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Abstract. Newton's second law is used to develop the nonlincar equations describing the extensional-flexural-flexural-
torsional vibrations of slewing or rotating metallic and composite beams. Three consecutive Euler angles are used to relate
the deformed and undeformed states. Because the twisting-related Euler angle & is not an independent Lagrangian
coordinate. twisting curvature is used to define the twist angle. and the resulting equations of motion are symmetric and
independent of the rotation sequence of the Euler angles. The equations of motion are valid for extensional. inextensional.
uniform and nonuniform. metallic and composite beams. The equations contain structural coupling terms and guadratic
and cubic nonlinearities due to curvature and inertia. Some comparisons with other derivations are made. and the
characteristics of the modeling are addressed. The second part of the paper will present a nonlinear analysis of a symmetric
angle-ply graphite-epoxy beam exhibiting bending-twisting coupling and a two-to-one internal resonance.
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1. Introduction

The dynamics and control of flexible beams are of interest in connection with helicopter rotor
blades. prop-fan blades. aviation propeller blades, wind-turbine blades. lengthy robot man-
ipulators. large-space structures. and other systems that perform large and/or complex motions.

In the development of nonlinear cquations of motion for flexible beams. three successive
Euler-like rotations are commonly used to relate the deformed and undeformed states [[-14]. But
different sequences of Euler rotations will result in different equations of motion [1]. Morcover,
the equations are not symmetric because the twist-related Euler angle ¢ is not an independent
Lagrangian coordinate [2, 3]. Hodges and Dowell [2] developed a comprehensive set of equations
with quadratic nonlinearities to describe the dynamics of beams. They also identified several
nonlinear terms. To evatuate the theory of Hodges and Dowell [2], Dowell, Traybar, and Hodges
[4] carried out an experiment on a simple, non-rotating beam with a tip weight. The results show
that there are systematic differences between theory and experiment when tip deflections become
large because the cquations of motion include only quadratic nonlinearities and are cxpanded
about the undeformed rather than the deformed position [5]. Hodges er al. [6] stated that the
nonlincar cquations governing flexural deformations arc inconsistent unless they include all
nonlincar terms to the same order. Rosen er @f. [3.7] derived a set of cquations that is more
accurate than those of Hodges and Dowell [2] by including some nonlinear terms with order
higher than two. Their numerical results are in good agreement with the experimental data of [4].
Crespo da Silva and Glynn [8] and Crespo da Silva [9] used the extended Hamilton's principle to
derive mathematically consistent. nonlincar third-order equations of motion for inextensional and
extensional isotropic beams, respectively.

Minguet and Dugundji [13] used Newton's second law and Euler rotations to derive the
cquations of motion for composite beams, but they solved the nonlinecar trigonometric cquations
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directly for arbitrary large static deflections. Sato. Saito. and Otomi [15] treated parametric
vibrations of a simply supported horizontal beam carrying a concentrated mass under the influence
of gravity. The nonlincar response of a slender cantilever beam carrying a lumped mass to a
principal parametric base cxcitation was investigated theoretically and experimentally by Zav-
odney and Nayfeh [16]. Hinnant and Hodges [17] combined multibody and finite-clement
technology to analyze the nenlincar vibrations of a cantilever beam. Their results show good
agreement with the experimental data of [4].

Because of their high strength-to-weight ratio. long fatigue life, resistance to corrosion, high
damping. structural simplicity, and possible usc for aeroelastic tailoring. advanced laminated
structures made of fiber-reinforced composite materials. such as boron-epoxy. graphite-cpoxy. and
boron-aluminum, have emerged as primary materials for rotor blades of a new gencration of
helicopters and for other advanced acrospace vehicles and are showing great promise for
improved performance. Adams et al. [18] stated that shear deformation can be ncglected for
isotropic beams if the aspect ratio L/h (i.c., length/thickness) >20; but for unidirectional
carbon-fiber-reinforced plastics. an aspect ratio the order of 100 is necessary if shear effects are to
be ignored. Rao er al. [19] stated that when L/r > 100, where r denotes the radius of gyration. the
shear effect and rotary inertia are ncgligible. Kapania and Raciti [20] indicated that, for thin
composite plates whose length/thickness is greater than 50, transverse shear effects can be
neglected in the large deflection theory. One important clastic behavior of composite structures is
the clastic coupling among cxtensional. bending. and torsional stiffnesses. which is desirable in
some cases. For example. the extension-twisting coupling produces a different twist distribution
when a two-speed rotor of a helicopter is rotating at different speeds. Morcover. the bending-
twisting coupling produces a pitch-flap stability of helicopter rotor blades. But. for a composite
structural element. eclastic couplings may result in complicated vibrations, especially in flexible
structures. Hence. developing a precise nonlincar modeling of composite beams has become an
important goal of rescarch in recent years.

The purpose of the present paper is to generalize the equations derived by Crespo da Silva
and Glynn [8] for the case of isotropic beams to the case of composite beams. We use Newton's
second law to develop the nonlincar cquations governing extensional-flexural-flexural-torsional
vibrations of a slewing or rotating beam. Three consccutive Euler angles are used to relate the
deformed and undeformed states. Moreover, the definition of twisting curvature is uscd to define
the twist angle. The resulting cquations of motion are symmetric and independent of the rotation
sequence of the Euler angles.

2. Derivation of the Equations of Motion

For a long slender beam with small strains and moderate deflections and rotations, the following
assumptions arc usually true: (a) warping. shear deformation. and Poisson ctfect are negligible:
and (b) bending and twisting moments at any arbitrary position along the beam are proportional.
respectively, to the nonlinear expressions of the local bending curvature and twist rate. Although
warping of the cross-section is neglected. its influence on the torsional rigidity can be accounted
for by using the theory of clasticity [21]. To simplify the analysis. we assume that the beam is
initially straight and has closed cross-sections.

