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Abstract. The behavior of single-degree-of-freedom systems possessing quadratic and cubic nonlinearities subject to 
parametric excitation is investigated. Both fundamental and principal parametric resonances are considered. A global 
bifurcation diagram in the excitation amplitude and excitation frcquency domain is presented showing different possible 
stable steady-state solutions (attractors). Fractal basin maps for fundamental and principal parametric resonances when 
three attractors coexist are presented in color. An enlargement of one region of the map for principal parametric resonance 
reveals a Cantor-like set of fractal boundaries. For some cases, both periodic and chaotic attractors coexist. 
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1. Introduct ion  

We consider  the response of  a s ing le -degree-of - f reedom system with quadrat ic  and cubic non- 

linearities to a ha rmonic  paramet r ic  excitat ion.  The  problem is governed  by 

ii + 2e/,tti + ~o~u + e6u 2 + eecru 3 + egu cos [ l t =  O, (1) 

where  the dots indicate different iat ion with respect  to t ime, e is a small dimensionless  pa ramete r ,  

and # ,  r 6, c~, g, and ~ are constants .  Equa t ion  (1) describes the response of  a s ingle-degree-of-  

f r eedom mechanical  system or a o n e - m o d e  approx imat ion  to the response of an arch,  beam,  plate,  

or  shell. The  quadra t ic  term may be due to curvature  or an asymmetr ic  material  nonl ineari ty  

whereas  the cubic term may be due to mid-plane stretching or  a symmetr ic  material  nonlineari ty.  

The  paramet r ic  term may be due to a ha rmonic  axial or  inplane load or a rotat ing e lement .  For a 

comprehens ive  review of  the response of  single- and mul t i -degree-of - f reedom systems to paramet -  

ric excitat ions,  the reader  is refer red  to the tex tbooks  of  Bolotin [1], Evan- Iwanowsk i  [2], Nayfeh  

and M o o k  [3], and Ibrah im [4]. 
Neglect ing the nonl inear  and damping  terms and using Floquet  theory  [1 ,3] ,  one can show 

that equa t ion  (1) possesses solutions that decay with time (stable) and solutions that grow with 

t ime (unstable).  Moreove r ,  one  can draw a stability chart  in the space of  the parameters  of  the 

equa t ion  that  separates  the pa r ame te r  space into regions of  stability and instability. For  this 

equa t ion  the stability chart  is called the Strutt  d iagram [5] and it separates  the ( 4 w ~ / ~  2, 4 e g / [ )  z) 

plane into regions of  stability and instability. Resonances  occur  when 4~o~/fl 2 ~ n e, where n is an 

integer.  The  asymptot ic  expansions  of  the transit ion curves are given in powers  of  4eg/ fZ: .  

We note  that model ing  a system that is subjected  to a parametr ic  excitation by linear 

equa t ions  and b o u n d a r y  condi t ions  is unrealistic if the parametr ic  excitation leads to an instability 
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because it results in unlimited amplitudes. The growth of the response is exponential .  Including 

damping in the analysis usually diminishes the region of instability but sometimes it may change a 
stable region into an unstable region, especially for the case of combination resonance [3]. The 
growth of the unstable solutions is exponential and hence unrealistic. Consequently,  a more 
realistic model includes nonlinear terms which act as limiters of the response. Moreover ,  the linear 
model may predict a stable parametric response (i.e.,  decaying response), whereas the actual 
response may not decay under certain conditions. In this case, the parametric  excitation produces 
a subcritical instability that is only predictable by including nonlinear terms. Fur thermore ,  
nonlinearity brings a whole range of phenomena  that are not found in linear systems. In 

single-degree-of-freedom systems governed by equation (1), these phenomena  include multiple 
solutions, jumps, limit cycles, resonances, period-multiplying and cyclic-fold bifurcations, and 
chaos. In this paper, we demonstrate some of these phenomena  by using perturbat ion methods 
and digital- and analog-computer  simulations. 

2. Global Behavior 

The system described by equation (1) has many attractors (long-time responses). The number  and 

type of attractors observed depend on the initial conditions and the parameters  e, p,, ~o o, 8, c~, g, 
and f/. A complete characterization of the dynamics of the system would include the behavior of 

its long-time solutions (attractors) and their basins of attraction as the system's parameters  are 
varied. To keep the problem within a manageable size, we limit the number  of parameters  
considered. Here ,  we assume that only one of these parameters  can be varied at a time; that is, 
only co-dimension one bifurcations [6] are considered. 

