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A rigorous discussion of the concept of expectation value of an unbounded 
observable is given, and of its variance. It is shown that if A and B are 
observables for which the expectations (A 2) and (B  2) exist, and such that 
aA + BB is also an observable for some real numbers a and/3,  neither of which 
vanishes, then a quantum mechanical analog of covariance and correlation 
coefficient can be defined. The quadratic variation with time of the variance of 
position of a particle moving freely in one dimension is deduced rigorously, 
assuming only that there is a time at which the variances of position and 
momen tum exist. 

I. I N T R O D U C T I O N  

The close analogy between the spreading of a wave packet and the 
spreading of a swarm of particles has often been pointed out. In a previous 
paper (Farina, 1977) this analogy was discussed in some detail. It was 
shown there that both classically and quantum mechanically the variance of 
position of a freely moving particle varies quadratically with time, and the 
formal proofs of this result differ essentially in the noncommutativity of 
position and momentum in quantum mechanics. 

This paper suffered two important limitations. The first of these was 
the lack of mathematical rigor in the arguments, which were of a formal 
nature. Secondly, and equally important, was the philosophical nature of the 
arguments. The paper assumed that the particle was in a pure state. Now 
our knowledge of states occurring in the real world suggests that they are 
not usually pure. If we wish our deductions to apply to all such states 
occurring in nature we must certainly remove this assumption. 

In this paper we shall attempt to remove the limitations just mentioned. 
We shall, in fact, only assume that the variances of the position and 
momentum exist at one particular time. We shall show with this assumption 
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that the expectation value of position varies linearly with time while its 
variance is a quadratic function of time which tends to infinity when 

Before we do this, we shall prove some results of a more general nature. 
Firstly we analyze the meaning of expectation value for bounded and 
unbounded observables in the light of Gleason's theorem. We then proceed 
to the basic results, which are the expression of the expectation value in 
terms of pure states when the variance exists (proposition 1), its converse 
(proposition 2), and the existence under certain conditions of a quantum 
mechanical analog of covariance of two observables. Essentially the same 
analog has also arisen in the proof of a rigorous quantum mechanical 
central limit theorem (Cushen and Hudson, 1971). Finally, in Sections 6-9, 
we apply our results to an analysis of the free motion of a particle in one 
dimension and discuss our conclusions. 

2. EXPECTATION VALUE OF A B O U N D E D  OBSERVABLE 

A state ~2 of a quantum mechanical system is a probability measure on 
the lattice 2([~) of subspaces of the associated separable Hilbert space h. 
Gleason's theorem asserts that, for any state ~2 there is a set of positive 
numbers {Xj}jJ=I ( J < ~ )  and a corresponding set of normalized vectors 
{qS}J= i C_ h such that 

J 

E xj=l (1) 
7=1 

and, for any 9J~ E ~ ( h ) 

J 

~2(93~)= E X, I IP ,~ j  112, (2) 
j - I 

P,~T~ being the projection operator onto '))?. 
If A is a bounded self-adjoint operator the spectral theorem shows that 

there exist M, N such that - oc < M < N < + oc and 

a = dE(X)  (3) 

where {E(X)}xEn is the spectral family of A and the spectrum of A lies 
inside an interval [M, N] for some M, NCN.  If the probability that A has a 
value less than or equal to X is P(X) then by (2) 

J 

P(X)= E ) ' j lIE(X)~j 112 (4) 
j-I 
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P ( ) , ) = 0  if X ~ M and P ( X ) =  1 if N <  2k, and the expectation value (A)  of 
A is therefore naturally defined as 

M M [ . l "  1 

If J <  ~ this gives 
J 

(A)= g X,fNXdlle(X)~,ll -~ 
/ I " ,14 

J 

J = E x:(q.: s 
/ = I 1 

so by (3) 
J 

<A)= ~ x,<+,l A I@j) 
.i = l 

(6) 

If J =  ~ (5) can be written 

(A)=fNxd lim E 2tjllE(X)+:]I 2 
JAI [J ' - •  j i 

and by the dominated convergence theorem this yields 

(A)= j l imf2Xd  E x:IIE(x)+,II-' 
' - -  J = l  

j '  

= lim ~] Nj X d l l E ( N  I12 
J ' ~ o o  j I 

j ,  

lira E ~.,(q/j[ A I&j) 
J ' ~ o o  j =  I 

so  that (6) is still valid. 