Following Crespo da Silva and Glynn [8]. we introduce two coordinate systems, as shown in
Figure 1. The x-y-z coordinate system is fixed to the hub, and we will call it the reference
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Fig. 1. Coordinate systems: x-y-z = reference frame. which is fixed on the hub: { — 7 — ¢ coincides with the principal axes
of the cross-section. which is a local frame fixed on the ¢ross-section.

coordinate system. The & —n — ¢ system. which will be called the local coordinate system,
coincides with the principal axes of the observed differential element. Here we use threc
consccutive Euler angles . 6. and ¢ to describe the rotation from the undeformed position to the
deformed one. The rotations arc cxecuted in the order shown in Figure 2: first. ¢ around the
z-axis: sccond. # around the y -axis: and last. ¢ around the &-axis. In other words, we assume
deformations in the following sequence: w. v. w. and ¢. This sequence is only tied to the
mathematical modeling.

It follows from Figure 2 that the transtormation that rclates the undeformed coordinate
system x-y-z to the deformed coordinate system & — 5 — {is

i, i
=Ty, (1
i. i

<

where i, i, . i, are basc vectors of the local coordinate system, i, i,. i, are base vectors of the

reference coordinate system. and the transformation matrix [ 7] is given by

1 0 0 cosd 0 —sinfllcosy sinyg 0
[T}=]0 cos¢ sing [0 1 0 —siny cosy 0. (
0 —sing cosdllsing 0 cosé 0 0 |

(89
~—
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Fig. 2. Three successive Euler angle rotations of a ditferential beam element.

According to transformation theory.

(r] "=171". (

[
~—

To avoid the calculation of comoving derivatives and troubles in evaluating Euler strains in the
derivation. we use the Lagrangian coordinate s, which is the distance from the origin of the x-v-z
coordinate to the undeformed position of the observed clement.

To obtain the relation between the curvatures and the Euler angles, we use Kirchhoft's
kinetic analogy [22]. It follows from cquation (1) and Figures 1 and 2 that the angular velocity of
the element is

w(s. 1) = i + 0i, + di, + Oi = wi, + wi, + @i . (4)

non

where

w, = b — drsin 6+ O sin g cos b . (5)
w, = dr cos 0 sin ¢ + 6 cos & + O cos i cos d + O sin P sin B sin b (6)
w. = i cos 6§ cos b — g sin & — O cos ¥ sin b + ® sin & sin 6 cos ¢ . (7)

and the dot stands for a/a¢. According to Kirchhoff’s kinetic analogy [22], the curvatures can be
obtained from equations (5)-(7) by replacing a/dr with a/as. where s is the deformed arce length
measured from the origin of the v-v-z coordinate system to the deformed position of the observed
element. and putting © =0 (because @ #0 corresponds to a rigid-body motion). Hence the



I. EQUATIONS OF MOTION 481

twisting curvature p, and bending curvatures p, and p_arce given by

pe=d — sinf . (8)
p, =1 costsing + 6 coso. (9)
p, =1 costcosd — 0 sind . (10)

where the plus stands for a/as. If ¢ denotes the normal strain along the &-axis. we have
ds=(l+e)ds. (1)
Morcover. letting
p,=pl+e) (12)

and substituting equations (11) and (12) into cquations (8)—(10). we obtain

p,=¢" —d'sing . (13)
p,)=(//'cosHsin b+ 0 cosh. (14)
P, =y’ cosBcosdp—0'sindd . (15)

where the prime denotes d/ds. We note that the p, are ‘normalized” and not real curvatures unless
the beam is inextensional.

Using the transport theorem. Kirchhoff's kinetic analogy. equation (1), and the fact that the
base vectors along the coordinates v, v and z are independent of 5. we obtain

T

as

k. Mo (16)

where the curvature matrix [K] is given by

0 /5; _l;n

[Kl=| -2 0 pe |, (17)
o, -p. 0

In the derivation that follows. the following nomenclature will be uscd:

£ A} rotary incrtia per unit of undeformed length, defined in local frame, {A}={A. A A} .
(el ) £ VAT T A AA
. . . . . 7
fa}: accelerations defined in reference frame, {a} ={a a0 a.} .
[ady] [ [ SRR
[C,]: translational damping matrix of a unit of undeformed length, defined in reference frame.
[C.]: shear damping matrix of a unit of undeformed length. defined in local frame (i.c.. twisting
and shear dampings).

. N . - . /
fd) - displacements defined in reference frame, {d} = {uvw} .
(S 1 1 !

{F}:  internal resultant forces defined in local frame. {F} = {F F.F,

V-
I
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M + dM

F +dF

pA

Fig. 3. Free-body diagram of a differential beam clement.

{M} . internal resultant moments defined in local frame. {M}={M M.M,}T .

{M"} : load per unit of undeformed length, measured in local frame.

(M"Y load per unit of undeformed length, mceasured in reference frame.

m: mass per unit of undeformed length.

{Q"}: load per unit of undeformed length, measured in local frame (c.g.. acrodynamic loads).
{Q"} ¢ load per unit of undeformed length, measured in reference frame (c.g.. gravity).

{w}: angular velocity defined in local frame.

[t follows from the free-body diagram in Figure 3, Newton's second law, and cquations (11). (12).
and (16) that, in the reference frame. the force-equilibrium equation is

d ! I 1. I 7
s UTPE TR0+ 107 = mia) + [C{d} (18)
and the moment-cquilibrium equation. in the local frame. is
a{M}
as

! . i R
KM+ {(1+e)i, xF} + (M7} +[T{M"} = {A} + [ [{ow} . (19)
To complete the formulation, we need to express {a}. { A}, {F}.and { M} in terms of w. v, w. .
f, and ¢.
Because the hub can only rotate, the acceleration of the observed element is given by the
formula

a=ai +ai, +ali.. (20)

where
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a,= 0w —O7(s+ u) + 20w + i . (20
a.=u, (22)
a.==0(s+u) 0w =200+ . (23)

To caleulate the rotary inertias A, A L and A . we use the Euler equations

Ac=jeo, = (], =)o, . (24)
A, =g, — (), —Jdw w, (25)
AS :jg(bi - (l-, _./17)(UE(va N (2('))

where j.. /. and j_are the rotary intertias per unit length of the beam. and e is expressed in terms
of the Euler angles as shown in equations (5)—(7). Hence. {A} can be represented in terms of .
#. and ¢ and their derivatives.

