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Abstract. The finite motions of a suspended elastic cable subjected to a planar harmonic excitation can be studied 
accurately enough through a single ordinary-differential equation with quadratic and cubic nonlinearities. 

The possible onset of chaotic motion for the cable in the region between the one-half subharmonic resonance 
condition and the primary one is analysed via numerical simulations. Chaotic charts in the parameter space of the 
excitation are obtained and the transition from periodic to chaotic regimes is analysed in detail by using phase-plane 
portraits, Poincar~ maps, frequency-power spectra, Lyapunov exponents and fractal dimensions as chaotic measures. 
Period-doubling, sudden changes and intermittency bifurcations are observed. 
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1. Introduct ion 

Some papers, both numerical and analytical, appeared recently in the literature on the subject of 

nonlinear vibrations of suspended elastic cables, which are of interest in several technical 

applications. Most of them deal with a single cable for which simple models, with one or two 

degrees-of-freedom, have been developed and used to obtain an analytical solution of the problem 

and an effective description of the nonlinear dynamic behaviour. Free planar and nonplanar 

motions were studied widely [1-3], while relatively few works were devoted to forced motions 

[4-6]. The main features of the relevant dynamical problems are associated with the presence of 

both quadratic and cubic nonlinearities in the equations of motion, the former is due to the cable 

initial curvature and the latter is due to stretching of the cable axis. Among the various interesting 

phenomena occurring at finite vibration amplitudes for cables with different sag-to-span ratios, the 

subharmonic or superharmonic motions of the system taking place in the neighbourhood of the 

secondary resonance conditions are worth mentioning. 

Since the 'strange'  behaviour of dynamical systems is often associated with the loss of stability 

of secondary responses [7-8], which leads to bifurcations and eventually to chaos in certain ranges 

of values of the system parameters,  there is strong technical interest in the analysis and 

understanding of possible chaotic regimes for suspended cables. 
Interest in the analysis of the chaotic behaviour of dynamical systems has been strongly 

increasing in the last decade [9-10]. The existence of strange a t t r a c t o r s  was demonstrated in the 

literature for systems described by several nonlinear equations. In structural dynamics, the stable 

and unstable Duffing equations [11] governing the finite vibrations of taut strings or beams and, 

respectively, of periodically forced buckled beams are of main interest. They exhibit only a 

symmetric (cubic) nonlinear term. Instead, the equation with quadratic and cubic nonlinearities 
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has received minor attention from the chaotic dynamics viewpoint [7, 8, 12], though the possible 
routes to chaos can be traced in the work of Szemplinska-Stupnicka. Yet, this equation is 
interesting both for describing the dynamic behaviour of various structural elements (curved 
beams, shallow arches, suspended cables) and for exhibiting a non-symmetric nonlinear term. 

The present work is just concerned with the possible onset of chaotic motions for an elastic 
cable subjected to a planar harmonic forcing. Using a one-degree-of-freedom model based upon 
an approximation to the cable shape during the motion, we performed numerical simulations of 
the planar periodic and chaotic responses for an actually suspended cable by varying the amplitude 
and frequency of the excitation in the region between the one-half subharmonic resonance 
condition and the primary one. Of course, restriction of the motions to one plane is a limitation to 
the problem examined. However, it is worth mentioning that, theoretically speaking, the in-plane 
oscillations produced by a planar excitation do not force out-of-plane oscillations, due to the 
nature of the modal coupling [1]. 

Different dynamical measures are used to identify chaos, such as phase-plane portraits, 
Poincard maps, frequency-power spectra, Lyapunov exponents and fractal dimensions. Chaotic 
regions in the control parameter space of the problem are obtained and the transitions from 
periodic to chaotic motions of the system are analysed in detail. Some points concerning the 
computational aspects associated with the use of the various measures are also discussed in the 
paper. 

2. Equation of Motion and Periodic Solutions 

A parabolic elastic cable suspended between two fixed supports at the same level is considered 
(Figure 1). Let EA, H and m be the axial rigidity, the initial tension and the mass per unit length 
of the cable, respectively. Under the assumption of moderately large rotations of the cable 
element in the motion around the initial static equilibrium configuration y(x) and of negligible 
horizontal inertia forces, the cable dynamics can be described by the unique partial integro- 
differential equation in the vertical displacement v(x, t) [5] 

{ f,' } H v ' + ( E A / l ) . ( y ' + v ' )  [Y'V'+V'2/2]dx ' + p - 1 , z o = m i J ,  (1) 

where the prime and the dot stand for O/Ox and o/at, respectively, p(x, t) is a vertical distributed 
load and # is a viscous damping coefficient per unit length. 

