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Abstract. A HB (Harmonic Balance)/AFT (Alternating Frequency/Time) technique is developed to obtain synchronous 
and subsynchronous whirling motions of a horizontal Jeffcott rotor with bearing clearances. The method utilizes an explicit 
Jacobian form for the iterative process which guarantees convergence at all parameter values. The method is shown to 
constitute a robust and accurate numerical scheme for the analysis of two dimensional nonlinear rotor problems. The 
stability analysis of the steady-state motions is obtained using perturbed equations about the periodic motions. The Floquet 
multipliers of the associated Monodromy matrix are determined using a new discrete HB/AFT method. Flip bifurcation 
boundaries were obtained which facilitated detection of possible rotor chaotic (irregular) motion as parameters of the 
system are changed. Quasi-periodic motion is also shown to occur as a result of a secondary Hopf bifurcation due to 
increase of the destabilizing cross-coupling stiffness coefficients in the rotor model. 
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1. Introduct ion 

Many  ro to r  dynamic  systems exhibit  nonl inear  behavior  due to bearing clearances,  squeeze film 

dampers ,  seals and fluid dynamics  effects. Nonl inear  ro tor  systems involving bearing clearances  

were s tudied by several investigators.  Bent ly  [1] used a simple horizontal  ro tor  model  with a 

bear ing c learance  to explain the occur rence  of  subharmonics  in his exper imenta l  results. Childs [2] 

used a pe r tu rba t ion  technique  to s tudy the occur rence  of  subharmonics ,  assuming small non- 

linearity for the bear ing clearance.  Saito [3] utilized a ha rmonic  balance me thod  ( H B M )  along 

with a fast Four ier  t ransform (FFT)  p rocedure ,  which was originally used by Yamauchi  [4], to 

explain some nonl inear  characterist ics in a Jeffcot t  ro to r  on nonl inear  supports .  Choi  and Noah  [5] 

also used the H B M  with FFT  to show the occur rence  of  super  and subharmonics  in a ro tor  in 

presence  of  a bear ing clearance.  In [3] and [5], numerical  different iat ion was used within each 

iterative cycle. This did f requent ly  lead to difficulties in get t ing consistent  convergence  in all 

pa r ame te r  ranges.  A numerical  approach  based on a col locat ion technique was adop ted  by 

Natara j  and Nelson [6] and used to obtain periodic whirling mot ions  in nonl inear  ro tor  systems. In 

their approach ,  the calculat ion of  e igenvalues  and e igenvectors  is required to obtain s teady-state  

ro tor  whirling mot ions .  This could have the d isadvantage  of  making  the numerical  process more  

e labora te  and lengthy.  Never theless ,  the me thod  appears  to be versatile and effective. Ehrich [7] 

used numerical  integrat ion to show the occur rence  of  higher  subharmonics  (up to 9th order)  in a 

high speed ro tor  system with a bear ing clearance.  
Simulat ions revealing aperiodic  whirling mot ion  were repor ted  by Childs [8]. Day  [9] 

p roposed  an in terpre ta t ion  involving a ' non l inear  natural  f requency '  to explain the occur rence  of  

aperiodic  mot ion  ob ta ined  using the multiple scales method .  
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Few analysts have addressed the stability of periodic or subharmonic responses of nonlinear 
rotor systems despite its considerable significance in the development  and analysis of modern  high 
performance rotor systems. Most of the stability or bifurcation analyses were concentrated on one 
dimensional problems where motion patterns are assumed apriori (Shaw and Holmes [10] and 
Natsiavas [11]). These approaches could be proved unfeasible to extend to two dimensional 
nonlinear rotor  problems in which, say, whirling motion involving intermittent contact with a 

bearing clearance would occur. 
This paper addresses the response and stability of a modified Jeffcott rotor  system with a 

discontinuous nonlinearity (bearing clearances). The paper consists of two parts. First, a modified 
HBM is developed which combines an exact Jacobian matrix and a Galerkin procedure to 
formulate a robust iterative procedure for determining the periodic solutions. Second, a new 
approach for the stability analysis of the periodic whirling is developed and applied to conduct 

bifurcation analysis of the rotor  system and search for possible chaotic responses. 

Equations of Motion 

The equations of motion for a horizontal Jeffcott rotor with bearing clearances (refer to Figure 1) 

can be written as 

reX" + cX'  + k,.X + Q~Y + ~ k h X ( 1  

= t~lew 2 COS 6of, 

6 
,~-X~ + y2 ) - txc~kb Y(  1 

( la)  

.ZZ 

r = x/X 2 + y2 

Fig. 1. Jeffcott rotor model with bearing clearances (refer to [7]). 
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m Y " +  c Y '  + k , . Y -  Q , . X  + 4 ) k h Y ( 1  

2 . 