The last step to obtain a sct of complete equations of motion is to relate {F}and [ M) to the
three displacements and three rotations. In other words. we need constitutive cquations and
straim-displacement relations. The constitutive equations relate the three resultant forces and
moments to the six strains — one axial strain, two shear strains, one twisting curvature. and two
bending curvatures. And. the strain-displacement relations relate the six strains to the three
displacements and three rotations.

For the constitutive equations, we include all possible structural couplings. Hence. we express
the constitutive equations in the most general form

{FIF FM MM = [SHeve, v pep,p ) (27)

where the stiffness matrix [S] is given by

. Bw By D, D

[Ay An A By By B
Ap An An By By By
AL AL Ay By, By By (A] 8]
S1=\ B, B, B, D, D. D,.| 1B D] (28)
no Do By " 2 s (B]" D]
B D
B D

B., B, D, D,

- 13 R 33 13

and ., and . _arc the averaged shear strams, which are the same as those used in Timoshenko's
beam theory. We note that the submatrices [A]. [B]. and [ D] are not the same as those used in
the classical laminated theory (CLT) of plates [23]. In CLT. p, and y,, arc assumed to be zeros.
and the bending curvature in the n — ¢ plane is not zero, which is assumed to be zero for the beam
theory we develop here. Berdichevskii [24] shows that the geometrically nonlinear problem of
beams can be decoupled into a nonlincar one-dimensional vibration problem and a two-
dimensional section problem. To obtain analytically the stiffness matrices [A]. [B]. and [ D] by
solving the two-dimensional section problem. one can use theories [ 130 25] similar to the classical
laminated plate theory when the cross section is simple. or finite-clement methods [26, 27] when
the cross-scction is complicated.
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Fig. 4. (a) Transformation geometry, (b) relationship between displacements and Euler angles.

The strain-displacement relations relate the curvatures to the Euler angles as in equations
(8)=(10) and (12)=(15). It follows from Figure 4(a) and transformation theory that the relation-
ship between the axial strain e and the displacements is

e:\/(l+u'):+v’:+w':—1. (29)

The £-axis is chosen as the neutral axis of the beam and perpendicular to the cross-section. Hence
¢ and # can be represented (sce Figure 4(b)) in terms of the derivatives of the displacements as

1+ u . v’
COS Y= e SN (30)
(I +u'y +v'~ (1+u')y +v'~
Co(l+uy +u” . -’
cos B =y — — =, sinf = - - = (31)
(I+uw)y +o'"+w \/(1+u’)‘+v'“+w"

With these cquations, the unknown variables are reduced to four: namely, w. v. w. and ¢. which
means that only four of equations (18) and (19) are independent. The other two give expressions
for the internal shear forces in terms of these four displacements, as shown later.

Because the shear strains are functions of the local coordinates (1, £) on the cross-section.
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the shear ettect can only be included in the one-dimensional theory developed here in an averaged
sense. as in Timoshenko's beam theory. When the shear strains vy, and vy, are included. the &-axis
can be chosen as the neutral axis. and a shear coefficient [28] must be introudeed. and the shear
strains must be included in the expressions of {w}. {A}. and p,. Then, we need to solve six
second-order partial-ditfercntial equations or four highly coupled fourth-order partial-differential
cquations. However. for a long beam with a solid cross-section. the shear cffects are negligible as
indicated carlier.

Although gencral damping can be added to the equations of motion through the damping
matrices [C] and [C.]. in the following derivation we assume that the dissipation of energy due to
internal friction and relative motion between the beam and its support system can be modeled by
small, uncoupled. viscous dampers. If we neglect the shear strains and assume that any possible
external damping (c.g.. air damping) can be treated as an external load. we do not need to
consider the shear deformation related damping in the matrix [C.]. Consequently, we put

My 00 pe 000
(Cl=10 m 0 and [C.]=10 0 0]. (32)
0 0 0 00

Hereo wy. gy, g, and py denote the damping cocfficients with respect to w. v, w., and &,
respectively.

To implement the assumption that vy, = v, = 0. two artificial constraint forces A, (along the
n-direction) and A, (along the ¢-direction) are needed for the prevention of shear deformations.
The constraint forces can be looked as applied local loads and their values indicate the magnitude
of shear effect. Any other external load can be added to the cquations of motion whenever the
necd arises. but we drop them in the following expressions to simplify the equations. Expanding
cquations (18) and (19) viclds the following complete equations of motion:

[T\ F+ 15 (Fa+ As) + T F + X)) = ma, + pi (33)
[T F, + To(Fo+ A+ T (Fy+ A = ma, + p o, (34)
[T\ F, + Toy(Fy+ M)+ Tos(Fy+ A = ma. + posic | (35)
M~ p. M+ p M = A, + i, . (36)
Mot p, M, — pM, — (1 +e)(Fo+A) = A, . (37)
M= p M, oMo+ (1 e)(FotA)= A (38)

These are six equations governing the four unknowns . v, w. and ¢. Equations (37) and (38) can
be used to climinate the shear forces F, + A, and F; + A, from cquations (33)-(35). vielding four
fully nonlincar partial-differential equations for n. v.ow. and . Because u, v, w. and & are the
generalized displacements corresponding to the coordinates x. vy, z. and &, respectively, the

natural boundary conditions are

F =T F + Ty (Fy+ A+ Ty (Fot A) =0, (39)
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F =T F + To(Fy+ X))+ To(Fo+ A) =0, (40)
F.=T, F + T (Fo+ A+ To(Fo+A) =0, (41)
M, =0, (42)
M =T, M, +T. .M =0, (43)
M. =T M.+ T M,=0, (44)

at s = L. The kinematic boundary conditions are

dov dw
H=v=—=w=—=¢=»0 (45)
ax ax

at s = (0.

