Ann. Inst. Statist. Math.
Vol. 47, No. 4, 621-636 (1995)

FINITE POPULATION CORRECTIONS
FOR RANKED SET SAMPLING*

G. P. PATIL, A. K. SINHA AND C. TAILLIE

Center for Statistical Ecology and Environmental Statistics, Department of Statistics,
Pennsylvania State University, University Park, PA 16802-2112, U.S.A.

(Received April 7, 1993; revised March 22, 1995)

Abstract. Ranked set sampling (RSS) for estimating a population mean p
is studied when sampling is without replacement from a completely general
finite population @ = (z1,z2,...,2n)". Explicit expressions are obtained for
the variance of the RSS estimator firss and for its precision relative to that
of simple random sampling without replacement. The critical term in these
expressions involves a quantity v = (z — p)'T'(z — p) where I’ is an N x N
matrix whose entries are functions of the population size N and the set-size m,
but where I' does not depend on the population values . A computer program
is given to calculate I for arbitrary N and m. When the population follows a
linear (resp., quadratic) trend, then v is a polynomial in N of degree 2m + 2
(resp., 2m + 4). The coefficients of these polynomials are evaluated to yield
explicit expressions for the variance and the relative precision of jirss for these
populations. Unlike the case of sampling from an infinite population, here the
relative precision depends upon the number of replications of the set size m.

Key words and phrases: Linear range, observational economy, order statistics
from finite populations, quadratic range, relative savings, sampling efficiency,
sampling from finite populations, sampling without replacement.

1. Introduction

The method of ranked set sampling (RSS) was introduced by McIntyre (1952)
as a cost-efficient alternative to simple random sampling for those situations where
outside information is available allowing one to rank small sets of sampling units
according to the character of interest without actually quantifying the units.
Meclntyre was concerned with estimating agricultural yields where the ranking
could be done on the basis of visual inspection. One of the strengths of the
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method, however, is that its implementation and performance require only that
ranking be possible but they do not depend in any way on how the ranking is
accomplished.

A basic cycle of the method involves the random selection of m? units from
the population. These units are randomly partitioned into m subsets, each con-
taining m sampling units. The members of every subset are ranked according to
the character of interest. Then the lowest ranked member is quantified from the
first set, the second lowest ranked member is quantified from the second set, and
so on until the highest ranked member of the last set is quantified. This yields
m quantifications from among the m? selected units. Since m is usually taken
as small in order to facilitate the ranking, this may not be enough measurements
for reasonable inference and the basic cycle is repeated r times to give n = mr
quantifications out of m?r selected units. The arithmetic mean of these n mea-
surements is the RSS estimator figrss of the population mean p. The integers m
and r are design parameters known as the set-size and the replication factor (or
the number of cycles), respectively.

Performance of the RSS estimator is generally benchmarked against that of
the simple random sampling (SRS) estimator fisgs with the same number of quan-
tifications. For this purpose, one may employ either the relative precision,

RP — Var(/:isas)’
var(firss)

or the relative savings,
RS=1-1/RP.

There was little followup on McIntyre’s (1952) proposal until the late 1960s
when Halls and Dell (1966) published a field evaluation and Takahasi and
Wakimoto (1968) developed the statistical theory for the RSS method. When
sampling is from a continuous population and the ranking is perfect, Takahasi and
Wakimoto proved that jirgs is unbiased for p and is at least as efficient as [igrs.
They also obtained the variance of the RSS estimator as

m

. 1 . 1
(11) Var(/JRSS) = % o — E ;(“(i:m) - M)’Z

where o7 is the population variance and L(i:m) is the expected i-th out of m order
statistic from the population. From (1.1), Takahasi and Wakimoto established the
bounds

(1.2) 1§RP§m;Ll,
or,

m—1
(1.3) 0<RS< -
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where the upper bounds are sharp and are achieved exactly when the population
follows a uniform distribution. The upper bound in (1.3) indicates that ranked
set sampling can result in very substantial savings when compared with simple
random sampling. Specifically, the method can result in savings in the number
of quantifications by as much as 33, 50, 60, 67 percent when m = 2, 3, 4, 5,
respectively. The savings achieved in practice are somewhat less due to ranking
errors and population skewness.