The equilibrium positions of the undamped and unexcited system described by equation (1) 
can be found by setting the excitation amplitude g, damping coefficient p,, and all t ime-derivative 

terms equal to zero. The resulting equation yields the equilibrium positions 

. 0 ( 2 e c ~ ) - ~ [ - a  + ( a - "  ~ ~ "  : . _ - 4 o ~ ; , c ~ )  - ] .  ( 2 )  

The number and type of equilibrium positions as well as the shape of the potential depend on the 
values of if, 8, ~%, and ~. When ~o~ = 1.0, c~ = 4.0, and a = 0.1, we have the cases shown in Figure 
1. When 8 = 5.0 there are two stable equilibrium points (centers) and one unstable equilibrium 
point (saddle). When fi = 4.0, the radical vanishes and the left center and saddle point merge to 
form a cusp; when 8 = 3.0, the only real root is the origin. Phase-plane plots and potential energy 
diagrams are shown in Figure 1 for these three cases. 

Motions around the stable equilibrium points were determined [7-9] using the method of 
multiple scales [10, 11], whereas motions encircling all equilibrium points were determined using 
analog and digital computations. We note that case c, having a double-well potential,  exhibits the 
most interesting behavior. Thus, we concentrate the analog- and digital-computer analysis on this 

case. 
In analyzing systems under forced oscillations, it is useful to determine the effect of changes 

in the excitation on the behavior of the system. From an engineering point of view, it is critical to 
identify the excitation parameters  that could lead the system into potentially catastrophic 
responses. 

In this section, we present the results of the analysis of qualitative changes (bifurcations) 
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Fig. 1. Potential wells and corresponding phase-plane portraits for three distinct cases: (a) 6 = 3.(/, (b) 6 = 4.0, (c) 6 = 5.0, 
for o~ = 5.0, p- = 1.0, and e = 0.10. The phase-plane portraits were obtained on the analog computer. 

occurring in the long-time solutions (attractors) described by equation (1) as the amplitude g or 

frequency ~ of the excitation is slowly changed. The results are summarized in what is called a 

state or bifurcation diagram, which presents transition curves enclosing regions of stability in a 
two-dimensional  pa rame te r  space consisting of g and ~ ,  where it is assumed that only one of them 

is varied at a time across any transition curve. The results presented in this section were obtained 

for the parameters  o~ = 4.0, 6 = 5.0, w~ = 1.0, e = 0.1, and /x = 1.0, corresponding to the case of 

the double-well  potential.  
To determine the global bifurcations, we used an analog computer  to simulate the system 

described by equat ion (1), a signal analyzer to determine the power  spectrum (Fast Fourier  

Transform,  FFT) of the response signal, and an oscilloscope to display the phase portraits of the 

output  signals consisting of u and li. We began the simulation by fixing g and ~ and choosing 

initial conditions. We waited until a steady state was reached, as indicated by no variations in the 

displays of the FFT, phase portrait ,  and Poincar6 map. Then,  we recorded the values of the 

excitation paramete rs  g and f~ and plotted the phase portrait ,  Poincara map,  and FFT of the 

at tractor,  which may be a point,  a limit cycle, or a chaotic attractor.  Fixing the excitation 
parameters ,  we slowly varied the initial conditions to locate other attractors if they existed. Then,  

we gradually changed one of the excitation parameters  and observed qualitative changes in the 

phase portrai t ,  Poincarfi map,  and FFT to locate the bifurcations. 
Near  the bifurcation points, a steady-state solution may require many cycles to develop and 

this can be expensive on a digital computer .  For example,  to achieve a steady-state solution may 
require 50,000 cycles (of the excitation) with 100 points per  cycle using a 5th- and 6th-order 
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Fig. 2. Phase-plane portraits and accompanying power spectra of the response obtained by analog-computer simulation 
when ~q = 2. 
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Runge -Ku t t a -Ve rne r  algorithm. However ,  on the analog computer ,  these bifurcation points can 
be easily located because the integration process can be speeded up and only seconds are needed 
to achieve a steady-state solution when operating in a high speed mode (accomplished by time 
scaling the computer) .  Once a steady state has been achieved, any system parameter  can be varied 
continuously, thus slightly disturbing the system from its steady-state response. In this manner ,  an 
attractor that has a very small domain of attraction an d /o r  domain of existence may be realized by 
starting with system parameters  that enlarge its domain of attraction and /o r  existence. 

As an example,  Figure 2 shows the results obtained by keeping [l fixed at 2.0 and varying 
only the amplitude of the excitation. These results show multiple attractors including the 
simultaneous coexistence of a limit cycle and a chaotic response, the familiar period-doubling 
bifurcations leading both to chaos and extinction, and windows of 3•  6 x ,  7 x ,  and 12x 
bifurcations within the chaotic regions. In addition, their corresponding frequency spectra are 
shown in column B for the large-amplitude attractors enclosing the three equilibrium positions, in 
column C for the small-amplitude attractors encircling the right equilibrium position, and in 
column D for the nontrivial attractors enclosing the left equilibrium position. 

