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A b s t r a c t .  Ranked set sampl ing  (RSS) for es t imat ing  a popula t ion  mean p 
is s tudied  when sampl ing  is wi thout  replacement  from a complete ly  general 
finite popula t ion  x = ( x l ,  x 2 , . . . ,  XN) ' .  Expl ic i t  expressions are obta ined  for 
the  variance of the RSS es t imator  /2uss and for its precision relat ive to tha t  
of s imple random sampl ing wi thout  replacement .  The  cri t ical  te rm in these 
expressions involves a quant i ty  7 = (x  - # ) T ( x  - p) where P is an N • N 
ma t r ix  whose entries are functions of the popula t ion  size N and the set-size m, 
but  where F does not depend  on the popula t ion  values a:. A computer  program 
is given to calculate  F for a rb i t r a ry  N and m. When  the popula t ion  follows a 
l inear (resp., quadra t ic )  trend,  then 7 is a polynomial  in N of degree 2rn + 2 
(resp., 2rn + 4). The coefficients of these polynomials  are evaluated to yield 
explici t  expressions for the variance and the relative precision of /~ass  for these 
populat ions .  Unlike the case of sampl ing  from an infinite populat ion,  here the 
relat ive precision depends  upon the number  of repl icat ions of the set size m,. 

K e y  words and phrases: Linear range, observat ional  economy, order  s ta t is t ics  
from finite populat ions ,  quadra t ic  range, relat ive savings, sampl ing efficiency, 
sampl ing  from finite populat ions ,  sampl ing wi thout  replacement.  

1. Introduction 

T h e  m e t h o d  of  r a n k e d  set  s a m p l i n g  (RSS)  was i n t r o d u c e d  by  M c I n t y r e  (1952) 

as a cos t -e f f ic ien t  a l t e r n a t i v e  to s i m p l e  r a n d o m  s a m p l i n g  for those  s i t u a t i o n s  where  

o u t s i d e  i n f o r m a t i o n  is ava i l ab l e  a l lowing  one  to  r a n k  sma l l  se ts  of  s a m p l i n g  un i t s  

a c c o r d i n g  to  t h e  c h a r a c t e r  of  i n t e r e s t  w i t h o u t  a c t u a l l y  q u a n t i f y i n g  the  uni t s .  

M c I n t y r e  was  c o n c e r n e d  w i th  e s t i m a t i n g  a g r i c u l t u r a l  y ie lds  w h e r e  t h e  r a n k i n g  

c o u l d  be  done  on t h e  bas i s  of  v i sua l  i n spec t i on .  One  of  t he  s t r e n g t h s  of  t he  
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method, however, is that  its implementation and performance require only that 
ranking be possible but they do not depend in any way on how the ranking is 
accomplished. 

A basic cycle of the method involves the random selection of rn 2 units from 
the population. These units are randomly partitioned into m subsets, each con- 
taining m sampling units. The nmmbers of every subset are ranked according to 
the character of interest. Then the lowest ranked member is quantified from the 
first set, the second lowest ranked member is quantified from the second set, and 
so on until the highest ranked member of the last set is quantified. This yields 
m quantificatious from among the rn 2 selected units. Since m is usually taken 
as small in order to facilitate the ranking, this may not be enough measurements 
for reasonable inference and the basic cycle is repeated r times to give n = mr  
quantifications out of rn2r selected units. The arithmetic mean of these n mea- 
surements is the RSS es t imator / tess  of the population mean #. The integers m 
and r are design parameters known as the set-size and the replication factor (or 
the number of cycles), respectively. 

Performance of the RSS estimator is generally benchmarked against that  of 
the simple random sampling (SRS) estimator/LSRS with the same number of quan- 
tifications. For this purpose, one may employ either the relative precision, 

R P -  var(/2sa$) 
var( Rss)' 

or the relative savings, 
R S =  1 - 1 / R P .  