Because of this potential for observational economy, the RSS method has
received growing attention both from statisticians and substantive scientists. See
Patil et al. (1994) for an historical review of the theory, methods, and applications
of ranked set sampling. However, these researches have been mostly concerned
with sampling from infinite (continuous) populations. To our knowledge, the only
exception is a paper in Japanese by Takahasi and Futatsuya (1988) giving a formula
for the variance of firss when sampling is from a finite population. Unfortunately,
the Takahasi-Futatsuya formula includes a general covariance term that depends
on the structure of the population and is difficult to evaluate. In fact, Takahasi
and Futatsuya obtain an explicit expression only for the combination of m = 2
and a discrete uniform population.

The present paper derives explicit expressions for var(firss) and for the cor-
responding relative savings when sampling is from an arbitrary finite population
z = (z1,Za,...,zy)". We show that the dependence on the population structure
x is according to a bilinear function v = (z — u)'T'(z — u) of the centered popu-
lation vector, & — u, whose array of coefficients I can be written down explicitly
in terms of binomial coeflicients. Further, I' involves only N and m and does not
depend upon either r or . Upon asking, we can provide a computer program, in
the GAUSS language, that evaluates I for arbitrary m and N (subject to memory
limitations).

Next, we special.ize to populations following either a linear or a quadratic trend
in their range. In each case, v is a polynomial function of N having degree 2m + 2
(linear trend) or 2m +4 (quadratic trend). Using the GAUSS program to evaluate
~ allows us to determine the coefficients of these polynomial functions and to write
down var(firss) and RS explicitly as functions of (N, m,r) for the two population
structures considered.

A final matter examined in the paper is how the relative performance of ranked
set sampling depends upon the replication factor 7. In the conventional case of
sampling from an infinite population, the successive cycles are true replications,
and RS (or RP) does not depend upon 7. However, RS does depend upon r when
sampling is without replacement from a finite population since the different cycles
are not independent. In fact, we show that

_1-f/r 1
(1.4) RS = ¢ xR,

where f = n/N is the quantification (sampling) fraction and RS is the relative
savings for a single cycle. This convenient formula means that only a single cycle
has to be considered in theoretical investigations.



624 G. P. PATIL ET AL.

The present paper is concerned with derivations of the foregoing results and
with numerical computations of RS for finite populations with linear and quadratic
ranges. A companion paper (Patil et al. (1993)) discusses the implications of these
developments, provides the results of some numerical computations, and compares
the performance of RSS with that of systematic sampling and stratified random
sampling from finite populations with a linear trend in their range.

First, we make a few remarks concerning the interplay between ranked set
sampling and order statistics, and how that interplay is affected by finiteness of
the population.

2. Order statistics for different sampling methods

If X1, Xo,...,X,, is a random sample from an infinite population, then the
SRS estimator of y is

m

_ 1
2.1 1 =X== X;.
(2.1) iSRS ~ ; i
Letting X1.m. XNooms -+ -, X be the order statistics of X1, Xo, ..., X}, the esti-
mator (2.1) can be expressed as

i 1 -
(2.2) fisrs = — Z Xiim.
=1
Now consider ranked set sampling with only one cycle {r = 1) from the same

infinite population and write X|;.,,, for the quantification of the i-th ranked unit
from the i-th set. Parentheses are used in the subscript to indicate that the X;.,,,)
are order statistics from disjoint sets, whereas the X,.,, result from ordering a
single set of m units. Although X|;.,,) has the same marginal distribution as X;.,,,
the different X(,.,,,) are independent while the X;.,,, are positively correlated. The
RSS estimator is

A 1 m ;
(23) HRSS = m ;/\('Lzm)~
Comparing equations (2.3) and (2.2), the estimator jigrg is seen to have the larger
variance because of the positive correlation among the X;.,. This accounts for
the superiority of RSS over simple random sampling and shows that the essence of
McIntyre's method consists in obtaining direct independent measurements of the
order statistics.