Equation (1) is accurate for studying suspended cables used in overhead transmission lines for 
which the sag-to-span ratio d/l "~ 1/20, H/EA = O[(d/l) e] and the dynamical displacement 
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Fig. 1. Static and dynamic cable configurations. 



where w is the linear frequency of a generic vibration mode of the cable. By representing the 
displacement through one linear eigenfunction f i x )  [13] and considering a monofrequency 
harmonic excitation with given spatial distribution ~(x), 

if(x, t) = f ( x ) q ( t ) ,  f i(x,  t ) =  th(x)P c o s f l t  , (3) 

(4) 

one can apply the Galerkin method to  e q u a t i o n  (1)  and arrive at the following single ordinary- 
differential equation of motion: 

O + IX*(l + q + c2q e + c3q 3 = P *  cos  ~ t .  

p 

0 . 0 4  

It exhibits both quadratic and cubic nonlinearities, with the coefficients c, and c 3 depending 
on the cable properties and the shape functions considered. Using a different nondimensionaliza- 
tion for the displacement, we obtained [5] approximate steady-state solutions to equation (4) in 
the neighbourhood of the primary resonance condition ( f ~  1) for various cables by a fourth- 
order perturbation procedure. Though the features of the response vary notably with the cable 
sag-to-span ratio, the ensuing motion of the system in this frequency range firmly has a normalized 
period equal to I. 

Moreover, using just the same nondimensionalization for the displacement as considered 
herein, we obtained [6] approximate steady-state solutions to equation (4) in the neighbourhood 
of the subharmonic resonance of order one half (f~ ~ 2) by a second-order perturbation approach. 
Regions of existence or non-existence of finite-amplitude stable subharmonic oscillations with 
period 2 were obtained in the parameter space (f/, p) of the excitation. For prestressed cables 
subjected to uniform forcing and vibrating with the first symmetric mode, which is the first mode 
of a cable with sag-to-span ratio up to about 1/20 and technical values of E A / H  (~500), those 
regions are plotted in Figure 2, where the thick lines refer to a nearly taut cable (d/ l  ~ 1 / 145) and 
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components are respectively u = O(ed~-/l) and v = O(ed),  with e being a small parameter of the 
order of the amplitude. 

The following nondimensional variables are introduced: 

:?= x/ l ,  "[= wt,  ff = v/l ,  ~t = txwl2/H, f i =  p l / H  , (2) 

t I P 
1 .8  2 . 0  2 . 2  .('2 

Fig. 2. Regions of non-existence (I), existence (II) and possible existence (III) of period 2 motions for a nearly taut 
(thick) and a sagged (thin) cable, perturbation results, /.z = 0.1. 
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the thin lines to a sagged cable (d/l ~ 1/45). Regions I, II and III are, respectively, regions of 
non-existence, existence and possible existence of finite-amplitude subharmonic oscillations, 

depending on the initial conditions. 
In the case of a sagged cable that exhibits a frequency-response curve of the softening type, 

the approximate solution shows possible existence of a finite response with period 2 at frequencies 
notably less than the subharmonic-resonance value, a physically unrealistic behaviour which may 
be due to the order  considered in the perturbation analysis [6]. Indeed,  some numerical 
integrations of equation (4) showed that, when decreasing [1 with p =/~ and fixed initial conditions 

(q = c~ = 0), the response is actually of period 2 up to a certain frequency (fZ ~ 1.7) and then it 
becomes of period 1, as one would expect since the fundamental  harmonic firmly prevails in the 
response right of the primary resonance condition. Thus the question arises of what is the kind of 

motion that actually develops in the region between the one-half subharmonic ( f / ~ 2 )  and 

primary ( f / ~  1) resonances of the system. 
Moreover ,  since transition to chaotic motions has been recently observed for an oscillator 

with quadratic and cubic nonlinearities in the neighbourhood of the 1/2 subharmonic resonance 

[7, 8], there is strong interest in examining the possible onset of such irregular responses for the 

present system. 