= meo~ s l n ~ o t - r n g ,  

6 tz4)khX( 1 ~ + y 2 )  
a 

(lb) 

where k~ is the shaft stiffness, Qs is the cross coupling stiffness, c is the system damping, p. is the 
friction coefficient, 6 is the radial clearance of the bearing. A prime represents a derivative with 
respect to time t and 

1, X/X2+ y2>a , y2  

4)= 0, V'-Z+ ~<a. 

To study the effect of the parameters on the behavior of the system, the following 
nondimensional groups are introduced: w,, = ~ ,  K = 4 k , . k h / ( V ~  ~ + V~h) 2, x = X / e ,  y = Y / e ,  

fZ = coAo,,, ~ = c/2m~o,,,  y = Q, . /K .  c~ = k~,/k,., 6 "  = 6 /e ,  4) = g/~o~e, r* = ~ + f ,  and vO = wt.  

Here v represents the subharmonic ratios. (v = 1 for harmonic and superharmonic cases, and 
v = n for an nth subharmonic case.) Equation (1) can now be written as 

2sty v 2 (1 + ~/--~)2 v 2 
s  ~ -  2 + f ,_ 4c~ x + y ~ y +  T( O ) - tt F( O ) = v 2cos  vO , 

2~v v 2 (1 + x/-~) -~ v 2 v2 v ~ 
+ ~ -  9 + ~_ 4~ Y - y --~ x + F(O) + txT(O) = sin vO - 4) - ~  , 

(2a) 

(2b) 

where a dot represents a derivative with respect to the nondimensional time 0 and 4) is unity if r* 
is greater than 6" ,  otherwise it is zero. T(O) and F(O) are given by the following expressions. 

u z ( 1 + x / ~ )  2 ( 
T(O) = 4) {-~2 4 x 1 

6 ,  

( F ( O ) = 4 )  ~2  4 y 1 - -  , 

where 

4)=  {1, ~ 7 7 +  y2 > 3" 

0, ~/x 2 + y 2 ~ < 6 ,  

After  reaching the steady-state, and assuming periodic whirl, the solution forms of x and y can be 
represented as 

N 

x(O)  = a,., + ~'~ (a.,.,, cos nO - b.,.,, sin nO) , (3a) 
n = l 

N 

y(O) = a,., + ~ (a~.,, cos nO - b s, , sin nO) . (3b) 
tz = I 

The nonlinear restoring forces of T(O) and F(O) are also expressed as 
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N 

T(O) = c.,.. + ~ .  (c,.,, cos nO - d,.,, sin nO) , (4a) 
n = 1 

N 

F(O) = c.,.. + ~ (c,,,, cos nO - dx, , sin nO) . (4b) 
I t  = ] 

In equa t ions  (3) and (4),  N rep resen t s  the m a x i m u m  n u m b e r  of  h a r m o n i c  t e rms  cons idered .  

Inser t ing  equa t ions  (3) and (4) into (2),  and equa t ing  the coeff icients  of  s in(n0)  and cos (n0)  on 

bo th  sides of  the equa t ions ,  one  arr ives  at the fol lowing implicit ly non l inea r  a lgebra ic  equa t ions  

f o r  the cons tant  series terms 

~2 (1 + v - a )  e z, 2 
g(1)  - Oe 4 a  a,.,, + y ~ a,.. + c.,.. - p-c,., = 0 (5) 

2 (1 + Va)-" v 2 v 2 
g(2)  - ~2 4 a  a,.. - Y ~ a.,.. + c.,.. + p-c,. o + 4) ~ = O, (6) 

f o r  the t r igonometr ic  series terms 

g ( 4 n  - 1 ) =  - n - a  .... ~l b ..... + ~ e  4 a  a.,.,, + y ~ a.,.,, + c.,.,, - p.c,.,, - R t ( n ) v  e = 0 

(7) 

g (4n)  = n2b ..... 2~'un u-' (1 + v'-~) e u 2 
a,.. (./: 4oe b.,.,, - y ~ b,,,, - d.,.,, + p-d,,,, = 0 (8) 

g ( 4 n  + 1) = -nea, , , ,  2 ( u n  u e (1 + ~/-~)e v2 
[1 b,.,, + f/_~ 4 a  a,,,, - y ~ a.,.,, + c.,.,, + p-c.,,, = 0 (9) 

g ( 4 n  + 2) = n-~b~,,, 2gun u z (1 + x/-8) 2 u e 
1~ a-""+ f/e 4 a  b - " " + Y ~  b ' ' ' - d ~ ' ' - p - d ' ' ' - ~ F ( n ) u e = O "  

(101 

In the above  equa t ions ,  ~ ( n )  is unity if n = u, o therwise  '-t*(n) has zero value ,  and n = 1, 2 . . . . .  N. 