3. Expanded Form of Equations of Motion

Because the complete nonlinear equations of motion (i.e.. equations (33)—(38) arc transcenden-
tal. closed-form solutions of this nonlinear, two-point-boundary-value-problem arc not available.
Moreover, direct numerical procedures suffer from instability and convergence problems. Alterna-
tively, one can use a combination of numerical and perturbation methods to solve them. The first
step in such an approach is to expand the nonlinear transcendental terms into polynomials about
the static equilibrium position. In what follows. we assume that the equilibrium position is close to
the undeformed position.

To obtain the governing equations in polynomial form for small but finite oscillations about
the undeformed position, we assume that u. v, w. ¢, and their derivatives are O(¢), where e (<€1)
is a small dimensionless parameter that is used as a bookkeeping device. In this section, we
expand all terms in equations (33)—(45) in Taylor scries by using MACSYMA [29] and keep
nonlincar terms up to O(¢'). thereby obtaining third-order nonlinear equations of motion. We
note that 1 can be O(«#) or ()(E:), which depends on the boundary and loading conditions. When u
is O(¢”). the obtained equations of motion contain extra higher-order terms. Normalization results
(shown later) show that the rotary inertias are O(e”), and this fact is used to simplify the
cquations.

Substituting for ¢ and ¢ from equations (30) and (31) into equation (13) and expanding the
result, we obtain

p, =@ Fuw = 2u'v"w — v w (46)

Owing to the use of finite rotations and the contributions from nonlincar bendings. ¢ does not
represent the real twist angle with respeet to the & axis {1, 3]. It can be shown that any twist
variable ¢. defined by using a sequence of three Euler-like rotations or even two sequential
rotations, is not a real twisting angle because the deformations w, v, w, and ¢ do not occur in
scquence as assumed in the mathematical model that uses Euler angles. Consequently, the
twisting curvature and kinematic boundary conditions must be used to define a real twist angle.
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Hence! we define the elastic twist angle y as
y=d¢ + J ("' = 2u'v"w —u'v'w')ds, (47)
1)
which satisfies the boundary conditions y(0, 1) = ¢(0. 1) = (. Henee,

pe =7 (48)

Here we keep all nonlinar terms due to the motion of the hub because © can be of O(#) (¢.g.. free
vibration of a hinged-free beam) or of O(1) (e.g.. slewing beam with large ©). Because the linear
incrtia term /.4 in the equation for y is O(¢'). we keep quadratic and cubic inertia terms in the
cxpansion of 4,. The term uyw, 1s cxpanded as

Ba@, = 1LY (49)

Using equations (27), (29), (12). (48). (14). and (15). and neglecting shear strains, one can
obtain the Taylor-series expansions of the internal force F| and the internal moments M,. M, and
M. Then, substituting the expanded form of e, 4, and A and the expressions of the internal
moments into equations (37) and (38). one can obtain the cxpanded forms of the shear forces
Fy+ A, and F, + A, Finally, using the expanded forms of Fi. Fo+ A Fo+ AL M M, M T, .

and A, . and equations (21)-{23) and (49), one can obtain the equations of motion as

mu+ pui =G+ F, . (50)

mi+ p =G+ F, . (51)

i+ ua =G+ F, (52)

oV my =G, +F, . (53)
where

D L . .
~ ’ I _ R ot A~
(:“=AH(11 tyu T gm u'v 1'n )

+ B,y =y Wy w T —wv"w =y vy’
A}

| I - )
= Bw( W’ — ' — yu' + U”f vt ds — 5 o T = et T

"

W

(9 —
~

+ yu'v' — y'u'U')
Y

- 811( — "'y =y’ ‘ w'p'ds +

Jn
1 2o [ ot
TS yv oy -y uw

+ D (yv'w—yv'w)
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+ D (—y"w' — v+ o+ y ' 3y w + yye oy o)
+ D (Y = e e~y W = 3y e+ oy ey )
+ DO = 30w e = yu e = 20w e =y o = T = e — oy o)
+ Do(—o " =" = 2y w" + 2yu'e" + 2uv ' w”
+ 200"+ 3uo"w + 3w e+ 200w+ 2y e e = 2y Tw e

"

+ D (v =3ue " yw v = 20" e oy o = WeT  yw o+ oy w)

2

1 3 1 > 3
+ B (~u w' = = w' = 5 viTw 20w + yu’v’)

. ,
u'v' + ~ v+ W = 2ue" + yu'w')

+ B,
DLy W Hyy e+ 3y w ) F Dy yy'w =3y u')

+ DL = 3w e = yu'w" = W't = yun)

+ D (e =" = 2w w4 2y v+ 3u o w4 3uw v + 20w )

+ D0 = 3w "+ yw' v = uvT + yw'n')

~ Pt ] ’ I‘ 1
(;,=A”<u vt e +§

.

- , ,
- Bll(u’w”— A e T i e T B 1 +2y’u'v’)

|

+ B[:( —v'w = yu" - y'u + u”f v'w’ ds

[}

I .1 R N
—yw' w4 2ue'w" — Syw - YT Hyuu+ y’u'")

-1 . s
+ B]_;( —u" " = 2w+ o e 4 e+ Su'vT "

e )

tao] —

+ D=y W+ 3y w" + oy uw )

+ [)|3< H'”: _ _y_yu _ y;l _ ')/U”“'” _ ')/HJ “‘Hl)! d“‘

0
=30 = 20w+ yy a2y + 2y’"1('>

1

— D]}('y”'{" U”H'”— ')/,“”_ 2,)///”/ + 'yl\'”' _ ‘; _yNU/> _ ; ')/_'y” _ y_y/-

_ ')”H"H'” _ 3“,1.’”“'” . llHU!H'// _ '}/”H'I— _ “”U”H" _ _yrvlvu + 3’)/1“1”11 + 3,)//7“/~)
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\ 0o
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+ BH(‘H vy = y'u' —u I; w'v'ds = yo'v" = 20w 5 YU

—
Yow

(9] —

+yu'u" + y’u’z)

I P R R
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I , ) 1,
p— :; Ilfll‘,’— + ll!.—llrl__ ; ')/_ll”_ ’y_ylll!)