There was little followup on Mclntyre's (1952) proposal until the late 1960s 
when Halls and Dell (1966) published a field evaluation and Takahasi and 
Wakimoto (1968) developed the statistical theory for the RSS method. When 
sampling is from a continuous population and the ranking is perfect, Takahasi and 
\Vakimoto proved that  ~ess is unbiased for/1, and is at least as efficient as ~SRS. 
They also obtained the variance of the RSS estimator as 

(1.1) var(/tRSS) 1 [ 1 f i (  ] = _ _  ~2 tt(i:,n) _ #)2 , 
mr m i:1 

where o 2 is the population variance and t*(i:,,) is the expected i-th out of m order 
statistic from the population, h 'om (1.1), Takahasi and Wakimoto established the 
bounds 

m + i 

(1.2) I _ < R P <  T 

01"~ 

'rrt -- 1 
(1.3) o < a s  < 

- - m +  
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where the upper bounds are sharp and are achieved exactly when the population 
follows a uniform distribution. The upper bound in (1.3) indicates that  ranked 
set sampling can result in very substantial savings when compared with simple 
random sampling. Specifically, the method can result in savings in the number 
of quantifications by as much as 33, 50, 60, 67 percent when m = 2, 3, 4, 5, 
respectively. The savings achieved in practice are somewhat less due to ranking 
errors and population skewness. 

Because of this potential for observational economy, the RSS method has 
received growing attention both from statisticians and substantive scientists. See 
Patil et al. (1994) for an historical review of the theory, methods, and applications 
of ranked set sampling. However, these researches have been mostly concerned 
with sampling from infinite (continuous) populations. To our knowledge, the only 
exception is a paper in Japanese by Takahasi and Futatsuya (1988) giving a formula 
for the variance of/2RSS when sampling is from a finite population. Unfortunately, 
the Takahasi-Futatsuya formula includes a general covariance term that  depends 
on the structure of the population and is difficult to evaluate. In fact, Takahasi 
and Futatsuya obtain an explicit expression only for the combination of rn = 2 
and a discrete uniform population. 

The present paper derives explicit expressions for var(~RSS) and for the cor- 
responding relative savings when sampling is from an arbitrary finite population 
x = (x t ,  x 2 , . . . ,  XN) ~. We show that the dependence on the population structure 
x is according to a bilinear function ~/= (x - p ) T ( x  - p) of the centered popu- 
lation vector, x - p, whose array of coefficients F can be written down explicitly 
in terms of binomial coefficients. Further, r involves only N and m and does not 
depend upon either r or x. Upon asking, we can provide a computer program, in 
the GAUSS language, that evaluates F for arbitrary m and N (subject to memory 
limitations). 

Next, we specialize to populations following either a linear or a quadratic trend 
in their range. In each case, V is a polynomial function of N having degree 2m + 2 
(linear trend) or 2m + 4 (quadratic trend). Using the GAUSS program to evaluate 

allows us to determine the coefficients of these polynomial functions and to write 
down var(/2RSS) and RS explicitly as functions of (N, m, r) for the two population 
structures considered. 

A final matter examined in the paper is how the relative performance of ranked 
set sampling depends upon the replication factor r. In the conventional case of 
sampling from an infinite population, the successive cycles are true replications, 
and RS (or RP) does not depend upon r. However, RS does depend upon r when 
sampling is without replacement from a finite population since the different cycles 
are not independent. In fact, we show that  

(1.4) RS - 1 - f / r  • RS(1), 
1 - f  

where f = n / N  is the quantification (sampling) fraction and RS (1) is the relative 
savings for a single cycle. This convenient formula means that  only a single cycle 
has to be considered in theoretical investigations. 
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The present paper is concerned with derivations of the foregoing results and 
with numerical computations of RS for finite populations with linear and quadratic 
ranges. A companion paper (Patil et al. (1993)) discusses the implications of these 
developments, provides the results of some numerical computations, and compares 
the performance of RSS with that of systematic sampling and stratified random 
smnpling from finite populations with a linear trend in their range. 

First, we make a few remarks concerning the interplay between ranked set 
sampling and order statistics, and how that interplay is affected by finiteness of 
the population. 

2. Order statistics for different sampling methods 

If X1, X 2 , . . . ,  X,~, is a random sample from an infinite population, then the 
SRS estimator of # is 

(2.i) hsas  = 2 : i "~-~, - -  Xi. 
777. 

i : 1  

L e t t i n g  X l : m ,  X 2 : m ,  . �9 . , X , n : m  be the order statistics of X1, X.2 . . . . .  Xm, the esti- 
mator (2.1) can be expressed as 

(2.2) [l.sRs = _1 ~ Xi:m. 
777 

i=1 

Now consider ranked set sampling with only one cycle (r = 1) from the same 
infinite population and write X(i:m) for the quantification of the i-th ranked unit 
from the i-th set. Parentheses are used in the subscript to indicate that the X(i:,,~) 
are order statistics from disjoint sets, whereas the Xi:,,~ result from ordering a 
single set o f m  units. Although X(i:m) has the same marginal distribution as Xi ..... 
the different X(i:,,,I are independent while the Xi:,,, are positively correlated. The 
RSS estimator is 

