance, fatigue analysis. Secondly, the techniques employed in this study can be extended to
the problem of aeroelasticity of aircraft (with all non-linearities geometric, dynamic. and
aerodynamic included). From the theoretical point of view, this physical system is a rich source of
static and dynamic instabilities and of associated limit-cycle motions and it could be used for
instance as a test case for assessing techniques for the study of nonlinear dynamics and chaos.

Subjects for consideration in future research include the use of other stability concepts such as
Liapunov exponents, and Poincaré maps. Application of complementary methods of differentiable
dynamics, in particular, of center manifold and bifurcation theory. to analyze the problem from a
qualitative viewpoint would be helpful. Knowledge of generic structures of attracting sets in
N-space. might make the interpretation of numerical solutions of evolution equations considerably
clearer.
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