Nj(@jl A]45> 
j = l  
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It follows that the expectation value of A 2 is 

J 

(A2) : E x:@jl A21 ~k,} (7) 
) : 1  

Since A is a bounded self-adjoint operator (7) can be rewritten 

J 

( A 2 } =  ~] XjlIA4DII 2 (8) 
j = l  

It should be noted that (A} depends only on the state, and so is 
independent of the particular choice of the +j's and Xfs.  

3. EXPECTATION VALUES OF U N B O U N D E D  OBSERVABLES 

If A is unbounded we cannot be sure that (6) is true, or even 
meaningful. In the first place +j may not be in the domain of A for every j;  
even if this is the case the series on the right-hand side of (6) may not 
converge, or may not converge to (A}. However, we shall show that if (A 2 } 
is assumed to exist then +j is in the domain ~ ( A )  of A for every value of j ,  
and moreover both (6) and (8) are true. To prove (7) would require first 
proving that q,j is in the domain c'~(A 2) of A 2 for every value of j ,  but as we 
shall see we do not need to do this. 

Firstly we must describe what we mean by saying that the expectation 
value of an observable represented by the unbounded self-adjoint operator 
A exists. To say that (A} exists means that the Riemann-Stielt jes integral 

= lim X dP(X)  (9) 

N ~ -t-  oo  

exists, where P(X) is the probability of the observable having a value less 
than or equal to X, and the limits M--+ - oo and N ~ + oo are taken in any 
way. 

Now by (4), which is still valid if A is unbounded, 

N J 

) - -  s, ,, 21 
M L j= i  

If we define the bounded self-adjoint operator AMN by 

AMN= f~4XdE(X ) (11) 
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we can prove from (10), using precisely the arguments of Section 2, that 

J 

f2XdP(X)= E xj<q.:l AMNI ~P:)=(AMN) 
i=l 

by (6) and so (9) implies that 

J 

( A ) =  lim E )t:(qS] AMN[+j)= lim (AMN) 
M ~  oc M-- o~ 
N ~ + v c  j = l  N - - + a c  

where the limit M ~ - oo, N ~ + co may be taken in any way. 
In the case of A 2 we note that 

(12) 

(13) 

(AMN)  2 = XdE(X 

= fNx2 dE(X) 
aM 

Therefore 

= ( A 2 ) M N  

( ( A 2 ) M N )  = ((  AMN)2) 

J 

= ~] X,(+/I(/.N)21+,> 
j =  1 

J 

= ~ a:IIAuN%il 2 
=1 

(14) 

If (A 2) exists the result proved above shows that the left-hand side of (14) 
tends to the unique limit (A 2) as M ~ - o z  and N ~ + o o  however the 
limits are taken, and so the same applies to the right-hand side. 

Suppose (A 2) exists; then 

(A2)= lira x~ de(X) 
M ~ - o o  
N - - + o e  

where M ~ - oo and N ~ + oc in any way. It follows then that 

(A) = .fim_~ f2Xde(X) 
N ~ + o e  

also exists; that is, if (A 2) exists so does ( A ) .  
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We are now in a posit ion to prove the result stated in the first 
pa ragraph  of this section. We do this next. 