(2.3) fi.Rss = _1 ~ 
? n .  X ( i : m ) "  

i=1  

Comparing equations (2.3) and (2.2), the estimator/tsRs is seen to have the larger 
variance because of the positive correlation among the Xi:,,,. This accounts for 
the superiority of RSS over simple random sampling and shows that the essence of 
Mclntyre's method consists in obtaining direct independent measurenmnts of the 
order statistics. 

What  happens when the population is finite and sampling is without replace- 
ment? First, the observations Xi in equation (2.1) are not independent and, in 
fact, are negatively correlated. The negative correlation reduces the variance of 
/h.sRs and is the reason that sampling from finite populations is more efficient than 
sampling from equally diffuse infinite populations, as indicated by the usual finite 
population correction. There is a similar effect for ranked set sampling. Even 
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though the different sets are disjoint, they are not statist ically independent  and 
the various X(i:,,0 in (2.3) are negatively correlated, which h~s the beneficial ef- 
fect of reducing the variance o f /2ass  for finite populations.  Unfortunately,  the 
statist ical  analysis of/?.ass also becomes more involved since we have to determine 
the joint  distr ibution of X(i:,~0 and X(j:m ) and not just  the marginal distr ibutions 
of these variates. The  de terminat ion  of these joint  and marginal distr ibutions is 
taken up in the next  section. In the case of RSS with r cycles, we will write X(i:m)v 
for the quantif ication of the i-th ranked unit in the i-th set of the k-th cycle for 
k = l , 2  . . . . .  r. 

3. Order statistics from finite populations 

Let f~ = {Xl,322, . . .  ,I?N} be a finite populat ion with mean II. and variance 
~ 2  Wi thou t  loss of generality, we can suppose that  xl  <_ .r2 <_ . . .  < XN and we 
write x = (a'x, x 2 , . . . ,  ZN)' .  Let a set of size m be selected at random and without  
replacement  from f~ and define the event 

{i ~ s} 

to mean tha t  the i- th ranked unit in the subset is the s-th ranked unit in the 
populat ion.  Also, write 

(3.1) A~ = Pr{i  ~ s}, 

and let Ai  denote  the N-dimensional  column vector having A~ as its s-th compo- 
nent. If X(i:m) is the quantif ication of the i-th ranked unit from the set, then 

(3.2) E[X( i : , , , ) ]  -~ #(i:m) 

N 

s = l  

N 

= ~ , c ,  e r ( { i  => s}) 

N 
�9 s = ~_, asAi 

s = l  

--__ Al ia2.  

In other  words, the vector Ai  defines the probabil i ty distr ibution of the order 
statist ic X(i:m). Similarly, 

(3.3) 
9 

var(X(i:,,~)) ~ crS:,~) 
/ 9 / 9 

= - ( a / x ) - ,  A i x -  

where x 2 is the component-wise square of x. 
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Next we s tudy  the joint distr ibution of the order statistics from disjoint sets. 
To this end, let two disjoint sets, each of size m, be drawn without  replacement 
from fi and write 

{i s, j t} 

for the event tha t  the i- th ranked unit  from set 1 has rank s in the populat ion and 
the j - t h  ranked unit  from set 2 has rank t in the population. Define 

(3.4) Bi~ = Pr({i =~ s , j  ~ t}) 

and let Bij be the N x N matr ix  with B]] as its (s, t )- th component.  Notice tha t  
Bij = Bji  since 

Let X(i:,,)I and X(j:m)2 be the quantifications of the i-th and the j - t h  ranked units 
from set 1 and set 2, respectively. Then, 

N 

E[X(i :m)zX( j :m)2]  = E x s x t  Pr (X( i :m) l  = Xs, X(j:m)2 = x t )  
s,t=l 

N 

s,t=l 

= x I B i j x .  

Consequently, 

(3.6) Cov(X(i:m)I,  X(j:rn)2) ~ Ci j  

= x ' (B i j  - A iA~)x .  