What happens when the population is finite and sampling is without replace-
ment? First, the observations X; in equation (2.1) are not independent and, in
fact, are negatively correlated. The negative correlation reduces the variance of
Isrs and is the reason that sampling from finite populations is more efficient than
sampling from equally diffuse infinite populations, as indicated by the usual finite
population correction. There is a similar effect for ranked set sampling. Even
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though the different sets are disjoint, they are not statistically independent and
the various X(;..,) in (2.3) are negatively correlated, which has the beneficial ef-
fect of reducing the variance of jigss for finite populations. Unfortunately, the
statistical analysis of jirss also becomes more involved since we have to determine
the joint distribution of X{;.,,y and X{;.,) and not just the marginal distributions
of these variates. The determination of these joint and marginal distributions is
taken up in the next section. In the case of RSS with r cycles, we will write X(ism)k
for the quantification of the i-th ranked unit in the i-th set of the k-th cycle for
k=1,2,...,r.

3. Order statistics from finite populations

Let 2 = {27.29,...,2n5} be a finite population with mean ;i and variance
o2, Without loss of generality, we can suppose that z; < 25 < --- < rn and we
write = (21, x2,...,2x)". Let a set of size m be selected at random and without

replacement from € and define the event
{t = s}

to mean that the ¢-th ranked unit in the subset is the s-th ranked unit in the
population. Also, write

(3.1) A} =Pr{i = s},

and let 4; denote the N-dimensional column vector having A? as its s-th compo-
nent. If X(;.,,) is the quantification of the i-th ranked unit from the set, then

(32) E[X(i:m)] = Kiizm)

2 Pr(X(iim) = 25)

i
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In other words, the vector A; defines the probability distribution of the order
statistic X(;.,). Similarly,

(33) V&I‘(X(;ﬁ:m)) = O-i{:nz)
- ALz’ (Alz)

where x? is the component-wise square of z.
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Next we study the joint distribution of the order statistics from disjoint sets.
To this end, let two disjoint sets, each of size m, be drawn without replacement
from €2 and write
{i=s57j=t}

for the event that the i-th ranked unit from set 1 has rank s in the population and
the j-th ranked unit from set 2 has rank ¢ in the population. Define

(3.4) B =Pr({i=s,j=t})

and let B;; be the N x N matrix with Bf]f' as its (s, t)-th component. Notice that
B;; = B]{i since

ts
(3.3) B} = BE.

Let X(;.m)1 and X (;.m)2 be the quantifications of the i-th and the j-th ranked units
from set 1 and set 2, respectively. Then,

N
E(XmnXmy2] = Z 5Tt Pr(X(iom)1 = Ts, X(jim)2 = Te)

s,t=1
N
= Z xsl‘th}'t
s,t=1
= w,Bijm'
Consequently,
(3.6) cov(X(s:m)1, X(jim)2) = Cij

= :c'(Bij - AlAg)a:

The equations (3.2), (3.3), and (3.6) express the first two joint moments of the
order statistics in terms of the matrices A; and B;;. We next develop explicit
expressions for these matrices in terms of binomial and multinomial coefficients.
As usual, we agree that the binomial coefficient (¥) and the multinomial coefficient

(qlf’qz) vanish unless 0 < q,q1,q2, ¢1 + ¢2 < p.

THEOREM 3.1. The components of A;, 1 =1,2,...,m, are given by

B e [
W

s=1,2,...,N.

PRrROOF. In order for the event {i = s} to be true, exactly ¢ — 1 units must
be selected from among the smallest s — 1 members of the population and m — 7
units must be selected from among the N — s largest members of the population.
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THEOREM 3.2. Ifs <t, then

(T G () ()
Bi; _ Z 1 A A . Jj—1 J )
A=0 (m,m)
If s =t, then Bf} = 0; if s > t, then Bj} = B,

PrOOF. Similar to the argument in Theorem 3.1. Here A is the number of
units in set 1 whose value lies between z; and z;. In fact, A must satisfy all of the
following restrictions:

0<ALt—s-1,
Zm—1—-j+t-—N <A< m—1,
A<t—i—j.

However, one can simply let A =0,1,...,m — i and our convention regarding the
vanishing of the binomial coeflicients will do the rest.