4. E X P R E S S I O N  O F  E X P E C T A T I O N  VALUE IN T E R M S  O F  
P U R E  S T A T E S  

We shall now prove  the following: 

Proposition 1. If A is an unbounded  self-adjoint opera tor  in b and 
(A 2) exists then ( A )  exists and there is a set of positive numbers  {Xj}~_ 
( J~<oo)  and a set of  normal ized vectors {qS}~= 1 such that 

~bjE @ ( A )  ( j = l  . . . . .  J )  

J 

X , = l  
/ = 1  

(A 

(A 2 

J 

= E X.,(gf,[ml@j) (15) 
./ -- I 

J 

= E LllA+,ll = (~6) 
./ = I 

Proof. We have already seen that if  (A 2) exists then ( A )  exists. If 
- o o <  M <  N <  + oo AM~ ,, is a bounded  self-adjoint  opera tor  and so we can 
put - M = N = i ( i = l , 2  . . . .  ) in (14). We get 

J 

((A 2) , . , )=  Y XjllA ,.,q~,ll 2 (~7) 
j = l  

Now put 7], = (( A 2 ) _ ,, i), tu = Xj II A i,, +j I[ 2 ( j = 1 . . . . .  J ). The condit ions 
(i)-(iii)  of the theorem proved in the appendix  are satisfied if T =  (A2), and 
so by conclusion (iv) of the theorem 

tu = Xs IIA-,,,@~ [I 2 

has a limit as i ~ oo. S i n c e  ;kj > 0  

IIA i,,@jll2 = X~ltu 
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has a finite limit as i -~ co fo r j  = 1 . . . . .  J. Further 

IWA _i ,~rl- ae(X)+j 

=f' x2Hae(x),  i 

= f '  X2dlle(X)q, jll 2 

so it follows by the spectral theorem for an unbounded self-adjoint operator 
(Helmberg, 1969) that q,je@(A) ( j =  1 . . . . .  J). 

Now 

t j =  lim t,9= lim Xj[[A_,,,q,j[IZ=)tjl[A@j[[ 2 

and so (16) follows from conclusion (v) of the theorem of the appendix. 
To prove (15) first note that 

J 

<Ao�9 ~ Xj(+jl Ao�9 +j> (18) 
] = 1  

(A , .0)= ]~ Xj(~jl A_,.o[ q~j) (19) 
j = l  

Since (A) exists both (A0.,) and (A i.o) 
Since also 

A _ , . i =  A_,.o + Ao,i 

we have 

and 

dix with 

tend to finite limits as i ~ oz. 

(A) = i_oo[im (A_ , , , )  = i-oolim (A _,,o) + i-~lim (A0,,) (20) 

(~bjIAt~pj)= tim (g,j)A_i.ol4,j)+ tim (q,jlAo.iq~j) (21) 
i ~ o o  t~OO 

Now (18) satisfies the conditions (i)-(iii) of the theorem of the appen- 

r , = ( &  ,), t,j=Xj(4~jlAo,,Iq, j), r =  tim (Ao, i) 
�9 i ~ o O  
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while (19) satisfies the same conditions of the same theorem if 

T , = - - ( A - , . 0 ) "  t,/=--~s(+,]A ,.o]+s)" T = - t i m ( A  ,,o) i--~ 

Hence 

J 

lim (Ao . , )=  ~ lira Ao,,I 4+) 
t - - c ~  j ~ l  i ~ o c  

J 

lira (A_i .o)  = ~ lim ~s(+J] A i.0[ +j) 
i~oe_ j : l  i ~ o c  

If we add these last two results and use (20) and (21) we obtain (15). �9 

5. THE CONVERSE OF PROPOSITION 1, AND COVARIANCE 

The following question now naturally arises. Suppose the right-hand 
side of (16) exists. Does it then follow that (A 2) exists? The answer is yes, 
as the following result shows. 

Proposition 2. Suppose A is an observable with the property that 
~bj~6~(A) for j =  1,2 . . . . .  J. Then if 

J 

S =  ~] ~sllAqgll 2 
! - 1 

exists both (A 2) and (A) exist. Moreover, (A)  and (A 2) are given by (15) 
and (16), respectively. 