The equations (3.2), (3.3), and (3.6) express the first two joint moments  of the 
order statistics in terms of the matrices Ai  and Bij.  We next develop explicit 
expressions for these matrices in terms of binomial and mult inomial  coefficients. 
As usual, we agree tha t  the binomial coefficient (Vq) and the nmltinomial  coefficient 

v (ql ,q~) vanish unless 0 _< q, ql, q2, ql -I- q2 _< P- 

THEOREM 3.1. The components of Ai, i = 1, 2 , . . . ,  m, are given by 

s-1  N - s  

s = 1 , 2 , . . . , N .  

PROOF. In order for the event {i ~ s} to be true, exactly i - 1 units must  
be selected from among the smallest s - 1 members of the populat ion and m - i 
units must  be selected from among the N - s largest members of the population. 
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THEOREM 3.2. I f  s < t,  t h e n  

s-1 {t-s-l]{ N - t  ~ ( t - l - - i - A ~ ( N - t - r n + i + X ]  
m-i  (i-1) k X ] k i n - i - A ]  t j - 1  ] ~ m-- j  ] 

B~] = E N 

I f  s = t, t hen  B~] = 0; i f  s > t, t h e n  B]]  = B]~. 

PROOF. Similar to the argument  in Theorem 3.1. Here A is the number of 
units in set 1 whose value lies between xs and x t .  In fact, A must satis .fy all of the 
following restrictions: 

O < A < t - s - 1 ,  

2 m - i - j + t - N  < A < m - i ,  

A < _ t - i - j .  

However, one can simply let A = O, 1 , . . . ,  r n  - i and our convention regarding the 
vanishing of the binomial coefficients will do the rest. 

Next, we observe the following results for the component-wise sums of the 
matrices A i  and B i j :  

Tn 

(3.7) ~ A . ~  
i=1 

(3.s) %--" BSt 
i=1 j = l  

= Pr(uni t  s is in the selected set) 

= m / N ,  

= Pr(uni t  s is in set 1 and unit t is in set 2) 

m 2 
N ( N  - 1)(1 - 6~t) 

~ m m2 1) ~Sst' (3.9) N~[Bst ~ t m2 
~._.,L u - A i A j  - N 2 ( N  _ 1) N ( N  - 

i=1 j = l  

where 6st is the Kronecker delta symbol. 

4. Moments of the RSS estimator 

Suppose tha t  m r  sets, each of size m, are selected randomly and without  
replacement from ~. Let the lowest ranked unit  be quantified in each of the first 
r sets: 

X(z:m)z, X(hm)2, X(hm)3, . . . ,  X(z:rn)r. 

In each of the next r sets, the second ranked unit  is quantified to yield: 

X(2:m)l, X(2:m)2, X(2:,03, - . . ,  X(2:,~Or- 
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This process continues until the highest ranked unit is quantified in each of the 
last r sets: 

X(m:m) 1, X(rn:m)2, Z(m:rn)3, �9 �9 �9 , X(ra:m)r.  

The ranked set estimator of # is the average of these quantifications: 

(4.1) PRSS 1 ~ = - -  X(i:mlk. 
r m  

k = l  i = 1  

Our next result establishes the unbiasedness of the RSS estimator for finite 
populations. 

THEOREM 4.1. The  ranked  se t  e s t i m a t o r  o f #  is unbiased.  

PROOF. An informal proof simply notes that  the average of the #(i:m) over 
i -- 1, 2 , . . . ,  m, is # itself. A formal proof, in the context of finite populations, 
uses equation (3.7): 

E[PRss ]  = 1 
r m  

1 
r m  

1 
r m  

k = l  i = 1  

k = l  i = 1  

N 

k : l  i : 1  s----1 

As 
= - -  ~ Xs 

m s = l  i = 1  

N 

1 E x  s 
s = l  

We next obtain the variance of/~ass- As in equation (3.6), we let Ci j  denote 
the covariance between X(i:m)k and X(j:,~)e. From (4.1), it follows that  

(4.2) 2 

+ r ( r  -- 1)Cn + r2C12 + . . .  + r 2 C l m  

+ r2C21 + r(r  - 1)C22 + . . .  + r2C2,~ 

+ r 2 C m l  + r2C,~2 + . . .  + r ( r  - 1)Cram 

E = r O ' ( i :m ) ~- C i j  - r C i i .  

i = 1  i = 1  j = l  i = 1  
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In order to simplify this expression, we need the following result: 

THEOREM 4.2. The s u m  of  the variances of  the order stat is t ics  is 

77l 

2 (4.3) 0-~l:rn) + 0-(2:rn) + ' ' " - } -  Cram:m) ---- m0-2 -- E ( / t ( i : r n )  -- /'t) 2, 
i=1 

while the s u m  of  their  covariances is 

m 

(4.4)  ~ C i j -  
i=1 j=Z 

m 2 
_ _  0 - 2 .  