Next, we observe the following results for the component-wise sums of the
matrices 4; and B;;:

(3.7 Z A3 r{unit s is in the selected set)
=m/N,
(3.8) Z Z B! = Pr(unit s is in set 1 and unit ¢ is in set 2)
=1 j=1
2
m
- _(1-
m m 2 2
, st As At = L
(3 9) Z [Bz] A1 _}] NQ(N——I) N(N—l) t

i=1 j=1
where 8,; is the Kronecker delta symbol.
4. Moments of the RSS estimator

Suppose that mr sets, each of size m, are selected randomly and without
replacement from 2. Let the lowest ranked unit be quantified in each of the first
r sets:

X(l:m)la ‘X(I:m)Qv *X(l:m)Sv RN X(l:m)r

In each of the next r sets, the second ranked unit is quantified to yield:

X(Z:m)le(‘Z:m)Qv X(Z:m)Bv BN} X(Q:m)r'
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This process continues until the highest ranked unit is quantified in each of the
last r sets:

X(m:m)h X(m:m)27 X(m:m)Sa cee 7X(m:m)7"

The ranked set estimator of u is the average of these quantifications:

(4.1) firss = T—IT; DN Xismyne

k=1 i=1

Our next result establishes the unbiasedness of the RSS estimator for finite
populations.

THEOREM 4.1. The ranked set estimator of u is unbiased.

PROOF. An informal proof simply notes that the average of the i(;.n) over
i =1,2,...,m, is u itself. A formal proof, in the context of finite populations,
uses equation (3.7):

) 1 r m
Elprss] = — Y Y E[X(im)k]
rm k=11i=1

We next obtain the variance of firss. As in equation (3.6), we let C;; denote
the covariance between X(;.;my and X(j.m)e. From (4.1), it follows that
(4.2) (rm)? var(jirss) = ra(zl:m) + Ta(22:m) + 4+ TU(Qm:m)
+ 7‘(7‘ — 1)011 + 7‘2012 + -4 T2C1m
+72Cy + rir—1)Co+ -+ 2 Cam

+ 1201 +12Cma + -+ 7(r = 1)Crum

m m m m
:TZO'(Qi:m) +TZZZCij —TZCii.
=1 i=1

i=1 j=1
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In order to simplify this expression, we need the following result:

THEOREM 4.2. The sum of the variances of the order statistics is

m

(43) U(zlzm) + J(22:m) +oF a(zmsm) = mo.Z - Z(#(i:m) - /J')?’
i=1

while the sum of their covariances is
2

(44) ZZCI‘J‘Z—N_IU.

PROOF. Using the fact that A; gives the distribution of X(;.,), we obtain
U(zi:m) = E[(X(zm) - /—1)2] - (/*L(lm) - ,U')2

=A@y — 1) = (Bgamy — ).

The equation (4.3) now follows by summing over ¢ and applying the summation
formula (3.7). Equation (4.4) is immediate from equations (3.6) and (3.9).

Putting these results into (4.2), we obtain our first formula for the variance of
the ranked set estimator:

. 1 m(N—-1-mr) , <« g =
(4.5)  var(jirss) = { N1 0% — Z(N(i:m) - ) - ;C’ii :

i=1

This is essentially the formula of Takahasi and Futatsuya (1988), except that these
authors have not given an explicit expression for C;;. However, an alternative
formula proves to be more convenient for actually calculating the variance. We
observe that the last term in (4.5) must remain unchanged if the population is
centered, i.e., if x4 is replaced by x5 — 1 and ;. is replaced by fi(j.m) — . Now

Cii = IB/(B.”' - ALA;)w

=z'B;x — M?i:m),
which becomes, after centering,
Cii = (z — 1)/ B — 1) — (phism) — 1)°

Putting this into (4.5), we see that the terms >_(i(;.m) — p)? cancel giving

X 1 JN—-1-mr 2_im B
(46) Var(MRss)——%{ N0 e~ ) Bl u)}-
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Thus, it is only necessary to calculate the matrices By;, 2 = 1,2,...,m, in order
to obtain var(jigss) for a general finite population. In fact, we note that only the
matrix,

- r
(4.7) Y Bi=-—

b
=1 m,m)

is needed. In terms of I', equation (4.6) becomes

1 N—-1—mr 1
4. rlfnss) = o TR0 |
(4.8)  var(firss) mr { N-1 ¢ m(mNm)’)}
1 (N—1-mr , ml(m — 1)!
= — N 1 9 — ,)/
mr N -1 N(N—-1)---(N-2m+1)
_ 1 fN-l-mr , _
_ — N1 o Y
where
(4.9) 7= (2~ u)T(@—p)
{m — 1)!
1) . m!{m )

NN-1)---(N—2m+1) "

In view of Theorem 3.2, the matrix I' is symmetric with zeros on the diagonal.
We record the following expressions for I' when m = 2 and m = 3.