Proof From (12) with A replaced by A 2 and ~ by ~2 and (14), 

J 

fMN~2 dp(~ )=(( AZ)MN)= ~ ;kjHAMN~jII 2 (22) 
3 = 1  

Since + jc~(A)( j  = 1 . . . . .  J )  we have ]]AMNt~I]]2~]]A~bjI[ 2 Hence (22) 
implies 

J 

f;~k2 dp(~k ) ~ E ~kj[]At~j )]2= 3 ( 2 3 )  

j=l 

As M--, - oo and N ~ + oo in any way the left-hand side of (23) cannot 
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decrease, and it is bounded above by S. It therefore has a unique limit, and 
SO (m 2) exists. 

It now follows from Proposition 1 (Section 4) that (A) also exists, and 
that (A) and (A 2 ) are given by (15)and (16). respectively. �9 

We shall use this result to define the quantum mechanical analog of 
covariance. In order to do this we first prove two preliminary results. 

Proposition 3. If A and B are observables such that both (A 2) and 
(B 2) exist, then the sums 

J J 

~j (A<[  Bq5 ), ~ ~j(B~/] A~/) (24) 
J - I  j = l  

both exist. If J = ~ either series is absolutely convergent. 

Proof Since (A 2) and (B 2) exist it follows from Proposition 1 
(Section 4) that ~jc~ A @(B) for j  = 1 . . . . .  J. Hence the result is obvious 
if J < o o .  

Suppose now that J = ~ ,  and J '  is a positive integer. By repeated 
application of Schwarz's inequality 

j ,  

IAj(A@j I Bg,j)l = 
; = 1  

j ,  

E X,I<Aq+I n@j>[ 
j =  1 

j ,  

<~ Y, XslIAq~jlI[IBq~jll 
j =  1 

j ,  

= E (X'/211Aq~,II)(XV21)B+,II) 
j = l  

~< ~ XslIA~jll 2 ~_ XjllBqsII 2 
\ j = l  j 

1/2 

(25) 

The right-hand side of (25) tends monotonically to ( A 2 ) ( B  2) as J ' - -  + oo 
by Proposition 1, and so the left-hand side converges when J ' ~  oo. Thus the 
first series of (24) converges absolutely. That the second does so also follows 
by taking complex conjugates of the first. �9 

Proposition 4. Suppose that A and B are observables such that 

(i) (A 2) and (B 2) both exist, 

(ii) aA + 3B is an observable, where a,/3 are nonzero real numbers. 
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Then 

(iii) ((aA +,BB)) and ((aA +/}B) 2 ) both exist 

and 

(iv) ((aA+[3B))=a(A)+fl(B) 

((aA +/3B) 2)= a2(A 2)+ ap(AB + BA)+/32(B 2) 

(26) 

{27) 

where 

J 

(AB+BA)= ~ Xj[(A+jlBq+)+(B@jlA@j) ] (28) 
j = l  

is dependent only on the state of the system, being independent of the 
choice of the Xj's and the ~/s. 

Proof. Since ~jc |  ~9(B)= ~'D(c~A + BB) for each j = 1 . . . . .  J it 
follows that, if J' is a positive integer and J' <~ J, then 

j ,  j '  

E il(aA+flB)q~jll==a= ~ ILA+~ Ilz 
/ = I  j = l  

j '  

+~B 2 X.,[(A@j] B@j)+(B@j I A@j)] 
}=1 

j ,  

+132 ~2 XjlIB•II= 
J = I  

If J < ~  we can put J = J ' .  If J = ~  we let J ' ~ + o o "  since by 
Propositions 1 and 3 the right-hand side tends to a limit it follows that the 
left-hand side also tends to a limit. Consequently Proposition 2 implies that 
((aA + fiB)) and ((aA + fiB)=) exist, being given by (15) and (16) with A 
replaced by c~A +/3B. Thus 

J 

((aA+flB))= 2 Xj(+jIaA+BBIqJj) 
j = l  

J J 

=" E Xj(@jIAI4'j)+B E Aj<qsIBl@j> 
j=l j=l 
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while 

J 

((e~A + flB)Z) = ~ ~slI(aA+/gB)~j]] 2 
7 - 1  

J J 

.I I I = I 

J 

j - I  

= ,~2(A2) + ,~/9<Aa + aA) +/9"-<a~) 