_“rrUr
+ DH(')’,UNA 3_)/1“1011 _ ')/,ll”U,)

n DH(U": — yy" - y': +oywu" + y’,f v’ ds
) 0

= 3w = 2u"v " yy'u" + 2yy u + 2y’
YY

—_—

> 3 s s N
. _ " i o b} "ot "o - "o h- _ - r—
D[:( Y AW Ay 2y oy Sy T Sy Ty vy
+ ‘y’lj,U” _ 3ll,lr‘y“U,’ _ ll”“/’lv” + ‘y”ljl_ — ll”‘t'”v’ + ')/,‘""1'” — 3_ylllllll/ _ 3'}/”1(’”)

.

+ D;‘;,( —yu =y T = 2yy e 4 u’”f v’ ds

0
+ 2yu'v" + 2yu"v" + 2y'u'v" + yu'v’' + y'u"U')

N
.

U

SRR
<

i~
+ D,;(U'” + 29w+ 2y W = 200" = 20" — u"v' — Zw”’J v'w'ds —
- o

) N v S
H',-Um _ __y-Um _ ZU/UH_ _ 4‘)"}”0” + 3“1-U

'

"o 2”"\1'”[}” + (‘ll’””UN

|SE RN}

i
+ 3"+ 20" = Ay w = Ay w = Ay w = 2yuw ' — Zy’u”n")

Y
- Dﬁ< W — yu" = vy = 20w = " = 2w = v”’J w'v' ds
T o

N
' ’

= 2w =y T

I

s
= 2w = 2y W 2y o™ = 2wtu o + 2yuo”

+2y0" =W oy oy v+ 3u w6 dw + 3 i W A+ Zu”‘w')

. ' 1 -1 > .
+ le(—yu' + u’j v ds = S oyu'T - o oywT yu")
. 8 = Z
B’ : RN ST S - et — Lo ,)
S St T o 1 —EU EH +§uv 2uw T — +§yu
+ D, -yy’+y’f v”u"ds+2yy’u'>
) [}]

"

U”l"', dS + 2_)/“!0!1 + ’y“”U,)

( /

+ [);1 ___yuu_ 'y:H'”'{' U”J

Hy/;[}/l _ ...'y“U”

) 3 N B 5 X
- [)]3<—y’ +2y'u' + 5 viw'T + 3 vy ' +y'v'” —37'1('“)
(u” +2yw” =2u'v" = u'v' —

(NS IRV
<

<

I
191w

"y
- 2\\'“J v'wds + 3"+ 3u'n'y’ — dyu'w” — Zyu”w')
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"

2 3
- Dé:( W= yu" =W = 20w = 2w T — oy e

Y
- U”f W' ds + 2yu'v" — w'v'T + yu'v' + 3u " + 311’1(”)1") + W (56)
[}) )

5 1 5
B, (u" +ww o —uww —u'vy - 5 't — 5 u”v")

S S -
v “Y/_ _ ; UI-UH+ ”I»UI/+ ”,“”U,)

19—

+ B\ —u'v" = yuw" —

5
"o

N 5
W't = 5 W T+ u'u"w’)

o —

1 | s 2
- Un("Y, Py Y Ay Wy 0 Sy Sy = 2y - y"u")
Y
- Dn:(u"" =y W A W = 2w — e — u”’f w'v’ ds
3}

I, .

"

YW= S TUE P TUS TR

"

N R
v'iw" 4+ e

[2] —

= 200" 4 e 1w+ 20w+ oy v+ 2y + yuy! - y'u’v”)

_ [)|_~\<*Um* ')/H'W + “rUm _4u/lluv/r+ 2uuvu+ HIHUI + H'Wf L)NH‘I dS

u

.2 2
w v~ u v

I —

| s
+ ; y-L)Il/+ U/-—UIN+ 2010111 +

,
+ 20w = 200" - 20"+ oy + 2y + oy — y’u’w”)

S R
+ DI:(U"H'” + _y“'/l- _ ‘yv!r- _ 2“/UHH’M _ U”UIH'” _ UHU”H")

N

+ Dy (" = 0" = Ay = 20w+ 200" = 2w w + 20 ")

+ D (0" yu" =y 20w " w " + u ' wu )

:
=D W = yu = = - v"f w’v ds — w'Tw”
- 0

vIwW T+ 2u " + v + yu”U')

21

\<

=

|
19—

a

-D ;3<—U” —yw+u'"+u"n + w”J v'w'ds + o' u”

0
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_j{[ J (—w'v"+2u'vw +uv'w'y ds + 0w
1]

= 20'u'w' 30w —dhd'v'w +uo'w —2u'v'w — li’v’u’"]

Ty, —J )y e = A 20w e — oy

The forcing functions F,. V., F. and F arc due to the motion of the hub. which are given by

F,o=m[—Ow+ 07 (s +u)— 20w ] + (_/'”('r') w')
Fo={(j, = )NOy + 00 ) +] Oy —j(Oy))

v

F,o=m[Ow + O(s + 1) + 2u0] + Ou Jy =0y

19] —

F = —fs[(4)(L" -+ uu -

\
o ) ) . . 3. . 1 \ )
(-)(U’ —uw'v'—u'v Y +2u'ue — 5 v’ -z u'w' T — U’W'u")]

5

. s 2
+(J, —jg)[(‘)'(—y + L (V"W +2u'v'w"+u"v'w)ds +yu T+ Sy — U’w’) +

" . . . R . .
(‘)(U/ - —u'v o+ 20wy -z o'y’

1

The forcing functions can also be obtained by using D'Alembert principle [25].