3. Measures for Chaos and Computational Aspects 

To answer these questions, we made extensive numerical simulations of the solutions of equation 
(4) by considering values of the coefficients of the nonlinear terms (c 2 = 35.952, c 3 = 534.53) 
relevant to the above mentioned sagged cable. The amplitude and frequency of the excitation are 
varied parametrically and, to a smaller extent,  the damping ratio too. As a rule, the initial 

conditions are held fixed (q = q = 0), except for some system parameter  values for which the 
domains of attraction of different solutions are investigated. 

To identify the type of response with reasonable accuracy, we used different dynamical 
measure,  of both qualitative and quantitative nature,  whenever  there is a doubt  of chaotic 
behaviour [10]. Namely,  besides the time history whose irregular shape is not a foolproof  test for 
chaos, phase plane portraits, Poincar6 maps, f requency-power spectra, Lyapunov exponents and 

fractal dimensions are used. 
Obtaining reliable results with each measure needs preliminary calibration of some computa- 

tional parameters.  The numerical integration of the equation of motion has been made through a 
fourth-order  Runge-Kut t a  method and checked through the Adams variable step method.  

Different total integration time lengths (up to 4000 forcing periods) and time-step increments (up 
to 1/800 of the forcing period) have been considered to be reasonably sure that the response 
obtained is really a steady one and that chaos, whether occurring, actually pertains to the 
differential equation of motion and not to a difference approximation of it [14]. The length of the 
initial transient and its influence on the response have been carefully checked. When using the 
FFT for generating power spectra, we have considered at least 120 forcing periods. 

Lyapunov exponents characterize quantitatively the average exponential  divergence or con- 
vergence of nearby trajectories. They are determined by examining the long-time evolution of an 
infinitesimal n-sphere of initial conditions of radius d o, where n is the order  of the nonlinear 
system. Under  the flow, the sphere is mapped into an ellipsoid with n principal axes d,(t) and 
there is a spectrum of Lyapunov exponents defined by the relationship [15] 
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1 d,.(t) 
A, = lim - log~ (5) 

, ~  t - d o 

Negative exponents  denote  periodic orbits while the presence of at least one positive 

exponent  indicates stretching of the sphere in one direction and thus divergence of initially close 
trajectories.  For the third-order  au tonomous  system 

"('1 ~ X 2 ~  

.(" ~ -  - -  1 . s  - -  X 1 

~ = ~ ,  

- c2x-  l - c 3 x  I + p cos 4~, (6) 

into which equat ion (4) (with the stars omit ted)  can be t ransformed through the positions x 1 = q, 

x~ = ct, & = f~t, the two non-zero exponents  A E and a 2 (the third one ~.~ along the flow being zero) 

have been calculated by means of a now classical algorithm [15] based on the simultaneous 

integration of the system of nonlinear differential equations (6) and of the corresponding 
linearized equations.  

Among  the various measures  of fractal dimension proposed in the literature to quantify the 
strangeness of an at t ractor  [I0], reference is made here to the Lyapunov dimension D~, and the 

correlation dimension D .  The first choice naturally arises after the calculation of the exponents ,  

from which that measure  can readily be obtained according to a conjecture by Kaplan and Yorke 

[16]. In the present  case, in which the dimension refers to the two-dimensional set of points 
generated by a Poincard map of the third-order  set of differential equations (6), it is simply 

calculated as 

DI. = 1 - AI/A e . (7) 

As a second measure to be compared  with the previous one, the correlation dimension 

proposed by Grassberger  and Proccacia [17] is used, both for being well suited to time sampled 

data, such as those of a Poincard map,  and for accounting for the frequency with which the 
trajectory visits various regions of the attractor,  thus being more effective than a merely geometr ic  

measure of a set of N points [10]. It is defined as: 

D,. = lim log C(r) (s) 
,~,~ log r 

where r is the radius of a two-dimensional box centered at each point x i 

C(r) is the correlation function 
= { qi, Oi} of the set and 

1 N .",' 

i J 

which is calculated by counting the number  of points in each box, assuming H ( s )  = 1 if s ~>0 and 