A periodic orbit of a dissipative system of the type described by equation (1) is known to lose 
stability through two types of bifurcations [6]: period-doubling (flip) or cyclic-fold (saddle-node, 
tangent, turning-point) bifurcations. For each attractor there is a region of parameter  space in 
which it exists; this region is enclosed by bifurcation curves across which qualitative changes occur 

in the response of the system; that is, the response of the system changes from one attractor to 
another.  The period-doubling bifurcation is often the beginning of a full sequence of period- 
doubling bifurcations, leading to a chaotic attractor. On the other  hand, the cyclic-fold bifurcation 
is associated with a jump to another  attractor which exists in the same region of parameter  space. 
Similarly, a point attractor in this system may lose its stability, resulting in a jump to another  point 
attractor or a periodic attractor. 

Figure 3 shows a small region of parameter  space g - .Q (scaling fl  with respect to coc, to make 
it nondimensional) where four attractors coexist: three periodic attractors and one point attractor 

can be obtained by choosing appropriate initial conditions. The attractors are shown in the insets 
(a)- (d)  at a typical point. At t ractor  (a) exists in region A below the curve 1-2, which is a 

8 

g ~ (C)o 6 
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0 '1/ . . . .  
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Fig. 3. Bifurcation map in the g-.q plane for four of the attractors shown in Figure 2. 
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period-doubling boundary.  As a pa rame te r  is changed by crossing the curve, a period-doubling 
bifurcation takes place. In a very narrow region near curve 1-2 another bifurcation (a cyclic-fold- 

not shown) takes place inducing a jump to a larger attractor.  At t rac tor  (b) exists in area B formed 

by a wedge that comes f rom the right enclosed by curves 3 -4  and 3-5 ,  corresponding to cyclic-fold 

(saddle-node) and period-doubling bifurcations. If a pa ramete r  is varied across 3 -4  by moving to 
the region below it, the at tractor  becomes unstable and a jump to a point at tractor  at the origin is 

observed;  the origin, a t t ractor  (d), is stable throughout  the figure. On the other hand, a variation 
across 3-5  induces a period-doubling bifurcation that causes at tractor  (b) to t ransform into 

at t ractor  (c) and vice versa. At t rac tor  (c) is stable between 3-5  and 3-6.  When crossing 3-6,  

at tractor  (c) undergoes a sequence of period-doubling bifurcations leading to chaos. The circles 

mark  the points where chaotic behavior  was observed during simulation. 

The global structure of the state or bifurcation diagram can be characterized as wedges or 

tongues in the pa rame te r  space; these wedges show the range of parameters  which, given proper  

initial conditions (depending on the basin), leads to the attractor.  The boundaries  of the wedges 

are coded to indicate the types of instabilities to be observed when a pa ramete r  value is slowly 

varied across the curve. The bifurcation diagram provides useful information regarding the 

instabilities of the system and the behaviors that are most likely to occur after the instability. 

Figures 4 and 5 summarize  the results of extensive analog simulations of equation (1) for a 

broad port ion of the pa ramete r  space g - ~-~. These figures represent  the qualitative description of 

the behavior  of the system to local changes in the amplitude or frequency of excitation, The 
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Fig. 4. Bifurcation map for a broad portion of the g-s plane for a = 4.0, 6 = 5.0, /~ = 1.0, and e = 0.10. 
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Fig. 5. Additional attractors and their bifurcation boundaries. 

diagram is not complete in some regions of the parameter space: in particular, in the super- 
harmonic region, the coexistence of attractors with complicated and entangled basins makes the 
mapping task very cumbersome. 

Figure 4 shows fourteen typical attractors which undergo bifurcations similar to those shown 
in Figure 3. The lines are coded as follows: solid lines represent period-doubling bifurcations, 
dashed lines show cyclic-fold instabilities, and dotted lines show transcritical bifurcations of the 
trivial attractor. Figure 5 is actually part of Figure 4 and is shown separately for clarity. Most 
attractors exist in a wedge-shaped stable region mentioned before and enclosed by bifurcation 
curves. As shown in Figure 4, the wedge typically has a period-doubling bifurcation on its upper 
left portion and a cyclic-fold bifurcation on its lower right portion. As in Figure 3, the circles 
represent the locations where chaotic behavior was observed. The areas where the wedges 
intersect represent coexistence (multistability) of attractors (solutions). In these cases, there is the 
possibility that once an attractor becomes unstable the system would jump to another attractor in 
the region. 