The boundary conditions (39)—(45) become
G,+j,0n =0
G .+ (j, = J NOY+ 00 )+ Oy —j(Oy) =0

G, +j,0u —1)=0

9 9

/ 1. 1 .1 5
BH(H’ + - '+ 3 v u'w T — < u’u")

: P PR S BN .
+D”(y~yu—§yw R +y'u )

. 1)_(7w~+ N Wy U,,J Wo' ds 4 e e

]

T T T

+ 5 v T AL 20UNn yu'v yu'v )
B}

+ l)n(U” — v = u'v + yn” — w”J v ds — v’ "

]

5
-

. [,
O R T AU T T T TR T yu”w’) =0

12| e

50w T =2y 4 2y = 2y w = 2y w U’u"n'"” .

(6l)
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N B
Hn i _)}/ll

A 1 1 ,
+ Bl —yu' =’ } wolds — 5 yw’T - 5 yv")
: Ju 2

;

(
| , . 5 1 s
+D|:(7’7V,“'*§y'n' —yv+y'u _Syy;)
(
(

)
yy' — y'J w'v'ds + yy'u')
[hl
-
+ DL =w"u " " "+ L'”J w'v'ds + w' "
(
+o " =+ oy = 20 u'w = yu'v" - yu"v’)
AR Y
+ [)u(v” +2yw" —w'e" = u'v’ — 2w’ ’ vt ds + o
2 do
1

,
= Qyu'w" = 5 et = 2y =

v v =2y + Zu'u"v')

191 '

2N

n D:s( - U”J W' ds — v w + yulu” + yu”v') -0 (66)

o

T B SR
' u'n S YU

to
tol —
12| =

S R Vo] )
yu' —u J“ vl ds + 5 yu +§yu‘

1 ; s 1
+ DI_\\(y’ —yu - SyvT Yy WAy w5 vy

——

+ D lyy =y J” v'w’ ds — yy’u')

U — Y 4y — “‘"J D ds - b o
0

’

W' -y 4 20l = yu'w” — yu"n")

"y

+ [)3“( LI AT I S TRRTRA S TR TR Zu”J wo'ds — wiop”

i}

I : 3 > 5 -
B} v . N ] "ot it N S [ I U S TS
yuv 5w Jyuwvt 5o ' +2yn 2uun )
+ [)“( =y + ’ v'wids +yTo" o yu'w" + yu”w') = (67)
i Jo

s =L and

H=v=0v'=w=w =y=0, {68)
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T= 1,,(:) - M,

N

. AY
=1,0-Bu' =D (y —yu'+tyu)- D::(’H‘” +u'w = uw =y 4[1 v'w’ ds)
=D {v"—wuwv"+ v —w | v'w'ds 69
23 4]

at s =0.
Using the following transformation, which corresponds to the casc in which the reference
coordinate system x-y-z is rotated by 90° with respect to the xv-axis,

Y==Y. U—DU, VW WU,

Je e~ Jn=les Ty TR Ma T MG M
B,—B,. B,>-B;. B:—=B..

D,—D, . D,,— D, Dy—D,,. D,—>-D,. D;,—>D,.

3

D,;— =D, (=~ D)

in equations (50)—(53). we can interchange the equations of motion and boundary conditions
governing v and w with the equations and boundary conditions governing y and u being
unchanged. So. the equations of motion are symmetric, unique, and independent of the rotation
scquence of the three Euler angles used in the mathematical modeling. And u. v, w. and vy are
independent coordinates.

Because a different ordering scheme is used in the derivation, the intrinsic axial strain e [30] is
used instead of the Green strain measure, and the influence of stretching on the twisting curvature
is taken into consideration in the constitutive equation (27), cquations (50)-(53) do not reduce to
those of Crespo da Silva [9] when F, = F, =F =F =0,A, =B, =0.and D,=D,,=D,,=

i mnn min

0.
4. Inextensional Beams
For an inextensional beam, the number of equations can be reduced from four to three if an
artificial constraint force is added into the equations. Next, we develop three third-order nonlinear
partial-differential equations, which describe the slewing motion of an inextensional composite
beam. For an inextensional beam,

s=s. p=p ., ande=0. (70)

Putting ¢ = 0 in equation (29). solving for «', and neglecting terms of order higher than three, we
obtain

| ;
u':—i(v"+w"), (71)
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Integrating cquation (71) and using the geometric boundary condition u(0, t) = 0. we obtain

5

1, s
uzf—j (v'"+w')ds, (72)
0

which shows that « is a second-order quantity. Following the ordering scheme, substituting
equation (72) and its derivatives into equations (13)-(15) and (2), we obtain the third-order
expansions of the curvatures and [T] as

pe =7, (73)
" " " ' " ’ 1 " 2 ’W
p, = —nw'+uvy—v viwids + 5wyt —w') (74
0 2
" " i N ’ " 1 " /1 2 -
p, =v"+u"y +w v'w ds-F;U(v“—y"). (75)
¢ 0 2
[ . , 7
I - 3 (v +w'") v’ n'
S BN p / I LA 4y 1 < R :)
(T]= EU(')’ Tw T =2y wi(y + 1) *E(U + v+ 2v/0) y—lz—iy”, +§Y
1 - ’ ’ ] /: 1 3 I l: 2
swily +v=2)+v'(y—-1) CRAL +§y)fy—ll I—i(w + vy~ =2vl,)

(76)
where /) = [Jv'w"ds and [, = [jv"w’ ds. Comparing equations (74) and (75) with the equations
(A13) and (A14) used by Rosen er al. |7] for the nonlinear curvatures, we find that cach of the
latter is missing a third-order term.