H ( s )  = 0 if s < 0 .  
For the selection of the algorithmic parameters  playing a role in the response of chaotic 

systems, e.g. the time step increment  to be used in extended numerical investigations, useful 

suggestions can be obtained from the analysis of the values assumed in some sample cases by 
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global quantitative measures of the system dynamics, like the Lyapunov exponents  and the 
dimension of the attractor. Of course, use of these measures too needs computational care. As far 
as the Lyapunov exponents are concerned,  problems may arise both in the selection of the fixed 
but arbitrary time interval of renormalization of the vector identifying a nearby trajectory [15] and 
in the determination of the number  of forcing periods to be used for obtaining well stabilized 
values of the exponents.  On the other hand, a reliable calculation of the correlation dimension of 
the attractor in the Poincard map, besides being more time consuming than that of the exponents ,  
must pay attention to the minimum and maximum dimensions considered for the box: these have 
to be properly correlated with the density of points in the map, since the dimension must be 
calculated by considering only the r domain in which the log C(r) versus log r ratio is linear [10]. 
However ,  once these aspects have been made clear and the time integration length has been 

chosen in such a way to be representative enough of a non-transient chaotic response, these global 
dynamical measures prove to be successful for setting the time step increment,  whose value can be 
selected so as to obtain well stabilized values of D,, or of the exponents,  From this last view point, 

it is worth noting that the a values do not vary any more after few hundreds of forcing periods, 
while the D, values usually need more than a thousand periods to remain unchanged. 

4 .  R e s u l t s  

Attention is focused on the following practical aspects: 

- determination of significant regions of chaotic response of the system in the control pararneters 
space of the dynamic problem; 

- analysis of the system's bifurcations from periodic to chaotic motions. 

Some points on the use of the different measures of the dynamics for identifying chaotic 
responses are also made. 

4. I. Regions of  periodic and chaotic motions 

Figure 3 shows the types of responses found in the neighbourhood of the 1/2-subharmonic 
resonance of the system for different values of the forcing amplitude; it was obtained by using a 
time step increment equal to 1/200 and by considering 2000 forcing periods. Small dots denote  
periodic responses while thick dots denote chaotic responses. Some regions with well-established 
period 1 or period 2 responses are clearly evident. The boundary curve obtained numerically 
(thick line} and separating the lower region of period 1 motions from that of period 2 motions 
shows good qualitative agreement  with the boundary curves (thin lines) obtained using the 
second-order perturbation solution (see Figure 2). For a correct comparison, we note that the 
numerical results refer in any case to zero initial conditions while the two perturbat ion curves on 
the left of the resonance bound a region where period 2 responses may or may not occur, 
depending on the initial conditions considered. 

The more interesting result emerging from the chart in Figure 3 is the occurrence of a rather 
large region of chaotic motions between the two regions of periodic motions. Although its 

presence might be predicted from the findings in [7], it is worth noting that the excitation levels in 
the chaotic region are little higher than the threshold excitaton level for obtaining a period 2 
response. Thus, for the cable, due to the high values of the nonlinear coefficients, chaos develops 
at values of the forcing amplitude notably lower than those in [7], which is of practical interest. As 
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Fig. 3. Regions of periodic ( . . . )  and chaotic ( . . . )  motions, numerical results, # =0.1.  

the forcing amplitude increases, the region of period 1 response extends notably to the right, 
contrary to the prediction of the second-order subharmonic perturbation solution [6] and 
consistent with the fourth-order primary perturbation solution [5], which predicts more and more 
pronounced bending to the right of the frequency-response curve with increasing excitation 
amplitude. 

Close to the right neighbourhood of the chaotic region, a band of parameter values where 
regular motions with period other than 2 occur is found. This band is labelled as transition to 
chaos in Figure 3. However, the scale of mesh spacing used (A~} = 0.02, Ap = 0.002) does not 
allow us to understand the mechanism of such a transition. 

So, for a fixed value of the amplitude (p  = 0.04), a much finer mesh spacing is considered for 
the frequency (A,Q=0.0001). Figure 4a shows the kind of steady-state motions obtained, as 
inferred from the Poincar6 maps and the power spectra: the periodicity of the output (period 1, 
period 2, etc.) is recorded as a function of frequency. Figure 4b shows the corresponding 
variations of the two Lyapunov exponents of the dynamical system. They were calculated by using 
a total time length of the trajectory equal to 500 forcing periods, which corresponds to well 
stabilized values of the exponents, and by performing the required orthonormalization at each 
time step of the integration. Notwithstanding they were obtained with a larger frequency mesh 
spacing (A~ = 0.001) and a number of forcing periods notably lower than those used for obtaining 
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Fig. 4. Periodicity of the stead,,' state motions as a function of the forcing frequency (a) and spectrum of thc associated 
Lyapunov exponents (b), p = 0.04, /, = (1.1. 