Let  the unknown  vec tor  P of the d i sp l acemen t  coeff icients  be def ined as 

P =  [a,,,, a.,.., a.,. 1 , b , , ,  a~q, b,., . . . . .  ayN, b~.x] r ( l l a )  

and the unknown  res tor ing vec tor  Q of  the force coefficients  be expres sed  as 

Q = [c.,.,,, c.,.., c, l , d.,.,, c:.,, d.,., . . . . .  c~. x ,  d,.N] T , (11b) 

where  T s tands  for the t ranspose .  T h e  N e w t o n - R a p h s o n  m e t h o d  can be used for  this two-  

d imens iona l  ro to r  p r o b l e m  to solve for  the u n k n o w n  vec tors  P and Q. Al t e rna t ive ly ,  using 

equa t ions  (51- (10)  ano the r  i terat ive scheme  such as the Broyden  m e t h o d  [12] can be used to 

obta in  the s teady-s ta te  solut ions in which calcula t ion of  the Jacob ian  matr ix  would  be avoided .  

Broyden  m e t h o d  converges  m o r e  slowly (usually it requi res  m o r e  i tera t ion steps) but  possesses  
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larger radii of convergence for initial guesses. In this study, Newton-Raphson  method is used, 
since an explicit form of the Jacobian was made available. 

N e w t o n - R a p h s o n  A p p r o a c h  

Equations (5) - (10)  are nonlinear algebraic equations whose solutions yield P. A system of linear 
equations for the correction increments Ap of the unknown coefficients can be written as 

[ J l a P  + G = O, (12) 

where [ J ]  = [3G/0P] is the associated Jacobian (matrix of first order  derivatives) whose elements 
are listed in Appendix A, and G is a (4N + 2) column vector whose element g(1) . . . . .  g(4n + 2) 

are given by equations (5) - (10) .  
Using an A F T  method [13], the nonlinear force vector Q can readily be obtained from the 

unknown vector P. An IDFT is first employed to obtain discrete displacements of x and y from P 
which in turn are used to calculate corresponding discrete values of the nonlinear forces. A DFT 
procedure is then used to calculate the Q vector from these discrete nonlinear forces. As Q is a 
function of P. the Jacobian matrix, [J], has the components  of oQ/oP which are expressed as 

M- I 2 vrlr 2 w n r  M-,  2rrlr 2rrnr  Oc,,, 1 ~ Ars in  ~ cos - -  
Oc.,,_______z,_ 1 E A c o s - - M - - c o s ~  0b, .~- M ,-:u M 
Oa.,+ t M r = O  r 

M- J 2rclr 2rrnr  M ~ 2rrlr 2rrnr  Oc.,,, _ 1 ~ .  B sin ~ -  cos - -  
Oc+,.,, _ 1 Z Br COS ~ - -  COS ~ , Ob,q M r=O M 
3a.,. I M r=O 

M-I 27rlr 2 w n r  Od,.,, 1 a t 1  2 w l r  2 w n r  
Od,,, 1 Z A r COS ---m-'- sin M Ob., M 2.dr=O M - - -  " - A r s i n ~ s i n -  
Oa ,. t M ~=(~ 

M-I 2rrlr 2rcnr  
_ M I 2rrh" __2rrnr Od. , , ,_  1 ~ B r s i n ~ s i n -  

Od,.,, 1 ~'. B r cos --M-- sin M Oby l M ~=o M 
Oa.,. l M ,=o 

M-I 2rrh" 2rcnr Oc,.,, 1 ~ t l  2rrlr 2rrnr  
- - -  - 2., C, sin --M--- cos - -  Oc,.,, 1 ~ C r cos --M-- cos M Ob.,q M r=(' M 

Oa.,q M r=. 

M- t 2wlr 2rrnr  M-l 2rrlr 2rrnr  3c~.,,_ 1 ~ D r s i n ~ _ c o s  - 
Oc.,.,, _ 1 ~ D r COS ~ COS ~ , Ob,./ M r=,, M 
Oa+,. l M ,-:u 

3d,.,, 1 3 G 1  2Tel," 2 1 m r  3d,.,, 1 ~.~__l 2zrlr 2 7 m r  
2.., - -  " - 2 . ,  Cr s i n  ~ s i n  - -  ~- - -  C r COS --~-- sin M Ob ,. l M +:o M Oa.~ l M ~=() 

r = 0 

Od,.,, 1 M I 2rrlr 2rrnr  Od,., 1 2rrlr 2wnr (13) 
- ~ D r cos ~ - -  sin - - ~ -  Ob,. l - m D r sin ~ - -  sin --M-- " 

Oa,. t M ~=o 

n, l = 1, 2 . . . . .  N, where 

v (1  + x / a ) "  v 2 ] 
A r = ~ 4a  122 (1 +4a x/-ff)2 6*(x 2 + y2)'-3/21V2, r ' 
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B : [ r  ~ ;  (1+x/'-~)24c~ 6*(X 2 + y2)(-3/2)xy], , 

~,-~ (1 + x/-d) ~- ] 
C = f~2 4a 6"(x2 + Y2)I-3'2)xY r ' 

= I v ' -  (l+x/ '-~) 2 
D 

r [-,f~_ 4o~ 
~,-" (1 + ~-6) ~ ,~ , ( x~+y ,_ )  ~ 3/_,~x_, ] 
~2 4 a  J r 

and M is the total number of discrete data points in the time domain. More details about the 
calculation procedure can be found in Appendix B. 