N - 1  

629 

PROOF. Using the fact tha t  A i  gives the distr ibution of X(i:m), we obtain 

O'[i:m) = E[(X(i:rn) - -  ]'t) 2] - -  (//'(i:m) - -  //,)2 

N 
= ~ - ~ A ~ ( x s  - p)2 _ (P(i:,,0 - p)2. 

s= l  

The equat ion (4.3) now follows by summing over i and applying the summat ion  
formula (3.7). Equat ion  (4.4) is immediate  from equations (3.6) and (3.9). 

Put t ing  these results into (4.2), we obtain our first formula for the variance of 
the ranked set estimator:  

(4.5) 

( 
_._2_ 1 ) 

var ( /~Rss )  -- ,r77~2 
r e ( N -  1 - r n r ) a  2 _ E ( p ( i : m ) _  p)2 _ ~ Cii �9 

N - 1 i=1 i=1 

This is essentially the formula of Tak ah ~ i  and Fu ta t suya  (1988), except that  these 
authors have not given an explicit expression for Cii. However, an alternative 
formula proves to be more convenient for actually calculating the variance. We 
observe that  the last term in (4.5) must  remain unchanged if the populat ion is 
centered, i.e., if ms is replaced by xs - # and #(i:m) is replaced by #(i:,,) - p. Now 

Cii = x t ( B i i  - A i A l i ) x  
2 

= x 'B i i  x --/.t(i:m), 

which becomes, after centering, 

Cii = (x  - p ) ' B i i ( x  - it) - (#(i:,~) - p)2. 

Pu t t ing  this into (4.5), we see that  the terms y~.(#(i:,,~) - #)2 cancel giving 

(4.6) var(/2ass) = --mrl { 
N - 1 m i=1 J 
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Thus, it is only necessary to calculate the matrices B i i ,  i = 1, 2 , . . . ,  m, in order 
to obtain var(ftass) for a general finite population. In fact, we note tha t  only the 
m a t r i x ,  

F 
(4.7) B i i  - N ' 

,=~ ( . . . 2  

is needed. In terms of F, equation (4.6) becomes 

(4.8) var, Rss,= 1 {N 1 1 }  
, , , .  N -  1 -~(Z,~) ~' 

1 { N - l - m r  .2 m , ( r n - 1 ) ,  1 )7}  
m r  N - 1 o N ( N  - 1) . . .  (N - 2m + 

_ 1 { N - l - m r  2 } 

m r  N - - - 1  a - ~ ' 

where 

(4.9) 7 = (x - # ) ' r ( x  - #) 

m ! ( m -  1)! 
(4.10) ~ = 

N ( N  - 1) . . .  (N - 2m + 1) 7. 

In view of Ttmorem 3.2, tile matr ix  r is symmetr ic  with zeros on tile diagonal. 
We record the following expressions for r when m = 2 and rn = 3. 

THEOREM 4.3. L e t  m = 2 a n d  1 < s < t < N .  T h e n  

F a t = F  t s = ( N - t ) ( N - s - 2 ) + ( s - 1 ) ( t - 3 ) .  

THEOREIVI 4.4. L e t  rn  = 3 a n d  1 <_ s < t <_ N .  T h e n  

r s t  ~ ~ ts  

1 
= ~ ( N - t ) ( N - t - 1 ) ( N - s - 3 ) ( N - s - 4 )  

+ ( N -  t ) ( t  - 4)(N - s - 3)(s - 1) + ( N  - t ) ( s  - 1)(N - 5) 
1 

+ ~(s  - 1)(s - 2)(t - 4)(t - 5). 
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5. Relative precision of the RSS estimator 

We now compare the performance of ranked set sampling with tha t  of simple 
random sampling. When sampling is without  replacement from a finite population, 
the variance of the SRS est imator is 

N - 7Y/,T 0 -2 

var(/~SRS)-- N - 1  m , r  

when there are n = m r  quantifications. In conjunction with (4.8), this yields the 
following expression for the relative precision of RSS: 

(5.1) R P -  var(/2SRS) 
var(~RSS) 

N - m  [ 1 + N - 1  9 ]  
1 

N - m r  N - rn  N- ,~n ~ 2 
1 

N --  ?Tt 
1 - - R S  (1) 

N - rnr 

where 

(5.2) RS(~ ) _ _ _ 1  + _ _ N  - 1 
N - r n  N -  rn0- 2" 

Here, it should be noted that ,  while RP depends on the replication factor r, the 
quantit ies 7, ~, and RS (t) are each independent of r. From the relative precision 
(5.1), we obtain the relative savings RS as 

(5.3) R S -  N - m R S ( I )  
N - m r  

(5.4) _ 1 - f / . r  x R S  (1) .  