Figure 4a, a very good qualitative agreement with the indications given by the measures of chaos 
used therein is observed. Namely, the first exponent is positive in the chaotic zones and negtive in 
practically all zones where the Poincard map and power spectrum indicate a periodic response of 
the system. In substance, the spectrum of the Lyapunov exponents obtained by varying a control 
parameter proves to be a powerful tool for obtaining bifurcation diagrams [18, 19]. This is clearly 
shown by the sequence of spectra reported in Figures 5a-d, which refer to four increasing levels of 
the excitation within the region of chaotic response. Consistent with Figure 3, the overall chaos 
zone progressively shifts towards higher frequency values. 

Nevertheless, the algorithmic aspects make construction of bifurcation diagrams through 
Lyapunov exponents more time consuming than through observation of the Poincard maps. 
Moreover, the latter dynamical measure is a more complete one, since it allows one to understand 
more effectively the mechanism of transition from periodic to chaotic motions. In the next section, 
the main features of the system response, as far as the kinds of periodic solutions and of 
bifurcations occurring are concerned, will be examined just by using the Poincar~ map as a 
principal indicator. 
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Fig. 5. Spectrum of the exponents as a tool for localizing chaos zones at different values of the forcing amplitude. 

4.2. Bifurcations and chaos 

By examining the results obtained at p = 0.04 with decreasing frequency, a main route to chaos 
through period-doubling bifurcations is clearly observed [7]. Responses with periods 2, 4, 8, 16 are 
shown in Figures 6a-d ,  in each of which the phase plane portrait,  the Poincar4 map and the 
frequency-power spectrum are reported.  The first two indicators show the successive splitting of 
the trajectories and of the isolated points respectively, as the bifurcation progresses. At each step, 
new lines appear in the power spectrum (plotted with logarithmic scale) at the midpoints of the 
frequency intervals between the peaks of the previous spectrum. As ~) decreases further, the 
points in the Poincar6 map first gather along line segments (Figure 7a) and then diffuse in the 
plane though remaining restricted to a well defined region, which is the strange attractor of the 
system (Figure 7b). Correspondingly,  a substantially continuous spectrum is achieved. The values 
of the Lyapunov exponents and the Lyapunov and correlation dimensions indicate that the last 
two responses are chaotic, though their Poincar6 maps and fractal dimensions are different. We 
note that D. is lower than D L, as demonstrated in the literature [10], and its numerical value must 

be carefully checked when close to unity. 
The transition to chaos is smooth,  namely it occurs in a rather large range of frequency 

values, and each new periodic solution of the sequence is stable in a smaller interval than the 
previous one (see Figure 4). Once developed,  the chaotic behaviour occurs in a quite large region. 

The indicators for a well-established chaotic response are shown in Figure 8. 
Some points are worth mentioning as far as the fractal dimension of the strange attractor is 

concerned; D, was calculated by considering 2000 points in the two-dimensional Poincar6 map and 
approximately three points per box for the lower value of r. It is furnished by the slope of the 
regression line passing through the points giving the values of the correlation function C(r) 
corresponding to different values of the box radius [10]. In Figure 9 these lines are plotted for 
three different values of damping and the relevant values of the dimension are reported. As 
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expected, D diminishes with increasing values of / , .  which give rise to thinner and thinner strange 
attractors in the Poincar~ map (Figure 10). 

For given values of all system parameters, the shape of the Poincard map changes with the 
phase <b of the forcing function with which one stroboscopically produces the map, as shown in 
Figure 11, but D, remains practically unchanged. This allows us [10, 20] to calculate the fractal 
dimenson of the chaotic attractor in the three-dimensional phase space (q, q, &) simply as 
d ,  = 1 + D c. In the reference case considered the value d ~2.36 is obtained. 