The procedure of using the Newton-Raphson method to determine a periodic solution can be 
summed up as follows: 

(1) Assume an initial value, pr of the coefficient vector R 
(2) At a given iteration step, evaluate Qr from pCkl by using the AFT method. 
(3) Calculate [J] and G. 
(4) Solve equation (12) to determine the correction vector AP. 
(5) End iteration if (AP Ik)-  Ap/k-~) is within a specified error bound, otherwise set p<k+ i)___ 

p<k)+ bp{k) and return to step (2). For obtaining possible multiple solutions, different 
initial guesses could be selected at step (1). 

Stability Analysis 

One of the advantages of the HBM with an AFT procedure is that it readily provides stability 
criteria as well as information concerning bifurcation behavior. In rotor systems, stability and 
bifurcation analysis of a given periodic solution can offer valuable design inputs to avoid sudden 
change of behavior, irregular (chaotic) motion, and dangerous subsynchronous or supersynchron- 
ous vibrations. To investigate the stability behavior of a 27r-periodic solution, eigenvalues of the 
associated monodromy matrix are utilized [14]. 

For the stability analysis, the second order nonlinear ordinary differential equations of the 
present two dimensional problem are perturbed about the determined periodic solution under 
consideration. This leads to the following perturbed equations 

2 &  u 2 (1 + x/d) 2 u 2 
A s  f~--5_ 4c~ A x + y - ~ A y + A A x - B A y + t x C A x - / x D A y = 0 ,  (14a) 

2;'~, Ar + ~ ,  (1 + v-d) 2 v2 
Af, + -~-  4a Ay - y ~ A x -  CAx + DAy + txAAx - txBAy = 0,  (14b) 

where A, B, C, and D have the same expressions as given previously. Equations (14) are ordinary 
differential equations with periodic coefficients, since A, B, C, and D are 2rr-periodic. Equations 
(14a) and (14b) are cast in first order form, or 

P = [u(O)lp, (15) 

where p = [Ax, Ay, A2, A~] r, and [u(0)] is the matrix defined as 



and 

0_ 0 1 0 ' 
0 0 0 1 

- 2 &  
[ U ( 0 ) ]  = q l ( 0 )  - q2 (0 )  l) 0 

- 2~'u 
q3(O) -q4(O) 0 fZ 

~,2 (1 + v a ) - '  

q~(O) - 1.12 4ee + A + #C 

2 b' 

q2( 0 ) = y  ~ 5 - B - / x D  

2 
P 

q , ( o )  = - - c + 

v -~ (1 + v ' a )  2 
q4(  0 ) --  .0.2 4oe + D - htB . 
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(16) 

Let the monodromy matrix be denoted by [R], and satisfy the following ordinary differential 

matrix equation 

[R] = [u (0 ) ] [R]  ; [R(0) ]  = [ I ] ,  (17) 

where [I] is the identity matrix. Without loss of generality, the initial conditions are assumed as 
the identity matrix. The monodromy matrix can be calculated by integrating equation (17) 
numerically from time 0 to one period, 2rr. The eigenvalues of the monodromy matrix are the 
Floquet multipliers which are used to determine the stability of the 2rr-periodic solutions as 

follows, [15], 
1. If all the multipliers are located within the unit circle, the system is stable. 
2. If one of the multipliers leave the unit circle through - 1 ,  this indicates period multiplying 

bifurcations. 
3. If one of the multipliers leaves the unit circle through + 1, this could indicate bifurcations, 

possibly including a saddle node. 
4. If a pair of complex conjugate multipliers is leaving the unit circle, a Hopf,  or a secondary 

Hopf  bifurcation could occur. 

N u m e r i c a l  R e s u l t s  a n d  D i s c u s s i o n  

Among the seven nondimensional parameters (~,  s r, 7, a, 6" ,  ~b,/x), the magnitudes of 6"  = 30 
and q5 = 30 x stiffness (=(1 + x/-~)2/4a) were selected so as to satisfy the condition that the rotor 

center offset equals to the clearance (normal tightening condition [2]). The other five parameters 
were varied. The normal tightening condition not only reduces the number  of parameter  variation 
effects to be studied, but also fulfills the same whirling motions which were reported experimental- 
ly. This condition is necessary for intermittent ro tor /bear ing contacts to occur, constituting the 
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main nonlinearity of the system in the y direction. Figures 2, 3, and 4 display the same whirling 

shapes as obta ined by Ehrich [7] within the same pa rame te r  ranges, as will be discussed below. 