1 - f  

In particular, put t ing r = 1 in this equation, we see tha t  RS (1) is the relative 
savings for a single cycle of the RSS procedure. We also observe tha t  RS is a 
monotone increasing function of r for a given value of m. 

6. Linear and quadratic range 

Here we specialize to particular populat ion structures and obtain explicit ex- 
pressions for RS (1). The pert inent  formulae are equations (4.10) and (5.2) which 
are repeated here for convenience of the reader: 

rn!(m- i)! 
(6.1) = N(N - 1)... (N - + 1) 

(6.2) RS(1 ) _ 1 + _ _ N  - 1 
N - rn N - r n  a 2' 
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For the populations considered, it turns out  tha t  7 and 0-2 are polynomials in N.  
Further,  after scaling, the populations converge to continuous populations with 
finite, nonzero RS as N ---, oo. But  this implies tha t  

9 
degN 9' = 2777. + deg N 0--. 

Indeed, from equation (6.2) the ratio ~/0-~ has a finite, nonzero limit when N ~ oo. 
But  then equation (6.1) gives the desired conclusion. For the specific populat ions 
considered, we find empirically tha t  7 is divisible by 

(6.3) ( N  + 1 ) N ( N  - 1 ) ( N  - 2 ) . . .  ( N  - 2m + 1). 

Accordingly, we may write 

(6.4) 7 = am(N + 1)N(N - 1)(N - 2)- .  (N - 2'm. + 1)P , , (N) ,  

where a,, is a constant  and P,,,(N) is a lnonic polynomial in N with 

9 
deg N P,,, = deg N 0-- - 1. 

Equations (6.1) and (6.2) now imply tha t  

lira RS (1)-- lira w 
N ~.:x~ Ar~c 0 -2 

= m [ ( m . -  1)[a,, lira (N + 1)P , , (N)  
N~oc 0 -2 

The constant  a,,, can be found from 

m ! ( m  - 1)Jam = o,~- lira RS (1), 

where a~2 is the leading coefficient of 0-2 considered as a polynomial in N. But  
the quantity,  

(6.5) lira RS (1), 
N ~ . .  

can be computed directly from the limiting (continuous) populat ion using equation 
(1.1). Thus, we finally obtain 

(6.6) 0-~ ~ -- 7 n ! ( m -  1)!a,, (N + 1)P,~(N)0-2 

- ( lira RS (1)) (N§ 

and all tha t  remains is the determinat ion of the polynomial P , , ( N) ,  which will be 
accomplished numerically using the GAUSS program. 
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6.1 Linear range 
The populat ion is defined by Xs = s for s = 1 , 2 , . . . , N .  The populat ion 

variance is cr 2 = (N 2 - 1)/12 and the limit (6.5) is (rn - 1)/(rn + 1) since the 
populat ion converges to the uniform distr ibution for large N.  It is clear from (4.9) 
tha t  3' is a polynomial function of N.  Numerical work using the GAUSS program 
showed tha t  this polynomial was divisible by the quant i ty  (6.3) for m < 12. Larger 
values of m have not been studied numerically and this factorization of 3, has not 
been established analytically. Since cr 2 is a quadrat ic  in N,  the polynomial Pro(N) 
is linear of form N - Cm for suitable constants Cm. Equat ion (6.6) now gives 

_ m - I ( N + I ) ( N - C , ~ )  
(6.7) (7 2 m + 1 N 2 - 1 

m -  1 N - C ~  
m + l  N - 1  ' 

and 

(6.8) )) RS(1 ) _ 1 1 + (N - C,~ 
N - m  m + l  

Using the GAUSS program, the first few values of Cm are determined to be C,~ = 
11/5, 44/35, 61/63, 129/154 for m = 2 ,3 ,4 ,5 ,  respectively. Table 1 provides 
numerical computat ions  for m = 2, 3, 4, 5, r = 1, 2, 3, 4 and N = 4(1)9, 12, 16(2)20, 
25, 27, 32, 36, 45, 48, 50, 64, 75, 80, 100,125,150,200 and oc. 