If neither a nor/9 vanish 

< Aa + aA) = ( , ~ / 9 ) - I [ ( ( , ~ A  + B a ) ~ )  - ~2< A:) - ~2( a~)] 

The right-hand side of this equation depends only on the state, being 
independent of the particular choice of ~s's and +t's. It follows that the 
same is true of the left-hand side. �9 

We are now in a position to define covariance. Suppose (A 2) and 
(B 2) exist, and o~A +f iB is an observable for some a , / g E R  where o~ and/9 
are both nonzero. Then 

((A - ( A ) ) 2 ) =  f (~-(A))ZdP(~) 
oc, 

'- 

= ( A 2 ) - ( A )  2 

also exists; similarly ( B - (B))  2 exists. It follows that 

Coy(A, B ) =  � 8 9  

1 J 
~~ Z ~j[<(A-(A))q;j[(B-(B))@j) 

j ~ ]  

+((B-{B))+~I(A-(A))q~j) ] (29) 

exists and is independent of the particular choice of the ~.s's and 4)'s, 
depending only on the state. It is natural to define this as the covariance of 
A and B by analogy to classical statistics. 
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It is an immediate consequence of (25) that 

I Cov(A, B)I <~ (A:>~/~(~:> ''~ 

Hence if 0 is defined by 

Coy( A, B) 
P =  (A2)I/2(B2)I/2 

- l~<p<~  + 1, and 0 is the quantum mechanical analog of correlation 
coefficient. 

6. P O S I T I O N  A N D  M O M E N T U M  OF A FREE PARTICLE 

Let us consider the free motion of a particle of mass/~. For simplicity 
we assume the motion is one-dimensional, since generalization to higher 
dimensions is straightforward. We shall use our results to prove that if the 
variances of position and momentum exist at a particular time then they 
exist for all times, and are related quadratically in the time. Before we do 
this we need some preliminary results, which we shall derive in this section. 

We shall denote the position and momentum operators by x and p, 
respectively, and the domain of an operator by ~'~(A), as before. With these 
definitions we define operators x, and p, by 

Lg(~,)= { ~  [}. ~ ~,D(x)}, x ,+=~*x~  (30) 

o-~(pt)=(q~bU,+r p,f=Ut*pU,+ (31) 

in (30) and (31) U~ denotes the evolution operator for free motion in one 
dimension, while the Hilbert space tl is 2 2(R). 

In the Fourier transformed space 

where ~ denotes the Fourier transform. Further, 'q '+r l~ and V p ' r  

~U,+(p ' )  = exp ( ' -  ip'2t - ~  )~+(p') (33) 
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while 

Ixl21 (x)12dx<  (34) 

It follows from (32) and (33) that if +~ @(p) then U~bE @(p), and so 
+~ @(p,). Further, 

p,+=p~p V~b~@(p) (35) 

Suppose now that q~ is a vector of b which belongs to the domains of 
both p and x, and consider 

+,( O )=exp( ipO )U~q~ 

where 0 is an arbitrary real number. For any p 'ER we have 

,. [ - ip'Zt 
~Utexp( ixO )~b ( p ) =expl ~ ) ~exp( ixO )t~( p') 

= e x p ( -  ip'2t ) ~q~( p ' -  0) (36) 

(36) shows that if ~bE @(p) then U, exp(ixO)~E ~ (p )  also. Further, 

exp( ixO ) Ut+ ( p') = ~U~+( p ' -  0 ) 

i(p,_O)2 t 
=exp 2~ ~ } ( p ' - O )  

= e x p ( -  i02t --~-) exp (~ip'0t . ~ U~ exp( ixO )q~(p') ! 