Periodic Response 

The accuracy of the H B M / A F T  utilizing a N e w t o n - R a p h s o n  algorithm (hereaf ter  the H B M / A F T  

is used to indicate the H B M / A F T  with N e w t o n - R a p h s o n  for convenience)  is compared  with 

numerical integration (4th order  R u n g e - K u t t a )  as shown in Figures 2, 3 and 4. Figure 2 shows a 

period-1 whirling orbit  at ~2 = 1.1. The figure shows very good accuracy of the H B M / A F T .  Figures 

3, 4 show a period-2 (2nd subharmonic)  and a period-3 (3rd subharmonic)  whirling response at 

= 2.2 and ~ = 3.2, respectively. Again,  these figures show the H B M / A F T  method  to be very 

accurate. Note that small discrepancies in higher subharmonic  orbits are due to truncation of 

higher harmonic terms in the assumed steady state solutions. For the results presented herein,  up 

to 4 harmonic terms were considered which combined good accuracy with high computa t ional  

efficiency. The other  iterative scheme of Broyden also converges to the same orbits as shown in 

Figures 2, 3, and 4 with comparab le  accuracy. The major  difference between these two methods  is 

that the H B M / A F T  converges much faster than the Broyden but requires more  narrow domain of 

-18,0,  

- 2 L S - -  

�9 - ,ql [O~ N 

\ 
\ 

/ 
o /  . / /  

! ! 
- - 1  0 1 

33 

Fig. 2. Orbit-I whirling motion (a = 25, ~" = 0.02, 12 = 1.1, y = 0, tt = 0) - - H B M , . . .  Runge-Kutta. 
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-INI-- 

- 1 1 5 ~  

~ m  
-~,15 - I J O  --0.TS ~ 

.s 

~ 0,80 O.',l~k 1.00 

3; 

Fig. 3. Orb i t -2  whir l ing  mo t ion  (~  = 25, ~ = 0.02, [1 = 2.2, y = 0, /x = 0) - -  H B M ; . . .  R u n g e - K u t t a .  

initial guesses and more complicated formulations involving Jacobian calculation. However ,  with 
the H B M / A F F  previously calculated results can be used to guess next initial starts for consecutive 
calculation. It was therefore concluded that the H B M / A F T  method constitutes more effective 

means of obtaining bifurcation boundaries. 

Bifurcation Behavior 

One of the major  advantages of implementing the H B M / A F T  method is that it can readily lead to 
a procedure which yields stability and bifurcation boundaries at which qualitative changes in rotor 

whirling occur. 
First, effects of the magnitudes of the stiffness ratio o~ and critical damping '2 were 

investigated. The results show that an increase in a causes period doubling through flip 
bifurcation. Boundaries between stable period-1 whirling motion and stable period-2 orbits are 
shown in Figure 5. In this figure, a stable period-1 orbit exists outside of each curve and period-2 
orbits exist inside of each curve. This figure also reveals that higher ~r may eliminate dangerous 
period-2 orbits with the same frequency. This result well agree with previous results [16]. 

Figure 6 shows the same a and ~ influence on flip bifurcation with ~2 = 1.6-3.0. The figure 
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- 1 1 - -  

- D - -  

O Q  

�9 J 

- 1 ,00  -0 ,71  ~ - 0 ~  0JI0 0,.1l Am, 0.75 1.00 

X 

Fig. 4. O r b i t - 3  whirling m o t i o n  ( ~  = 25 ,  ~ = 0 . 0 2 ,  ~ = 3 .2 ,  T = 0,  i t  = 0 )  - -  H B M ,  . . . R u n g e - K u t l  
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O.'I- 

0.0 
1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 

c t = 2 5  

c ~ = 2 0  

c~,=15 

E 

3.4- 

Fig. 5. First flip bifurcation boundar ies  in s  ~ plane (3' = [/, ~x = 0). 
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'~ 
8T'k ' / (=0.03 

/ " ,  (=o.o5 . . . . .  
~-y \, / / /7 

x J ....  =o.o7 - - -  ,/;5 
\ , ,. / / / - ~  

'-'~'r < , '"  " - - - - -  C=0.1 . . . . .  / , ~  

0 - -  ~ ' ' ' ~ ' ~ "~" 
1 .B 0 2 2 2 4. 2 . 8  2 . 8  3 . 0  

Fig. 6(a). First flip bifurcation boundaries in c~ - fl plane (f~ = i,6-3.(}, y =- 0, /~ = 0). 