Because the beam is not a rigid body, the axial strain can never be zero. One way for
implementing the assumption of inextensionality is the addition of an artificial, axial constraint
force A, in the equations. Hence. F, should be replaced by F, + A, in cquations (33)-(35) and
(39)-(41). The constraint force A, indicates the magnitude of extension eftects, which is of second
order if () =0 and B, =0 [25]. The assumption of inextensionality is valid only when © is small.
If O©(r) is large. A, can be large duc to centrifugal forces. For asymmetric composite beams, the
assumption of inextensionality is invalid because of the existence of extension-twisting (B,,) and
extension-bending (B, and B;) couplings. Because the axial strain is assumed to be zero. the
axial damping u, vanishes. Using cquations (33) and (39) and g, =0, one can obtain the
expanded form of F, + A,. Then. the equations of motion are obtained from cquations (34)—-(36)

as
mv+p =G +F_ . (77)
e+ usw =G+ F . (78)
Je¥ sy =G+ F, . (79)

where
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G, = ~(Dy0") = Dy (y'w") = Dyu'(w'e" + wwy

+ (D, — Dn){(w”y e W”'J v d.s‘]
i T . h) -

s

+ 1)1,( W'y — w J v’ ds — U”y:) - D( W'y + w”J e’ ds — U”y: + L’”U':)
( o 11
+ D, (H - yy" +y { v'w’ ds — yv"n"')
J0
b, 2 I, )2
+D,\( yioutT = S vty Wy 4 Sy Ty yy
w2 " " h "ot | [T
+ D\ = ety et = ety £ 2 vl ds + 5w
0 R

] s N .
N P s =t R/
+ 5 u'u Iuyy + w i 2"y )

"y

. ) . o : A I
+D|:(\—yy +y I“ v ds)+D];(‘—y sy +;yy)

v’ d.s‘)

—

| 1 \ X ,
+ Dﬁ;(n'” + 3 viw + 3 W't =2y " = 2p"y + 2v

+ju - 5 v’ J'/ m[ J“ (v’ + w")ds] ds ., {80)

G,.=—(D.w")Y + D (y'v")y— Dyw'(w'nw" + 00"y

+(D,, — Du)[(v"v +outyT) UJ w'v' ds}
- o 0

Y

- Dluy +u f w'v’ds + w"yz) + Diﬁ(v”y - U”J W ds + wlyT — n"'n"z)
o -

o

[ . v | )
_yl/ _ U”H’” + ; H'!_'y” + Uu_ _ ; y-—_yll _ 'y‘y,_)

s
- 1 )
UIII+ 2“’71_)// + H,n_vr + 2“””7 + 2\1"“4’ “HU/ ds + ; “”_Um
\ [§]

UH/U/A - 40”'}"}', + UH-UI _ 2Um‘y>)

! \ ' 1 b l N

vt =2y "+ 2wy + 2w"J w'p! d.s‘)
1] K

Q]| —

. 1 s
+ D:‘;(U”‘*’ ; H"_UN'*'

1 ' Y. . -
T 5 w'fl m[ J’[ (v +w'") ds] ds . (8
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G = (Dll_yr)r + (D33 _ D::)I‘(Uul _ 11'1/2)’)/ _ U”M'H

¥

5

, e 1 1 A
+ [D,,(vw” + vy — v’j v'wids + 5wyt - 5 w"w")
- 18] = Z

" " " ' 1 2 2 '
+ {D”(v + 'y + o f w'v'ds = 3 vy + 5 u”v")]
: 0 2

=D,y +wyy' )+ Ds(=wy +uyy ') + DN(W”: — dyu"w" - Uu:)
+j£( J‘) v'w’ ds) ——js(v’w’)' +(/, —jg)[(U": = u'":)y - W'l (82)

The forcing functions become

f

) ) . . o, . o R 1
F = | (j, = j:NOYy+OV)+ [0y —j(0y) -

.
O v'i(v' + w")j ms ds
I

|

¥ r

+U’fl m[(~)n‘+2(-)w-(-)‘.s‘+;(~)‘J (U"+u"‘)cls] ds} . (83)

(

K} )

F.=mOw-— m(*)(—s +3 f (v~ +w") ds) - m(-)[ I (v +w') ds] + { —j,0 -5 0w
2 Ju ) 2
.2 o[ A . NP P 2 |
X (v~ +w') L ms ds + w L Ow+20w -0 + 50 (v~ +w')ds dSJ .
. . Z 0
(84)

F,=—=j(0v') +(j, —};g,)[(i)(v' — 20y + 2y + 2»@'[ v'w" ds)

3]
s a .2y
+(~)'(—Y—J U'u'"ds+yv"+§ y)] (83)
0 R ;
Equations (77)—(82) reduce to those of Crespo da Silva and Glynn [8] when Dy, = Dy =D, =0

and F, = F, = F, =0. The boundary conditions become

{.
g 2w "o o mo_ ' ’om N Ly
(D,, D;;‘)<u v—0v"y " ﬁ v'n ds) Dy D,v'(v'v” +ww")+ .U

I
' . P B
+D|3<_7)’ +}’ ﬁ) UwW dS)‘f’DH(—‘y *;U 0% +;y Y )

W= 2wy

19| —

1
: |
+ D,;(w’” -2y + 20‘"4( v'wids + 5 0w
T 3]

+(j, —J Oy + O )+, 0y - (Oy)=0. (86)

-1
(D, — D“)(v”’y + Wy + v”’J w'v’ ds) — D" = Dosw’(w'nw"” + v'v”) +
T o (h / - o ’

1 R
‘ I, 1.
+ Dl](_,y,y// — ,yu ﬁ) H,/lv/ d.S) + Dlz('y”+ ; ”',—‘y”'_ 3 ‘>/~')/”)
" ! I L 2 L )
+ D,;(UW + 2wy + 2 w'v'ds + 5w + 50"~ 20"y —j,,(") =0, (87)
- 0 2 R
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v' =0, (88)

w' =, (89)

0" =0 (90)
at s = L and

v=v=w=w = y=( (91)

7=1,0-D,.y + D.w - D, (92)
at s = 0.