3. Fundamental  Parametric Resonance 

Fundamental parametric resonance occurs when the excitation frequency is nearly equal to the 
linear natural frequency of the system (i.e., ~ o . ) .  It is not, however, the most common 
parametric resonance. It requires a larger forcing amplitude for its activation. A detailed analysis 
of this system, including a perturbation analysis and extensive simulation on both the digital and 
analog computers can be found in Zavodney and Nayfeh [8]. 

For small oscillations about the origin, an approximate solution of equation (1) is given by 



t4 = a cos(a;,,t + / 3 )  + e{ (6ae /6oog)  cos(2oo,,t + 2/3) 

+ [ga/2[}(~} + 20o,)] cos[(f l  + o<)t  + /3 ]  

+ [ g a / 2 ~ ( [ }  - 2a~,,)] co s [ (~  - o0,,)t - / 3 ]  - aa-'/2~o~} + - . .  
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(3) 

= - e t z a  + (5ee6ga2/24oo~)  sin y + (e2gZa/8~o~) sin 2 y ,  (4) 

5 e : 6 g a :  : : g g  a 
, ~  cos "y + ~ cos 2 T + g-o-a, 

8~o;, 8co. 

(5) 

where  

2 F o- = 1} - co,,, "y = eeo'r - / 3  (6) 

and 

%=(3a/8o~,) (562/1_wi~) (7) 

Equa t ions  ( 4 ) - ( 6 )  have  five possible  f ixed-point  solutions:  howeve r ,  at mos t  only three  are stable,  

For  the case of  the single-well  po ten t ia l  in Figure la  the effect  of  varying the ampl i tude  of a 

per fec t ly  tuned  exci ta t ion force is shown in Figure 6. The  results show that  there  are four  

b i furca t ion  values  of  the exci ta t ion ampl i tude :  they divide the exci ta t ion ampl i tude  axis into five 

intervals .  Hence .  the nonl inear i ty  is seen to do four  things: (a) it causes  the l inear  b o u n d a r y  

15 
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Fig. 6. Var ia t ion  of the s t eady- s t a t e  r e sponse  a m p l i t u d e  a wi th  the exc i t a t ion  a m p l i t u d e  g showing  s tab le  ( - )  and  uns tab le  

(---) r eg ions  for cr = 0.0, a = 4.(I, ~ = 3.(I, p. = 1.0, [} = 1.0, and  e = 0.10. 
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(which would be a straight vertical line at g =  11.1394) to bend over to the right, yielding 
finite-amplitude responses, (b) it causes the boundary curve to bifurcate into two boundary curves, 
(c) it causes the amplitude-response curve to fold over itself resulting in multiple solutions in 
certain intervals, and (d) because of the folding, it causes a subcritical instability. The significance 
of these effects is to limit the infinite response amplitudes predicted by linear theory to finite 
values and admit finite-amplitude solutions for values of the excitation amplitude that are below 
the critical value determined from a linear analysis. The accuracy of the perturbation solution 
given by equations (3)-(7)  was verified by numerically integrating the original differential 
equation (1). A comparison of the analytically predicted responses and the numerically obtained 
responses is shown in Figures 7 and 8. The frequency- response curve, which could be either 
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Fig. 7. Phase-phme portraits of  the three steady-state solutions obtained by (i) numerical  integration and (ii) as predicted 
by the per turbat ion solution for o- = 0.0, oe = 4.0, ~ = 3.0, ~, = 1.0, g = I1.0, ~ /=  1.0, and e = 0.I0. 
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Fig. 8. Time history of three responses  shown in Figure 7 comparing the per turbat ion solution ( . - . )  with numerical  
integration ( - - ) .  
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hardening (by bending over to the right) or softening, is shown in Figure 9. This figure shows five 
solutions for certain values of detuning. Again we see that the effect of the nonlinearity is to 
introduce multiple solutions and limit the response amplitudes to finite values. The region on the 
frequency axis where the trivial solution is unstable corresponds to the instability region predicted 
by linear theory. As shown here,  the nonlinearity extends the region for parametric instability 
predicted by linear theory to the right slightly and to the left significantly. From Figure 6, we see 
only a slight extension of the region of parametric instability to the left for the perfectly tuned 
c a s e .  

For the case of the double-well potential shown in Figure lc, oscillations about the left well 
are governed by 

2 + 0.22 + 3x + 0.7x 2 + 0 . 0 4 x  3 + O.lgx cos ~ t  = g cos f~t (8) 

This equation was obtained from equation (1) by the linear transformation x = u + 10, which 
shifts the coordinate system so that the left equilibrium position is located at the origin. We note 
that the linear natural f requency of the system for oscillations about the left equilibrium position is 
X/-J. In general, the linear natural frequency in a well depends upon the system parameters.  
Fur thermore ,  it follows from equation (8) that these oscillations are now subject to combined 
parametric and external (additive) excitations. Consequently,  nontrivial attactors will occur in the 
left well for all values of excitation below that corresponding to the collision of these attractors 
with the unstable limit cycle, including those for which no steady-state parametric responses exist 
about the origin in the right well. However ,  because the input is a combination of external and 
parametric excitations, it is possible that the interaction of the two excitations can either quench 
or accentuate the resonance [7]. Fur thermore ,  when the amplitude of vibration becomes large 
enough,  the trajectories will escape the left well. 