SO 

exp( ixO )U?p = e x p ( -  io2t  )exp( ) ,exp ixO,  (37) 

Now ~k~@(x) and Utexp(ixO)q~E~(p), hence by Stone's theorem (37) 
implies that Ut~G | and, further, that we can strongly differentiate (37) 
with respect to 0. If we do this and then set 0 =0 we obtain 

pt 
= -7. + U, Ix 
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We have seen that v = p/~t commutes with U, hence if we operate on this 
with U,* and use (30) we obtain 

x,r = (x  + t~t)r (3s) 

7. T H E  EXPECTATION VALUE OF M O M E N T U M  AND POSITION 

We shall assume that at some time the expectation values (x  2) and 
( p 2 )  for a freely moving particle both exist. Without loss of generality we 
can assume this time to be t =0.  According to Gleason's theorem the state 
at t = 0  is a convex linear combination of pure states given by (2), say. Our 
previous results show that ( x )  and (v)=(p) / t~  both exist, and that 
+; ~ ~'L3( x ) fq ~')( p ) for j = 1 . . . . .  J. Further, 

J 

( x ) =  ~ Xj(~lxJq~j) (39) 
J = l  

(,~>-(P>- E x/+l l~l+j)= E xl +j~+~ (40) 
/.t j = l  = 

J 

(x2> = E x~llx,jll ~ (4~) 
J = l  

J 
( v 2 ) =  ~ 2tj[fvq/jll 2 (42) 

j =  I 

Now at time t the state, instead of being given by (2), is given by 

J 

a,(~0~)= E xjtlP,,~u,q,jlt 2 (43) 
j = l  

Consider, then, the operator p, defined by (31). As we saw in Section 6, since 
~bj E @( p )( j = 1 . . . . .  J ) it follows that U,q,j E ~-0(p). Further, using (31) and 
(35) 

1[ pUtt~ j I[ 2 = [I U~*pUt~ j I[ 2 = I1 ptJ/j ][2 = 11 pq,j II 2 

and so 

J J 
~, XjlipU, q,jll 2= ~ Xyilpq~lllZ=<P 2) 

j = l  j = l  
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exists. According to Proposition 2 this implies that the expectation values 
( p ) ,  and (p2) ,  exist at time t, and moreover 

J J 

(p) ,  = E Xj(O)q~jl Pi u,~kj) = E X,(+jl P,)4'~) 
j = l  j = |  

J 

E )kj(~bjl Pl  q+)=(P) 
j = l  

J 

(p2)= E X, ttpu,~ll ~ 
j = [  

J 

j = l  

J 
E ~kj[lP~jll2=(P 2) 

y = l  

Thus the expectation values of p and p: are unaltered. 
In Section 6 we saw that Ut+j ~ O)(x) for j =  1 . . . . .  J. Further, i fJ'  is a 

t ~  positive integer and J ~ J, 

j ,  j '  j ,  

E /~jllxU,~kj112= ~ ~jllU,*xU,~, 112= E Xj l l x ,~ j i l  2 
/=1 j = l  j = l  

j '  

E Xj II(x + vz)~j 112 
j = l  

j ,  j ,  

j= l  j= l  

j ,  

+ t  2 Y, xjlivq,jll 2 (44) 
j = l  

If J'< co we can put J ' =  J in (44), and this shows that 

J 
~jl lxUt.+j I I  2 (45) 

j = l  

exists. If J = o o  we can let J ' - ,oo  in (44). In this case the first and third 
terms tend to (x  2) and t2(v2), respectively, and since (x  2) and (v 2) both 
exist it follows from Proposition 3 that the second term on the fight-hand 
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side of (44) also tends to a finite limit. In other words (45) is still true when 
J----- oo. 

It follows from (45) and Proposition 2 that (x ) ,  and (x2), exist, and 
moreover 

J 

(x>,= E 
.]-- 

J 

= E  
j -  

J 

= E  
j -  

J 

: E  
j - -  

1 

{q,,I x,I v<,) 
l 

(~jl x + vtl ~j> 

J 

(qslxl'/ 'j) + t  E {q'jl'~l q'j) 
j = l  

that is, 

(x ) ,  = { x ) +  t {v)  (46) 

8. THE SPREADING OF POSITION PROBABILITY 

At time t = 0  the quantities {x 2) and (v  2) exist by hypothesis. As 
pointed out in Section 5 this means that the quantities 

Varx=/(x-{x)) 2) (47) 