6 

5 -  

4 -  

2 -  

~ f  d=O.03  ~ 1 .,,# 

(=0.1 - - - -  

.1 P~ 
. /7;  / P, 

..--,.--" / i 

.. ~"~" ~ ' ~  
t 

Fig, 6(b). First flip bifurcation boundaries in c~-~)- plane ({1,=2.55-3.1), y = / I .  p. = 0 ) ,  P~ =period-1 whirling; 
P, = period-2 whirling. 

reveals that there are two types of period-2 orbits possible in the range of f~ = 2.5-3.0.  since there 
are two flip boundary branches with fixed Ft. Next, the maximum magnitudes of Floquet 
multipliers are calculated for f~ --- 2.7 for different values of ~ and g as shown in Figure 7, In this 
figure, there are two types of period-2 orbits (denoted as type A and type B) which are possible 
with g less than 0.1. These two types of period-2 whirling motions are confirmed by numerical 
integration as shown in Figure 8. Type  A response could be considered to be more dangerous 
since it has larger amplitude. Further increase of ~ leads to another  flip bifurcation (2nd flip 
bifurcation) as shown in Figure 9. This figure shows a similar ~" effect as that observed in Figure 5. 
In this figure period-4 orbit exists outside of each curve and period-2 orbit is located inside of each 
curve. It is interesting to note that at the range of [1 = 1.8-2.2, higher subharmonics are difficult 
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to obtain unless c~ has very high value, which approaches an impact condition. From Figure 9 it is 
predicted that by increasing ~, further sequences of period doubling occur leading to irregular (or 
chaotic) whirling motion of the nonlinear rotor system studied herein. Figures 10 (a)-(c) show this 
period doubling process at ,Q = 1.6. Figure 10 (d) shows chaotic whirling with a high a value. This 
chaotic motion is quite different from aperiodic whirling motion (which is discussed later). The 
occurrence of both types of motion is confirmed by stroboscopic snap plots at every forcing 
period, which is similar to the PoincarE maps in one dimensional problems. 

The important characteristics of chaotic motion in the present rotor system are associated 
with its violent vibration which might cause severe rotor-stator interaction. Chaotic motion is also 
characterized by a wide-band, continuous frequency content which might lead to adverse 
conditions of fatigue or excitation of other coupled structures to the rotor. A remedy of this 

- 2 7  

- 2 8 -  

- 2 9  1 

- 3 0 -  

1 I [ 

.o.+ 

j . r -  . . . . .  

/ 
/ 

/ 

f 
J 

' \ 

\ 

I I 

l I l 

X 

\ \  
\ 

/ 
/ 

/ 
/ 

/ 
+ 

_ _ j j , , - ~ + "  

Fig. 10(a). Orbit-1 whirling motion (,O = 1.6, ~ = 10, ~" =0.1 ,  y =0 ,  p- =0) .  
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Fig. 10(b). Orbit-2 whirling motion (l),= 1.6, ~ =40+ ~ =0.1 ,  y = 0 ,  p, =0) .  
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Fig. 10(c). Orbit-4 whirling motion ([l = 1.6, c~ = 50, ~ = 0. I, y = 0, tx = 0). 

- 23 .5  - 

- 2 5 . 5  - 

, ~  - 2 7 . 5 -  

- 29 .5  - 

x 

Fig .  1 0 ( d ) .  C h a o t i c  w h i r l i n g  m o t i o n  0 2  = 1 .6 ,  ~ = 100,  ~ = 0 . 1 ,  "y = 0 ,  /.z = 0 ) .  

situation could be to increase the critical damping or to decrease the shaft- to-support  stiffness 
ratio. 

The effect of the friction coefficient, /z, between rotor  and stator,  is investigated and the 

results are shown in Figure 11 for {~= 1.5. The figure shows that higher /_t tends to stabilize 

whirling near the flip bifurcation boundary.  However ,  it is apparent  t ha t / z  has little effect on the 

whirling magnitude or stability within stable orbit regions. Figure 12 shows a critical example  
revealing how /z affects the whirling motion near  the first flip bifurcation boundary  region. The 

figure shows that by increasing /z the period-2 orbit becomes period-1 orbit  but the whirling 
amplitude does not change. Therefore ,  in critical situations, subharmonic  vibration could be 

eliminated by increasing the magnitude o f / z .  
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Fig. 13. H o p f  b i fu rca t ion  b o u n d a r i e s  ( a  = 1, /,t = 0). 