When the amplitude of excitation is increased to g = 4.50, large-amplitude oscillations about 
all three equilibrium positions are possible. Because three attractors coexist, the initial conditions 
determine the steady-state response, as shown in Figure 10. Using a digital computer ,  we repeated 

Cl 
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/ 
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d J  j 

. . . . .  I 
. . . . . .  I . . . .  o II, J 

-~oo -50 ~ o ~% oi % 3o 

Fig. 9. Variation of the steady-state ampli tude a with the frequency detuning o" showing stable ( - - )  and unstable ( . . . )  
regions for c~ = 4 . 0 ,  ~ = 3 . 0 ,  # = 1.0, g =  15.0, [~= 1.0, and e =0 .10 .  
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(a) (b) 
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~,~ ~ , .  

Fig. 10. Phase-plane  por t ra i ts  and t ra jector ies  leading to the three at t ractors  for o- = 0.0, ce = 4.0, ,5 = 5.0 , /x  = 1.0, g = 5.0, 
O, = 1.0, and e = 0. I0. The  initial condi t ions  used were  u ( 0 ) =  0 and (a) u ( 0 ) =  - 4 . 0 ,  (b) u ( 0 ) =  - 5 . 0 ,  (c) u ( 0 ) -  - 6 . 0 .  

this procedure over  the domain - 2 0 ~ < u ~ < 1 0  and -20~< t i  <~20 using a step size of 0.10 and 

obtained a map that contains 120,699 points corresponding to sets of initial conditions (IC's)  and 

consequently,  the same number  of numerical  integrations of equat ion (1) of  sufficient durat ion to 

insure a steady state. By color coding the attractors,  one can easily see the domains of at traction,  

as shown in Figure 11. Some have even introduced shades of the base color to indicate a third 

dimension; for example ,  by dividing the time required to reach steady state into five groupings,  

the IC's  that take the response to the red at t ractor  could be subdivided into five shades of red, 

each darker  shade corresponding to a longer time required to achieve steady state. From this basin 

map,  we can conclude that it would be very difficult to predict which steady-state solution would 

constitute the response;  however ,  we note that the trivial solution has the fewest number  of 

points, so statistically, it would be the least likely response.  One could count the number  of points 

that belong to each at tractor  and give a probabil i ty based on these numbers .  

As the ampli tude of excitation is increased above 4.50, many bifurcations take place, as 

shown in the bifurcation map in Figure 4. There  are several regions of chaos, which always appear  

on the left side of and above the bifurcation boundaries.  One of these chaotic at tractors,  when 

g = 22.0, is shown in Figure 12a. A Poincard map for this at t ractor  is shown in Figure 12b at the 

instant the excitation reached its max imum value (zero phase angle). The Poincard maps for other  

selected values of the phase angle are shown in Figure 13. 

(a) (b) 

- -  U 

~o ~- '~ ' 

Fig. 12. Phase-plane portrait (a) and Poincar~ map (b) of the system obtained by numerical integration of equation (1) 
showing a chaotic response for o--0.0, ~ 4.0, 6=5 .0 ,#=1 .0 ,  g=22.0, f~=l.O, and e-O.  lO. 
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Fig. Ii .  Fractal basin boundaries separating the domains of attraction for the three attractors shown in Figure 10; black 
denotes the large outer attractor, red denotes the attractor in the left well centered over the focus at u = - 10, and white 
denotes the trivial attractor at the origin, The variable ranges are -20  ~ u ~ I(I and -21) ~< ~i ~< 2(I using a step size of 0.10. 
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(a) (b) (c) (d) 
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Fig. 13. Poincard  maps  of the chaot ic  a t t r ac to r  s h o w n  in F igure  12 at d i f fe ren t  phase  ang les  of the exc i t a t i on :  (a) 4, = 0 ~ 

(b) 4 , = 4 5  ~ (c) d , = 9 0  ~ , (d) 4 , = 1 3 5  ~ , (e) 4 , = 1 8 0  ~ (f) 4 , = 2 2 5  ~ , (g)  4 , = 2 7 0  ~ , and  (h) d , = 3 1 5  ~ . 