6.2 Quadratic range 
The populat ion is defined by xs = s 2 for s = 1 , 2 , . . . , N  and the population 

variance is 
~.2 = (N 2 _ 1)(2N + 1)(8N + 11)/180. 

As N --* cx~, the populat ion converges (after scaling) to a continuous distr ibution 
with pdf  given by 1/(2v/~), 0 < x < 1. For this distribution, the limit (6.5) is 
found to be 

1 (,~ - 1)(4m + 7) 

4 ( m + l ) ( m + 2 )  

Again, it is clear from (4.9) tha t  3, is a polynomial function of N and numerical 
work using the GAUSS program showed tha t  this polynomial was divisible by the 
quant i ty  (6.3) for m _< 12. Larger values of m have not been studied numerically 
and this factorization of 3, has not been established analytically. Since cr 2 is of the 
fourth degree in N,  the polynomial  Pro(N) is a cubic. Equat ion (6.6) now gives 

_ 4 ( m -  1)(4m + 7) ( N + I ) P , ~ ( N )  
(6.9) a 2 (m + 1 ) ( m  + 2) (N  2 - 1 ) ( 2 N + 1 ) ( s N + 1 1 )  

= 4 ( m -  1)(4m + 7) Pro(N) 
(m + 1)(m + 2) (N - 1)(2N + 1)(8N + 11)' 

and 

(6.10) RS(1 ) _ 1 (1 + 4 ( m -  1)(4m + 7) Pro(N) ) 
N - m - ~ - +  T)-(-m +-2-) (2N + 1)(8N + 11) 

Q 
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Table 1. Relative savings (in percent)  of RSS compared with SRS under a linear range when 
the set size, m = 2(1)5, the number  of cycles, r = 1(1)4, and the populat ion size, N >_ m2r. 

Populat ion Relative Savings 

Size Set Size (m) 

(N) 2 3 4 5 

Cycles (r) Cycles (r) Cycles (r) Cycles (r) 

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 

4 80 

5 64 

6 57 

7 52 

8 49 73 

9 47 65 81 

12 43 53 71 71 

16 40 47 56 70 64 83 

18 39 45 52 63 62 78 80 

20 38 43 49 58 61 74 78 

25 37 41 45 51 58 68 73 

27 37 40 44 49 58 66 77 72 

32 36 39 42 46 56 63 71 70 

36 36 38 41 44 56 61 68 76 69 

45 35 37 39 41 54 59 63 69 67 

48 35 37 39 41 54 58 62 68 66 

50 35 37 38 40 54 58 62 67 66 

64 35 36 37 39 53 56 59 62 65 

75 35 36 37 38 53 55 57 60 64 

80 34 35 36 37 52 55 57 59 64 

100 34 35 36 36 52 54 55 57 63 

125 34 35 35 36 51 53 54 56 62 

150 34 34 35 35 51 52 53 55 62 

200 34 34 34 35 51 52 52 53 61 

Inf. 33 33 33 33 50 50 50 50 60 

85 

84 

82 81 

79 79 

74 76 

73 81 75 

72 80 75 84 

69 75 81 73 80 

68 72 77 72 78 

67 71 76 72 77 

66 69 72 71 75 

64 67 69 70 73 

64 65 67 69 72 

63 64 65 69 70 

60 60 60 67 67 

84 

83 

79 84 

76 80 

74 77 

72 74 

67 67 

U s i n g  t h e  G A U S S  p r o g r a m ,  t h e  f i r s t  f ew  P,,~(N) w e r e  d e t e r m i n e d  to  b e  as  fo l lows :  

P2(N) = ( 3 5 N  3 - 1 9 N  2 - 1 3 7 N  - 6 5 ) / 3 5  

P 3 ( N )  = ( 5 3 2 N  3 + 2 7 8 N  2 - 1 0 0 3 N  - 5 7 2 ) / 5 3 2  

P 4 ( N )  = ( 3 5 4 2 N  3 + 3 0 4 8 N  2 - 4 3 7 3 N  - 2 8 8 7 ) / 3 5 4 2  

P5(N) = ( 1 0 2 9 6 N  3 + 1 0 4 8 4 N  2 - 9 5 6 4 N  - 7 1 0 1 ) / 1 0 2 9 6 .  