Var v =  ( ( v - { v ) ) 2 )  (48) 

also exist at time t =0 .  Thus x -  ( x )  and v -  ( e )  satisfy the conditions of 
Proposition 3 so 

J 
C o v ( x , t ) ) =  E l~')[((X--(x))~jl(1)--(1)))+j) 

j = l  

+((v--(v))gl(x--(x))g)] (49) 

also exists. If ~(x -- ( x ) ) - -  /3(v -- ( v ) )  is assumed to be an observable for 



Variance and Covariance 99 

some a and /3 in R, both nonzero, Proposition 4 implies that Cov(x, v) is 
independent of the choice of q,;'s and X i's, but as we shall see we do not 
need to make this assumption. 

Now U,q~j E C~(x)= ~ ( x  - ( x ) )  ( j  = 1 . . . . .  J ) ,  and using (46) 

H ( x  - ( x ) , ) U , + j  il 2 = il U,*(x - ( x ) , )  ~+j li 2 

= li( x ,  - (.,~ ),  ) r  ii 2 

= li [ (x  + ~ ) - ( ( x >  + t (,~>)] r Hi'- 

= II(.,, - (x))+j + t(v - <v))r 11"- 

= I l t x - ( x > ) + ; l l  2 +[((x-(x>)r 

+ - < ( . ,  - ) ] ,  

+ nn( v - ( v >)r nn 2t2 (50) 

Now for J ~< c~ 

Varx = 
J 

E x~ i l (x - (~ ) )r  
j = l  

J 

V a r y =  E X, l i (v-(v))q~a liz 
y-----I 

Hence the right-hand side of (50) can be summed from j = 1 to j = J using 
(49) even if J = oo. The same can therefore be done to the left-hand side. 
Thus by Proposition 2 the variance (Varx)  t of x at time t exists, and 
moreover 

(Varx) ,  = V a r x  + 2t Coy(x,  v ) +  t2Var v (51) 

We have thus established the existence and quadratic variation with time of 
(Varx)t subject only to the assumption that Varx and Vary exist at time 
t = 0 .  

If t va0 equation (51) can be rewritten 

1 ( V a r x ) , -  1 V a r x - 2 V a r v  Cov(x ,  v)  = 27 27 (52) 
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The right-hand side of (52) is independent of the particular choice of Aj's 
and q~j's. Since it is independent of time it depends only on the state ~2 of the 
system at time t =0.  It follows that Cov(x, v) depends only on f~, which is 
not immediately obvious from its definition (49). As anticipated earlier in 
this section we do not need to assume that ax  +/3v is an observable to reach 
this conclusion in this case. 

We conclude by noting that the covariance of x and p at time t may be 
defined by 

[ c o v ( x , ~ ) ] ,  = 
J 1 

E 5 x , [ ( ( - , - -  <x>,)v,+j I (~, - <~>) v,+, ) 
J = l  

(53) 

Proposition 3 ensures the existence of this quantity. Using (38) and (46) we 
have 

=((x,-<x>,)+,l(~-<~,>)+,) 

= ( [ ( x -  <x>)+ ( ~ -  < t, >),1 ,~, i (~-<t,>)~,~) 

hence (53) yields, using (49), 

[Cov(x ,  ~ )] ,  = Cov( x,  ~ ) + t Var (54) 

Thus [Cov(x, v)], varies linearly with time. Equation (54) also shows that it 
is independent of the particular choice of the q,j's and X/'s. 

The quantum mechanical analog O, of the correlation coefficient at time 
t is defined by 

o, = [Cov(x, ~)], (55) 
[ (Varx) tVar  v] ~/2 

It is easy to see that Pt varies monotonically from - 1 to + 1 as t increases 
from - ~ o  and +oc .  As shown elsewhere (Farina, 1977) this result also 
holds classically. In fact if a crowd of runners is traveling along a straight 
line with constant speeds which are not all equal, the speeds will anticorre- 
late with position when t --, - oo, and correlate with position as t ~ + ~ .  
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9. DISCUSSION 

We have applied the laws of quantum mechanics in a mathematically 
rigorous way to a statistical ensemble of particles moving freely in one 
dimension, and deduced the quadratic dependence on time of the variance 
of position. The generalization to free motion in space is straightforward 
(Farina, 1977). 