Although not shown on the bifurcation map, we found solutions that had period six and, after 
a period doubling, had period twelve motion. These periodic attractors appeared for values of 

g = 20.57 and g = 20.63, respectively, and were bounded by chaotic attractors on both sides. We 
found period seven attractors for g = 22.6 and period three attractors for g = 22.7. These periodic 
attractors were bounded by chaotic attractors on both sides, but appeared to jump between the 
period three and period seven motions. To realize them required an extensive amount  of time. 
These attractors did not appear  to follow the typical period-multiplying and demultiplying 
bifurcations leading to and from chaos. In addition to the exotic attractors found on the analog 
computer ,  we found period five and period seven motions on the digital computer .  

When nonlinearity is included in the damped Mathieu equation, the damping continues to 
play a minor role in the case of fundamental  parametric resonance. For selected values of negative 
detuning, the variation of the response amplitude with the damping coefficient is shown in Figure 
14. This behavior has two distinctive features: (a) the curves are initially relatively fiat, which 

implies that increases in the damping coefficient do not significantly affect the resonance,  and (b) a 
critical value of damping, always exceeding the value determined from a linear analysis, must be 
exceeded before the resonance can be at tenuated for all possible initial or disturbed states. For  all 
of the large-amplitude and most of the small-amplitude cases, the suppression is a jump behavior 
caused by a cyclic-fold bifurcation. This behavior is in sharp contrast with the gradual at tenuation 
in the response amplitude caused by a gradual increase in the damping coefficient that occurs in 
externally excited systems. We refer the reader  to Zavodney and Shihada [12] for a discussion of 
the role of damping in parametrically excited systems. 
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Fig.  14. V a r i a t i o n  o f  the  a m p l i t u d e  wi th  the  d a m p i n g  coef f i c ien t  p. fo r  s e l e c t e d  f r e q u e n c i e s  o f  e x c i t a t i o n :  s t ab le  ( - - )  a n d  

u n s t a b l e  ( . . . )  r e s p o n s e s  for  c~ = 4 .0 ,  t$ = 3 .0 ,  g = 15.0,  .Q = 1.0, a n d  .~ : 0 .10:  (a) (r = - 1 5 , 0 ,  (b)  o" = - 1 2 . 0 ,  (c) o" = 0,11, 

(d)  o - =  9 .0 .  (e) (r = 12.0. 

4. Principal Parametric Resonance 

A principal parametric resonance occurs when the excitation frequency is nearly twice the linear 
natural frequency of the system (i.e., ~)~2~%). It does not require as large an excitation 
amplitude for its activation as the second-order fundamental parametric resonance because it is a 
first-order resonance. A detailed analysis of this system, including a perturbation analysis and 
extensive simulation on both the digital and analog computers can be found in Zavodney et al. [9]. 
Szemplinska-Stupnicka et al. [13] treated the case of symmetric two-well potentials. They used 
approximate solutions to predict the stability of periodic solutions in a well as precursors to chaos. 
Nayfeh and Sanchez [14, 15] used a combination of second-order perturbation solutions and 
Floquet theory to determine symmetry-breaking, flip, and cyclic-fold bifurcations as precursors to 
chaos and unbounded motions. 

For small oscillations in the right well centered about the origin (one of the implicit 
assumptions underlying the perturbation solution that restricts motions to small but finite 
oscillations), the perturbation solution is given by: 

(1 , t { 1  u = a c o s  ~ ~ t  - ~ y + e ~ 6a 2 c o s ( l I t - " ) 1 )  

+ 29~(fl+2~o,,) cos Q t -  ~ y - ~ ~a 2 + - . - ,  (9) 
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- -  - -  a sin y ,  b=-e tza-  4w ~ 1 -  2w ~ 

~ ~ " 3 "- 1( g__g_ __la 2 ) ] + __e g ( 1 _  e o- ) aj~ = o , a :  - -  
2w o 4 %  200 o 

(lo) 

(11) 

eo- = f t  - 2% and y = eo-t - 2t3. (12) 

The frequency-response equation in this case is given by 

ecx,a = 3 cr 64wi ] + - - - +  ..-77--; 1 -  - / x  2 
- - - -  2w, 16w~ ( 1 3 )  