Coming back to the sequence of bifurcations occurring in the frequency range examined, 
some more periodic solutions are observed both prior and after the establishment of chaos (Figure 
4). In particular, as the frequency decreases, responses with period 6 (Figure 12a), 7 (Figure 12b) 
and 5 (Figure 12c) are observed, which are qualitatively different from both the period 2 response 
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(Figure 6a) occurring on the right of the chaotic regton and from the period 1 response (Figure 
12d) on its left. These solutions are stable in very small intervals�9 They look like basic responses 
giving rise to further independent sequences of period-doubling bifurcations (6-12, 7-14, 
5-10-20 respectively) occurring in the region examined, like those reported in the literature for 
other dynamical problems [11,21]. Unlike the results in [11], however, these independent 
period-doubling bifurcations are obtained here with fixed values of a control parameter of the 
system and of the initial conditions. With the frequency spacing considered, these sequences of 
period doublings seem to be incomplete and the transitions to chaos, where occurring, are 
observed to be jump phenomena, just as in the cases discussed in [21]. 

A more precise characterization of the whole sequence of bifurcations taking place would 
require deeper numerical and theoretical investigations, in which attention should be paid to some 
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Fig. 12. Other  periodic motions: period 6 (a, gl = 1.959), 7 (b, [~ = 1.800), 5 (c, t~ = 1.745), 1 (d, f / =  1.640): p = 0.04, 

tx = 0.1. 

routes to chaos illustrated in the literature for similar mathematical or physical systems, e.g. the 
Sarkowski sequence [22] and the subharmonic route to turbulence [23]. However ,  what is 
interesting from a practical point of view is that very small variations in a control parameter  can 
influence strongly the type of response of the system, which is a consequence of the fractal nature 

of the region of chaos. 
As the frequency decreases further, the left boundary of this region is approached (Figure 4) 

and the transition to the stable period 1 motions occurs via a sudden change (jump) of the type 
just discussed. This result is consistent with the sharp transition found on the left of the chaos 
region in [8]. Nevertheless, a more detailed investigation of what happens in the neighbourhood of 
this left boundary ( 1.695 < f / <  1.70, Figure 13), made with a frequency spacing Aft = 0.00001 and 

C ~  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

t I I i 

1.695 1.696 1.697 

Forcing 

I i I 
1.599 1.700 1.698 

f r e q u e n c y  

Fig. 13. Sudden change bifurcation: the response jumps  continuously from chaos to period t. 
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Fig. 14. Intermittcncv bifurcation to chaos, p= 1.77, # =iLl. ~1= 1.571 (a), 1.5711 (b). 1.569 (c). 

a time step increment equal to 1/40(), shows that transition to period 1 motions develops in a finite 

width zonc in which the response continuously jumps from chaotic to period 1. As the frequency is 
decreased, the chaotic intervals become smaller and smaller while the period 1 intervals extend 
progressively. This behaviour of the system is to be connected again with the fractal nature of the 
boundary of the chaotic region, according to which different attractors coexist and the response 

becomes totally unpred ic tab le -  and qualitatively much v a r i a b l e - i n  this range of frequency. 
As a final point, it is worth noting that some other  regions of chaotic behaviour were found fit 

greater values of the excitation amplitude. The}, were not investigated in detail because they are of 
low technical interest, just due to the high forcing amplitudes involved. Nevertheless, from a 
theoretical point of view, thc occurrence of yet another  type of transition to chaos for the equation 
with quadratic and cubic nonlinearities being considered is worth observing. Namely,  with 
p = 1.77 and ~) decreasing from 1.571 to 1.569, the response bifurcates from a period 2 to a 
well-established chaotic one via intermittency (Figures 14a-c). This is clearly revealed by the 
intermediate diagram of Figure 14b -  a Poincar6 map in the l-q p l a n e -  which exhibits intervals of 
nearly period 2 motions and sudden bursts of chaotic behaviour. Of course, the response in Figure 
14b was found to be steadily intermittent.  
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The numerical simulations showed that chaotic responses can occur for a suspended elastic cable 
subjected to a planar monofrequency excitation in the range of frequency between primary and 
one-half  subharmonic resonance. 

Careful use of various qualitative and quantitative measures of chaotic dynamics furnished 
convincing evidence about the actual character of the responses obtained. A chaotic chart and 
bifurcation diagrams were built in the control parameter space of the system and the fractal 
properties of the strange attractors were quantified. Different kinds of transition from periodic to 
chaotic motions were observed, namely via period-doubling bifurcations and sudden change or 
intermittency bifurcations. Coexistence of different periodic and chaotic motions was observed for 
many values of the control parameters, consistent with the fractal-like nature of the chaotic 
region. The ensuing unpredictability of the type of response of the system has to be properly 
accounted for in technical applications, when one desires to perfectly control it or wants to avoid 
chaotic regimes in its behaviour, 
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