THEOREM 4.3. Letm =2 and 1 <s<t< N. Then

*P=T"=(N-t)(N—-5—-2)+ (s —1)(t = 3).
THEOREM 4.4. Letm=3and1 <s<t< N. Then

= Z(N—t)(N—t—l)(N—s—B)(N—s—4)
+(N—-t)t—4) (N —s5=3)(s—1)+ (N —t)(s—1)(N —5)
+ =(s—=1)(s—2)(t — 4)(t — 5).
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5. Relative precision of the RSS estimator

We now compare the performance of ranked set sampling with that of simple
random sampling. When sampling is without replacement from a finite population,
the variance of the SRS estimator is

N —mr o2

verlisns) = N e

when there are n = mr quantifications. In conjunction with (4.8), this yields the
following expression for the relative precision of RSS:

(5.1) rp - Yvar(isrs)
var(firss)
_ 1
= N =
1 — m 1 +N ll
N—-mr|N—m N-moag?
_ 1
- N —-m ’
1~ ———RSW
N —mr
where
(5.2) RS ! N-17

T N-m N-mgo?

Here, it should be noted that, while RP depends on the replication factor r, the
quantities =, %, and RSV are each independent of . From the relative precision
(5.1), we obtain the relative savings RS as

N-—-m

— ey
(5.3) RS = N erS
. _ 1S/ M
(5.4) == x RS,

In particular, putting 7 = 1 in this equation, we see that RSV is the relative
savings for a single cycle of the RSS procedure. We also observe that RS is a
monotone increasing function of r for a given value of m.

6. Linear and quadratic range
Here we specialize to particular population structures and obtain explicit ex-

pressions for RS, The pertinent formulae are equations (4.10) and (5.2) which
are repeated here for convenience of the reader:

(6.1) 3 ml(m — 1)! a
' o2 NN-1)---(N—-2m+1)0o?
(6.2) gV -t G N=Z173

N—-m N-mo?
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For the populations considered, it turns out that v and o2 are polynomials in N.
Further, after scaling, the populations converge to continuous populations with
finite, nonzero RS as N — oo. But this implies that

degn v = 2m + degpy o

Indeed, from equation (6.2) the ratio 4 /02 has a finite, nonzero limit when N — oc.
But then equation (6.1) gives the desired conclusion. For the specific populations
considered, we find empirically that - is divisible by

(6.3) (N+ 1NN —1)(N—-2)-- (N —-2m+1).

Accordingly, we may write

(6.4) Yy=am(N+1)N(N —1)}(N =-2)--- (N =2m+ 1)P,(N),

where a,, is a constant and P, (N) is a monic polynomial in N with
degy P, = degy o® — 1.

Equations (6.1) and (6.2) now imply that

lim RSY = lim l)

N—2o N—oc g*

1 Pm
=m!(m — 1)la,, lim ——(N + ),) (N)‘
N—oc a-

The constant a,, can be found from

m!(m — 1)la,, = a,2 lim RS,
N—cc

where a,2 is the leading coefficient of ¢, considered as a polynomial in N. But
the quantity,

(6.5) lim RS,

N—o

can be computed directly from the limiting (continuous) population using equation
(1.1). Thus, we finally obtain

(N +1)P,(N)
0-2
(N +1)Pn(N)

(ngllo RSU)) 02 /age

and all that remains is the determination of the polynomial P, (N ), which will be
accomplished numerically using the GAUSS program.

(6.6)

Q=

=m!(m— Dlay,
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6.1 Linear range

The population is defined by zs = s for s = 1,2,...,N. The population
variance is 02 = (N2 —1)/12 and the limit (6.5) is (m — 1)/(m + 1) since the
population converges to the uniform distribution for large N. It is clear from (4.9)
that v is a polynomial function of N. Numerical work using the GAUSS program
showed that this polynomial was divisible by the quantity (6.3) for m < 12. Larger
values of m have not been studied numerically and this factorization of v has not
been established analytically. Since o2 is a quadratic in N, the polynomial P, (N)
is linear of form N — (Y, for suitable constants C,,,. Equation (6.6) now gives

¥y _ m-1(N+1)(N-Ch)
(6.7) 62 m+1 N2 -1
. m—1N-Cy
S m4+1 N-1"
and
(6.8) RsW = 1 (147" LN_c))
N-—-m m+1

Using the GAUSS program, the first few values of C,,, are determined to be C,, =
11/5, 44/35, 61/63, 129/154 for m = 2,3,4,5, respectively. Table 1 provides
numerical computations for m = 2,3,4,5,r = 1,2,3,4 and N = 4(1)9, 12, 16(2)20,
25,27,32, 36,45, 48, 50, 64, 75,80, 100, 125, 150, 200 and oo.