The variation of the steady-state response amplitude with the amplitude of excitation is shown 
in Figure 15. Both principal and fundamental  parametric resonances exhibit the effect of the 
nonlinearity on the system response: it limits the infinite responses and causes a folding of the 
response curve in the direction of the nonlinearity: that is, a folding to the left for a negative 
detuning and a softening-type nonlinearity and a folding to the right for a positive detuning and a 
hardening-type nonlinearity. As in the case of fundamental  parametric resonance,  the overhang 
causes a subcritical instability. The frequency-response curve is shown in Figure 16 and reveals a 
softening behavior because it is bent to the left. This behavior is similar to that of the 

frequency-response curve of the fundamental  parametric resonance,  which is also bent to the left. 
This behavior may seem surprising because the coefficients of both the quadratic and cubic 
nonlinearities are positive. As born out by the perturbation analysis, the effective nonlinearity c~, 
which is determined by equation (7), turns out to be negative for the parameters  used. We note 

from equation (7) that the effect of the quadratic nonlinearity is always softening regardless of the 
sign of & whereas the effect of the cubic nonlinearity depends upon the sign of ~. So, it is possible 
to have an effective nonlinearity that is zero for appropriate choices of a and 6. It turns out that 

the perturbation solution breaks down in this region, hence we need a higher-order perturbat ion 
theory for the regions where the effective nonlinearity tends toward zero. Away from this region 
the perturbation solution gives good results. A phase portrait and the long-time history predicted 
by the perturbation solution are compared with the results of numerical integration of equation 
(1) for one of these cases in Figure 17. 
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[ I I I I 

IO0 
g 

Fig.  15. V a r i a t i o n  o f  the  s t e a d y - s t a t e  r e s p o n s e  a m p l i t u d e  a wi th  the  exc i t a t i on  a m p l i t u d e  g s h o w i n g  s t ab l e  ( - - )  a n d  

u n s t a b l e  ( . . . )  r e g i o n s  for  ~ = 4 .0 ,  6 = 3 .0 ,  ~ = 1,0, ~ = 2 .0 ,  a n d  e = 0.(105: (a) ~r = 0.(L a n d  (b)  cr = - 1 5 . 0 .  
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Fig. 16. Variation of the steady-state response amplitude a with the excitation frequency detuning o- showing stable (--)  
and unstable (---) regions for c~ = 4.0, 6 = 3.0, /x = 1.0, g = 20.0, ~ = 2.0, and e = 0.005. 
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Fig. 17. Phase-plane portraits of the steady-state nontrivial response comparing the (a) perturbation solution with (b) 
numerical integration of the original equation, and inset (c) shows the time traces of the perturbation solution (. - .) and 

numerical simulation (--)  superposed for a = 4.0, ~ = 3.0, /x = 1.0, g = 20.0, f~ = 2.0, and e = 0.005. 

A s  in t he  case  o f  f u n d a m e n t a l  p a r a m e t r i c  r e s o n a n c e ,  t he  p e r t u r b a t i o n  s o l u t i o n s  o b t a i n e d  a re  

va l id  fo r  s m a l l - a m p l i t u d e  m o t i o n s  a b o u t  an  e q u i l i b r i u m  p o s i t i o n .  W h e n  t h e s e  t r a j e c t o r i e s  b e c o m e  

u n s t a b l e ,  t he  r e s p o n s e  will  j u m p  to a n o t h e r  a t t r a c t o r .  In  the  case  o f  t he  d o u b l e  wel l ,  t h e r e  is an  

a t t r a c t o r  in t he  lef t  we l l  t ha t  r e su l t s  f r o m  c o m b i n e d  e x t e r n a l  a n d  p a r a m e t r i c  e x c i t a t i o n s ,  as 

h a p p e n e d  in t he  case  o f  f u n d a m e n t a l  p a r a m e t r i c  r e s o n a n c e .  A s  the  e x c i t a t i o n  a m p l i t u d e  is 

i n c r e a s e d  to  g = 3 .40,  a l a r g e - a m p l i t u d e  a t t r a c t o r  a p p e a r s  and  e n c i r c l e s  all t h r e e  e q u i l i b r i u m  

p o s i t i o n s ,  as s h o w n  in F i g u r e  2. B o t h  a t t r a c t o r s  ( l a r g e  a n d  in lef t  we l l )  e x p e r i e n c e  p e r i o d - d o u b l i n g  

b i f u r c a t i o n s  as g i n c r e a s e s ;  t he  l a r g e - a m p l i t u d e  a t t r a c t o r  e v e n t u a l l y  b e c o m e s  c h a o t i c  wh i l e  t he  
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(a) tb) 

(c) (d) 
Fig. 18, Basin of attraction for the system shown in Figure 2 obtained by numerical integration for ~ = 2  for the excitation 
levels (a) g = l),l). (b) t, = 1.5. (c) g = 2.0, and (d) g = 3./). Insets (c) and (d) reveal a fractal boundary. The variable ranges 

are identical to those in Figure 11, 
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attractor in the left well never becomes chaotic because of its collision with the unstable limit 
cycle - it simply loses its stability leaving only the large-amplitude attractor and a point attractor at 
the origin. As the amplitude g of excitation increases further,  the system bifurcates many times; 
sometimes the trajectories become chaotic and sometimes a chaotic attractor coexists with a 
periodic attractor. Sometimes one of the attractors will eventually become unstable while the 
other  attractors are unaffected. The behaviors are summarized in the bifurcation diagram in 
Figure 4. 