For an isotropic beam. D, = D, = D,, = 0. If the cross-section dimensions and material

properties of the beam are uniform (i.c.. m. Dy, D.,. Dy, j.. j,. and j are constant), the
equations of motion can be considerably simplified and rewritten in nondimensional tform by
normalizing the variables using the characteristic length L and the characteristic time L™/ m/D,,
as

st=s/L . vi=v/L. wr=w/L . t*=0/D./mL".

pwi=w LN mD,, . wi=p N mD, . wi= m /N mDs, j

it =ji./ml,: . :j”/mL: N A4 =jL/mL3 ;
For casc of notation. we drop the superscript * and use primes and dots to denote @/as® and
alars. respectively. Because j, =j.+j,=1/12(b/L) + 1/12(h/L)" for a rectangular  cross-
section, where b and /i denote the width and height of the cross-section, we assume that j,, /., and

Jy are sccond-order quantitics. Letting 8, = D,,/D,, and B, =D, /D,,, we rewrite cquations
(77)=(79) in the nondimensional form

U + ,LL|U + B\,U“. — _B)‘(y’n,//)l — B‘[U,(U'U”‘f‘ H'}H'"),]’

- (=5 ){(UN)’: —why) + " J'“ vw’ ds] + J,0"
R P ST q
5 |v ] . (0" + w7 )ds d.sI + F. . (93)

Wt e+’ = By ) — (oo e |
2

(1= ﬁ\‘){(v”)’ +ouwyT) o ]“

- % le’ J] [ﬁ (V7 + ') ds] ds}/ + F, . (94)

1

v ds] +



I. EQUATIONS OF MOTION 499

§

(U”zy - w”:y —u'w") + ( f v'w’ ds) —(v'w")’

1]

; B B
Ytmy  — 7Y =
N h

y L

? (67 =Wy =i ) + F, . (95)

Because the rotary incrtias arc small, the boundary conditions can be simplified. Thus, the
boundary conditions become

v=w=v' =w'=y=0 ats=0, (96)
1,00) + w”(0. 1) = 7,(1) . (97)
B = U =" = (R @) =v" = w" =y =0 ats=1. (98)

where I, =1,,/mL" and 7,=7L/D,,. Equations (93)-(93) reduce to those derived by Crespo da
Silva and Glynn [8] when F, = F =F =0.

If the torsional rigidity is relatively high (c.g.. a beam with a square cross-section and long
span), the torsional motion cannot be excited by low-frequency input forces because the twisting
natural frequency is relatively high. Moreaver. in the absence of a torque applied along the beam,
the twist is only induced by bending deflections. The induced twist angle can be found by sctting
all terms with time derivatives equal to zero in equation (95). The result is

B, I - B, - :
j—) v+ ; (V"W + Wy —0v"y)=0. (99)
| 1

Using the boundary conditions y(0.¢) = y'(1. ) = 0 in equation (125). we find that the twist angle
due to bending is
-1 .
v = v"w" ds ds + fourth-order quantitics . (100)
0 Jl

B,

Equation (100) shows that the bending induced twisting is a nonlincar phenomenon. For a lengthy
isotropic beam. the frequencies of twist oscillations are lincar combinations of the bending
frequencies in the x and = directions. If any pretwist angle vy, exists. it must be be considered
before using the transformation [1]. Any torque applied to the beam produces a forced torsional
motion y,. Furthermore. for a composite beam. bending-twisting couplings may induce a torsional
motion vy,. Hence. the total twist angle consists of four parts: y,. ;. v,. and y. The frequency of y,
i the same as that of v it the bending motion in the y-direction is coupled with the torsional
motion, and the forced torsional motion y, may have a different frequency. Hence, we expect the
nonlincar torsional motion to be rather complicated.

Using cquation (100) and neglecting terms of order higher than three, we reduce cquations
(93) and (94) to

K} '

U+ pu+ But=(1- B“)IZH'"J’ v ds — w”’f v'w' ds] + /30"
1

]
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=BT . [ g
_ BB ‘:““1: l!:) JI U””"” dS dS] — B\,[U,(UIUII+ ”'/“_‘n)t]'

’

"+11")ds} d.s'} + F. . {(101)

¢

W+ i +w' = —(1 - B, )[ J v'w’ds — v f w'y’ cls} + jar”
2 Y 2

(1 - "
|:U j ﬁ U”‘\'” d\\' d‘\':l _[‘rl(lvll«IH*_ U,UU),]’

{w' Jl H (v + W) ds‘I d.s‘}l +F, . (102)

The boundary conditions become

(9| —

v=w=pv =uw' =0 ats=0, (103)
1,6000) + w0, 1) = 1,(1) . (104)
B — i =w" =~ (' =0)=v = w"=0 ats=1, (105)

Equations (101) and (102) are the same as those derived by Crespo da Silva and Glynn [8]. except
for the presence of Fand F .

For the case of an in-plane vibration of an incxtensional cantilever beam. we substitute
w=1vy=F_ =0 Iinto cquation (77) and obtain

/”l:j + ,LLIU — _D‘I(U””"" U:mvl_ +4U Ull m+ {)u )

. B ] Y Y N . ra
+.0" - 3 {u’ j/, m<ﬂ| u"d.s') ds‘} : (106}

The nonlinear curvature and incrtia terms in equation (106) are the same as those derived by Sato
ef ul. [15].

5. Concluding Remarks

Newton’s second law is used to develop the nonlinear cequations describing the motions of
extension, flexures along two principal directions, and torsion of a slewing composite beam
exhibiting structural couplings. Three consccutive Euler angles are used to relate the deformed
and undeformed states. but twisting curvature is used to define the twist angle and the resulting
cquations of motion are symmetric and independent of the rotation sequence of the Euler angles.
The cquations contain bending-twisting.  bending-bending. extension-twisting. and cextension-
bending coupling terms and quadratic and cubic nonlincarities due to curvature, inertia. and
midplanc stretching. The cquations of motion are valid for extensional, inextensional. uniform
and nonuniform, and metallic and composite beams. Some comparisons with other derivations are
made. and the characteristics of the modeling are addressed.
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