It is important to note that we have made no model of the particles. We 
do not, for example, regard our ensemble as made up of wave packets. Our 
only assumptions are the laws of nonrelativistic quantum mechanics and the 
existence of the variances of position and momentum at one time in the 
ensemble. 

To assume that wave packets are real must always raise problems. Why 
should particles always be in pure states? When are the packets minimal--  
was it at the birth of the universe? Our deduction has made no such 
assumptions, and so avoids these philosophical difficulties. 

Although the quadratic variance with time of Varx is well known, this 
paper provides, to the best of its author's knowledge, the first derivation of 
this result which is mathematically, physically, and philosophically rigorous. 
The author believes that the definition of correlation coefficient between 
possibly incompatible observables given here is also new. 

Our deduction is something that is capable, at least in principle, of 
experimental test. Pulses of particles are produced in the laboratory, and in 
theory at least their statistics can be studied. At no stage do wave packets 
come into our discussion as physical objects. They enter only as mathemati- 
cal terms (the Utq~j's) in expressions for the measurable expectation values. 
Each Ut~ j spreads out, this being the special case when J = 1. The spreading 
out of the individual "wave packets," which are mathematical functions arid 
not physical objects, then imposes itself on the observable expectation 
values by means of the convex sum whose existence is assured by Gleason's 

theorem. 
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APPENDIX 

In this appendix we prove the following: 

Theorem. Suppose t,9 (i = 1,2 . . . .  ; j = 1,2 . . . . .  J ;  J<~oo) is a set of 
nonnegative numbers with the following properties: 
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(i) For  each i = 1,2 . . . .  the sum 

J 

Ti~ ~l I j  
j=l 

exists. 
(ii) 

(iii) 
Then  

(iv) 

(v) 

For  each j = l, 2 . . . .  t,j is a nondecreas ing funct ion of i. 
When  i tends to infinity T, tends to the finite limit T. 

For  e a c h j  = 1,2 . . . .  t,s tends to a finite limit tj as i ~  ~ .  
J 

T =  lim ~ =  ~] t; 
i~oo  j = l  

Proof Firstly we note  that  by (ii) ~ is a nondecreas ing  funct ion of i, 
and so by (i) and (iii) 

to<~Ti~T 

Hence  by (ii) t,j has a finite limit, t; say, as i --* oo, which is (iv). If  J < o o  (v) 
follows f rom (i) and (iii) by letting i ~  oo, so wi thout  loss of general i ty we 
can replace J by oo in (i). 

N o w  for each J = 1,2 . . . .  (i) implies 

J 

E t,s<-r, 
j = l  

If we let i ~ oo and  use (iv) 

J 

E tj~T 
j = l  

Since tij >10 it follows that  tj >~0, and so the lef t -hand side of this inequali ty 
is a nondecreas ing  funct ion of J .  It  therefore converges  as J--* oo to a finite 
quant i ty ,  and moreover  

tj<~T (A.1)  
j = l  
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that  
Given ~ > 0  (i) implies that  there is a positive integer J =  J(i, ~) such 

J 

T, E (A.:) 
j = l  

Since t u is a nondecreasing function of i for e a c h j  and t u - ,  tj as i ~ ~ we 
have 

tu<~t j ( j = l , 2  . . . .  ) 

so from (A.2) 

J 

E tj 
j = l  

Each tj >~0 so this implies 

) =1  

If we let i ~ vo and use (iii) we get 

T - - e ~  < ~] ty 
j = I  

(A.3) 

Since c is an arbi t rary  positive number  (A.1) and (A.3) imply 

T =  ~ t~ 
j = l  

which is (v). 
The above is an e lementary  proof.  In fact, the theorem is the mono tone  

convergence theorem in the special case when the measure  is the discrete 

count ing measure.  
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