When the excitation level is increased to g = 1.5 starting from g = 0, the fixed point at the left 
equilibrium position bifurcates into a limit cycle. The basins of attraction of this limit cycle and the 
trivial response at the origin are shown in Figure 18b. We note that the outbound separatrices 
deform but continue to be smooth. As g is increased to 2.0, the basin boundaries appear to be 
fractal, as shown in Figure 18c. As g is increased to 3.0, the boundaries become more 
complicated, as shown in Figure 18d. 

Figure 2c shows that when g = 3.4, there are three possible responses: a trivial response at the 
origin because g is below the critical excitation level for the activation of the parametric 
resonance, a small-amplitude response at the forcing frequency in the left well, and a new 
large-amplitude attractor that encircles all three equilibrium positions. The unforced response 

shown in part (a) of Figure 2 shows the two inbound separatrices approaching the saddle point 
whereupon they branch and spiral into the two attracting loci. These inbound separatrices divide 
the domain of attraction into two distinct regions: a large region leading to the left attractor and a 
small region leading to the origin. This behavior was also observed in the digital-computer 
simulation, as shown in Figure 18a. The displacement of the separatrix that approaches the saddle 
point from below is plotted as a function of time until it reaches the saddle point; then both 
outbound separatrices are shown splitting from the equilibrium position and freely oscillating to 
their foci. When g = 4.20, three attractors coexist: the fixed point at the origin, a limit cycle 
encircling the left equilibrium position, and a large attractor encircling the three equilibrium 
positions. The basin of attraction for this new attractor is shown in red color in Figure 19a. The 
basins of attraction appear  to be fractal. A small region near the center was enlarged ten times 
and is shown in Figure 19b. It reveals a Cantor-like set. 

5. Summary 

In this paper,  we have summarized the behavior of a nonlinear dynamical system having quadratic 
and cubic stiffness terms subject to a harmonic parametric excitation. We have considered a broad 
frequency range in general and the more common principal and fundamental parametric reso- 
nances in particular. Although they have distinct behaviors, they also share some. The nonlineari- 
ty is seen to basically limit the exponential  growth predicted by linear models even when damping 
is present. The effects of the quadratic nonlinearity are to contribute to the nonlinear frequency 
shift, generate the second harmonic,  and generate the drift term in the response. The effect of the 
cubic term is less pronounced because its effects are to contribute to the nonlinear frequency shift 
and generate the third harmonic observed in the spectra of the responses. 

The second-order  perturbation expansions give quite good r e s u l t s - b o t h  qualitatively and 
quantitatively for small hut finite-amplitude responses about an equilibrium position as long as the 
first-order nonlinear shift (i.e., fo%a 2) to the frequency is not near zero. However ,  when the 
effective nonlinearity vanishes due to appropriate choices of the coefficients c~ and a of the cubic 

and quadratic nonlinearities, so does the limiting effect of the nonlinearity. Hence,  to second 
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(a) 

(b 

Fig. 19. Basin of attraction for the system shown in Figure I2 for g = 4.2. The  red region denotes  the new large ampli tude 
attractor; (a) variable ranges identical to those in Figure 11, (b) enlarged portion near the center  for the variable ranges 

- 7 . 2  ~< u ~< - 4 . 2  and -2.0~< zi ~<2.0. 
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order, the response is very large, and one needs to carry out the expansion to a higher order. 
With sufficiently large excitation levels, many solutions were observed and charted, and their 

domains of existence were determined. Period-doubling and cyclic-fold bifurcation boundaries 
were generated using analog-computer simulations. Solutions characterized by period T, 2T, 3T, 
4T, 5T, 6T, 7T, 8T, 12T, and 16T were observed in the simulations. Chaotic responses were also 
observed. For two points in the bifurcation map (one corresponding to a fundamental parametric 
resonance at f~ = 1 and one corresponding to a principal parametric resonance at ,O = 2) where 
three attractors coexist, the basin maps showing the domains of attraction were plotted. For the 
case of principal parametric resonance, three transitionary stages were plotted, showing the 
development of a fractal boundary from a smooth boundary. 

In some cases increasing a control parameter, such as the level of excitation g, causes an 
attractor to lose stability and go to another attractor but decreasing g to its previous value does 
not always recover the original attractor due to the coexistence of attractors. Although this is a 
single-degree-of-freedom system, it displays rich and complicated dynamics and has many 
coexisting attractors. In some cases, periodic attractors coexist with chaotic attractors. 
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