Finally the effect of the cross coupling stiffness, y, is investigated and the results are shown in 
Figure 13. It is seen that the change in 3' results in a different type of bifurcation. A Hopf 
bifurcation can exist in this case (two complex conjugate multipliers leave the unit circle while the 
other two remain inside of the unit circle). In Figure 13, the period-1 orbit exists below each line 
and a Hopf bifurcation occurs above that line. A Hopf bifurcation produces aperiodic (or 
quasi-periodic) motion as shown in Figure 14. The figure shows that the aperiodic motion has two 
different frequency components (which are incommensurate) and much larger whirling amplitude 
than the period-1 orbit. 
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Fig. 14(a). A p e r i o d i c  whi r l ing  m o t i o n  due  to H o p f  b i fu rca t ion  ( a  = 1, p- = 0) - - - y  = 0.39; - - 7  = 0.40. 
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Fig. 14(b). Power spectrum of aperiodic whirling motion (c~ = 1, p_ = O, y = 0.40). 

Conclusion 

A robust iterative numerical  procedure  based on the H B M / A F T  method has been presented for 

obtaining the periodic responses of a rotor system on nonlinear supports.  Modern  bifurcation 

theory is utilized to characterize the dynamic behavior  of the system. A bifurcation analysis 

method is developed which provides boundaries of pa ramete r  regions at which rotor  whirling 

change its shape rapidly, resulting in the occurrence of subharmonic,  aperiodic or possible chaotic 

motion.  
The results of this study lead to the following observat ions concerning the dynamic behavior  

of the nonlinear,  modified Jeffcott  rotor model considered herein as function of its dimensionless 

parameters :  
1. Increasing the bearing to shaft stiffness ratio, o~, increases the degree of nonlinearity which 

makes  it possible for a flip bifurcation to occur, possibly producing a sequence of period 

doubling motions.  
2. For the same oe and ,Q, an increase in s r leads to elimination of the subharmonic motion.  

3. With high values of o~, occurrence of chaotic whirling motion is possible. This follows from 

(1). 
4. For the parameters  considered herein, the coefficient of friction, /x, has little effect on the 

subharmonic  response.  However ,  higher /x could eliminate the subharmonics near existing 

flip bifurcation boundaries.  
5. Increasing the cross coupling coefficient, y, could cause a Hopf  bifurcation to occur which 

may lead to aperiodic whirling. A more systematic investigation of the quasi-periodic 

response of nonlinear rotor systems is needed.  A nonzero value of y is necessary for the 

occurrence of aperiodic solution. This is since in this case a limit cycle can exist in absence of 
imbalance forces. A quasi-periodic response then occurs in presence of an imbalance force 

involving a frequency related to that of the limit cycle and the forcing frequency, or 

rotational speed of the shaft. 
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Appendix 

E l e m e n t s  o f  t h e  J a c o b i a n  m a t r i x ,  [J] 

3 9 4 , , - ~  2 OCx, ' 3Cy, ,  
J 4 , , - ~ . 4 n - ~ -  Oa ..... - n + t~ + Oa,.,~, - Ix Oa ..... 

O g4,,  - 1 0 C xn O C y,z 

J 4 n - 1 . 4 n  - Ob.,.,----~ - nt~ + Ob,.,~, - Ix Ob.,.,, 

3 g4,, - l 3 C .... 3 Cy,, 
J4,,-t.4,,+l - -  3a,.,,  - t3 + Oa~.,~, - Ix 3ay, ,  

3g4 , , -  1 3Cx,, OCy,, 
J4,,-1,4,,+2- Ob.,.,, - Ob.,.,, IX Ob.,.,, 

3g4 ,  , Od,.,, Od,.,, 
J 4 n , 4 , ,  1- -  O a ..... -- n t2  -- Oa.,.,---- 7 + Ix O a . i . ,~  , 

Og4,,  2 3 d  ..... 3d,. , ,  
J4,,.4,, - Ob, , ,  - n - t I - 3b,.,-----~, + Ix OR. , ,  

Og4, , Od  ..... Od~.,, 
J 4 , , , 4 , , + 1  - - -  - J r "  I X  - -  

0 a~.,, 0 G , ,  0 a:.,, 

Og4, , 3d,. , ,  Od,.,, 
J 4 , , . 4 , , + 2 -  Oby,  - t3 ~ + I X  

O g4,,  + 1 OC v, , OC ~.,~ 
J4 , ,+t .4 , , - l  - - -  - t3 + " + I X  t o -  

O a.,.,, 0 ax,  , 0 ax,  , 

Og4,, + 1 OCt,,  OCt.,, 
J 4 n + l , 4 , ,  - f-0b-,-7 - + m  + IX 0bx,, 

Og4n + l 2 OCv,, 3 C v n  
J 4 , , + 1 . 4 , , + 1  - - -  - t l  + t ,  + " + t x " 

O a.v,, O a y,, O a.,.,, 

394,, + i Oct.,, 3Cx, ' 
J4n+l.4,,+2 - -  Oby,, - n t2  + ~ + Ix 3by, ,  

0 g4, ,  + 2 0 dy,, 3 d ..... 