T a b l e  2 p r o v i d e s  n u m e r i c a l  c o m p u t a t i o n s  o f  t h e  r e l a t i v e  s a v i n g s  for  m = 2, 3, 4, 5, 

r = 1, 2, 3, 4 a n d  v a l u e s  o f  N c o n s i d e r e d  e a r l i e r  for  T a b l e  1. 
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Table 2. Relat ive savings (in percent)  of RSS compared  wi th  RSS under  a quadra t ic  range when 
the  set size, rn = 2(1)5, the  number  of cycles, r = 1(1)4, and  the popula t ion  size, N k m2r .  

Popula t ion  Relative Savings 

Size Set Size (m) 

(N) 2 3 4 5 

Cycles (r) Cycles (r) Cycles (r) Cycles (r) 

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 

4 74 

5 60 

6 53 

7 49 

8 46 68 

9 44 61 77 

12 40 50 66 67 

16 37 44 52 65 61 80 

18 37 42 49 59 59 74 77 

20 36 41 46 54 58 70 74 

25 35 38 42 47 56 64 70 

27 35 38 41 46 55 63 73 69 

32 34 37 39 43 54 60 68 67 

36 34 36 38 41 53 58 65 73 66 

45 33 35 37 39 52 56 60 66 64 

48 33 35 36 38 51 55 59 64 64 

50 33 34 36 38 51 55 59 63 63 

64 33 34 35 36 50 53 56 59 62 

75 32 33 34 35 50 52 54 57 61 

80 32 33 34 35 50 52 54 56 61 

100 32 33 33 34 49 51 53 54 60 

125 32 32 33 34 49 50 51 53 60 

150 32 32 33 33 49 50 51 52 59 

200 32 32 32 33 48 49 50 51 59 

Inf. 31 31 31 31 ,t7 47 47 47 57 

83 

81 

78 78 

75 76 

71 73 

70 78 73 

69 77 72 81 

66 72 77 70 77 

65 69 Y4 69 75 

64 68 72 69 74 

63 66 69 68 72 

62 64 66 67 70 

61 63 65 67 69 

60 61 63 66 68 

57 57 57 64 64 

81 

80 

76 81 

73 77 

72 74 

70 72 

64 64 

6 .3  Comparisons of relative savings 
T a b l e s  1 a n d  2 s h o w  t h e  r e l a t i v e  s a v i n g s  d u e  t o  R S S  c o m p a r e d  w i t h  S R S W O R  

for  f i n i t e  p o p u l a t i o n s  w i t h  l i n e a r  a n d  q u a d r a t i c  r a n g e  w h e n  N >_ m2r, i.e. w h e n  

, ~  < 1 N o t e  t h a t  t h e  r e l a t i v e  s a v i n g s  i n c r e a s e  w i t h  t h e  s a m p l i n g  f r a c t i o n  ~ = ~ -  _ ~ .  

t h e  s e t  s i ze  for  b o t h  p o p u l a t i o n s .  H o w e v e r ,  for  a g i v e n  s e t  s ize ,  t h e  n u m b e r  o f  

c y c l e s ,  a n d  t h e  p o p u l a t i o n  s ize ,  t h e  r e l a t i v e  s a v i n g s  s e e m  t o  b e  s l i g h t l y  h i g h e r  for  

l i n e a r  r a n g e  o v e r  q u a d r a t i c  r a n g e .  W e  a l s o  o b s e r v e  t h a t  t h e  l a s t  r o w  of  T a b l e  1 

c o r r e s p o n d i n g  t o  N ~ oo  m a t c h e s  w i t h  t h e  v a l u e s  o b t a i n e d  b y  D e l l  a n d  C l u t t e r  

(1972)  fo r  t h e  c o n t i n u o u s  u n i f o r m  d i s t r i b u t i o n  as  e x p e c t e d .  B o t h  t a b l e s  s u g g e s t  
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an opt imal  choice of rn for fixed n = mr ,  and it is in its maximal  value satisfying 
n = m r ,  where r is to be a positive integer. Finally, the following observat ion 
may be of some practical  significance. Relative-savings-wise, near-uniform finite 
popula t ions  of size N > 25 are p re t t y  close to their  uniform continuous popula t ion  
counterpar t ,  w h e r e ~  for right-skew finite populat ions,  it is N _> 50. 
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