J 4 , ,  + 2 . 4 , . , -  I - -  3 a  ..... 3 a  .... IX Oa ..... 

Og4,, + 2 0 dy,,  0 d .... 
J 4 , , + 2 A , ,  - -  Ob ..... - t3 Ob ..... IX Ob ..... 



J 4 n  + 2 , 4 n  + 1 - -  - -  

J 4 n  + 2 , 4 n  + 2 - -  - -  

Og4,,+ 2 _ 3d:.,, Od .... 
nt ~ pc - -  

Oa ~,,, Oa.,,,, Oa ~,,, 

0g4, ,+2  2 Od,,,, Od.,, 
Ob.,,,, - n - t I tx Oby,, 

where 

v 2 (1 + x/-d) 2 2~'v 
t l -  f/~- 4a ' t, = - ~ -  

0 b ,,,, 

2 lY 

t 3 = y  ~ " 
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Appendix B 

Calcu la t ion  o f  e l e m e n t s  o f  [J] 

Using 

- ( ) T ( x , y ) = ~  ~ ( l + v ~ )  2 8" 
4 x 1 ~-  (B1) 

vz (1+x/-~)2 ( a* ) 
F(x, y )=  qb f~ 4 y 1 (B2) 

the incremental form is expressed as 

A T ( x ,  y)=(0-~-xT Ax+--aT Ay) = A A x -  B A y  
Oy 

(B3) 

( ON ) 
ON A x  + - -  A y  = - C 2 x x  + D A v  aF(x,  y ) =  ax ay (B4) 

where 

A=qb~v2 { 1+~-~)24 ( l+x/~)28*(x2+4 y-~)-3/2y2} 

/2 

B = - ~  [1-5 (1 + x/a) 2 a *(x-" + y-)--~-xy 
4 

v-" { (1 + x/a) -~ 
C =  -qb ~ -5 4 6"(x2 + y2) 3/2xy } 

v ~ { (1 + x/-~) 2 (1 + x/-~): 
D = * ~ 5  4 4 

a * ( X  2 + y2)-3/2X2} . 

Also, the Ax and Ay are 

OX 
A x -  

Oa xo 

- - - a a , , , + ~ ( a x  
n = I ~ A a x ' '  - -  - -  

ox ) N 
Ob,.,,. Ab,.,, = Aa.,. o + ,,=~]~ (Aa,.,, cos nO - Ab,.,, sin 110), 

(Bs) 
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Ay = ~ kay,, + E ~ Aa.,.,, Ob,.,, Ab,.,, 
t~ = 1 . 

N 

= 2xa,. o + ~', (2Xay,, cos nO - Aby,, 
n = l  

sin nO).  

(B6) 

Similarly, from equation (4), A T and AF can be expressed as 

N 

AT = Ac,, + ~'~ (Ac,,, cos nO - Ad,,, sin nO),  (B7) 
t l  = ] 

N 

AF = kCy,, + ~'~ (ACy,, cos nO -- Ady,, sin nO) , (B8) 
n = I 

From equations (B3), (B4), (B7) and (B8), and using Galerkin's method, one can get the 
following expressions for determining the elements of [J]. (The utilization of Galerkin's method 
rather than DFT and IDFT makes it much easier to obtain the oQ/oP for the present two 
dimensional system.) 

A Aa~,+  ~ ( A a , . . c o s n 0 - A b ~ . . s i n n 0 )  {cos0 . . . . .  s i n 0 } r d 0  
I " n =  1 " " 

" } 
- B Aa~.o+ ~'~ ( A a , , . c o s n O - A b ~ . . s i n n O )  {cos0 . . . . .  s i n n 0 } r d 0  = 

I " n =  I " " 

f T/  N 1 A Ac,. o + ~'~ (Acx, , cos nO - Ad.,,, sin nO) {cos 0 . . . . .  sin no}rdO , (B9) 
pz = I 

f T  { N / 
- C ~a. ,  + ~ (~a.,.,, cos nO - ~b,.,, sin nO) (cos O , . . .  , sin nO} r dO 

n = l  " 

fT{  , } 
+ D Aay 0 + ~ (Aa,.,, cos nO - Ab,.,, sin nO) {cos 0 . . . . .  sin n0}1 dO = 

) ; t  = 1 " " 

f , {  N } 
A Ac,.,~ + ~ (Ac,.,, cos nO - Ad,.,, sin nO) {cos 0 . . . . .  sin nO} r dO , (B10) 

) t l  = I " " 

where the upper limit of integration, T, is 27r. Using equations (B9), (B10), the first derivatives, 
OQ/OP, for the Jacobian matrix are obtained as listed in equations (13) in text. 
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