6.2 Quadratic range
The population is defined by x, = s for s = 1,2,..., N and the population
variance is
02 = (N? —1)(2N + 1)(8N + 11)/180.

As N — oo, the population converges (after scaling) to a continuous distribution
with pdf given by 1/(2y/z), 0 < z < 1. For this distribution, the limit (6.5) is
found to be

1(m—1)(dm+7)

4 (m+1)(m+2)

Again, it is clear from (4.9) that - is a polynomial function of N and numerical
work using the GAUSS program showed that this polynomial was divisible by the
quantity (6.3) for m < 12. Larger values of m have not been studied numerically
and this factorization of v has not been established analytically. Since o2 is of the
fourth degree in N, the polynomial P,,(N) is a cubic. Equation (6.6) now gives

(6.9) 3 _m-DEm+7) (N +1)P,(N)
' o2 T (m+1D(m+2) (N2-1)(2N +1)(8N +11)
_(m-1)dm+7) P.(N)
(m+ 1)(m+2) (N —1)(2N +1)(8N + 11)’
and
. (m—1)(dm +7) P (N)
(610)  RSY =g (1 T Dm+2) 2N+ DEN + 11))'
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Table 1. Relative savings (in percent) of RSS compared with SRS under a linear range when
the set size, m = 2(1)5, the number of cycles, » = 1(1)4, and the population size, N > m?2r.

Population Relative Savings

Size Set Size (m)

(N) 2 3 4 5
Cycles (r) Cycles (r) Cycles (r) Cycles (1)
1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

4 80

5 64

6 57

7 52

3 49 73

9 47 65 81

12 43 53 71 71

16 40 47 56 70 64 83

18 39 45 52 63 62 78 80

20 38 43 49 58 61 74 78

25 37 41 45 51 58 68 73 85

27 37 40 44 49 58 66 77 72 84

32 36 39 42 46 56 63 71 70 82 81

36 36 38 41 44 56 61 68 76 69 79 79

45 35 37 39 41 54 59 63 69 67 74 76

48 35 37 39 41 54 58 62 68 66 73 81 75

50 35 37 38 40 54 58 62 67 66 72 80 75 84

64 35 36 37 39 53 56 59 62 65 69 75 81 73 80

75 35 36 37 38 53 55 57 60 64 68 72 77 T2 78 84

80 34 35 36 37 52 55 57 59 64 67 71 76 72 77 83

100 34 35 36 36 52 54 55 57 63 66 69 T2 71 75 79 84

125 34 35 35 36 51 53 54 56 62 64 67 69 70 73 76 80

150 34 34 35 35 51 52 53 55 62 64 65 67 69 72 T4 77

200 34 34 34 35 51 52 52 53 61 63 64 65 69 70 T2 T4

Inf. 33 33 33 33 50 50 50 50 60 60 60 60 67 67 67 67

Using the GAUSS program, the first few P,,,(N) were determined to be as follows:
Py(N) = (35N3 — 19N? — 137N — 65)/35

P3(N) = (532N3 + 278 N? — 1003N — 572)/532
Py(N) = (3542N3 + 3048N? — 4373N — 2887) /3542
P5(N) = (10296 N3 + 10484 N? — 9564 N — 7101)/10296.

Table 2 provides numerical computations of the relative savings for m = 2, 3,4, 5,
r=1,2,3,4 and values of IV considered earlier for Table 1.
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Table 2. Relative savings (in percent) of RSS compared with RSS under a quadratic range when
the set size, m = 2(1)5, the number of cycles, » = 1(1)4, and the population size, N > m?2r.

Population Relative Savings
Size Set Size (m)
(N) 2 3 4 5
Cycles (r) Cycles (r) Cycles (r) Cycles (r)
1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
4 74
5 60
6 53
7 49
8 46 68
9 44 61 77
12 40 50 66 67
16 37 44 52 65 61 80
18 37 42 49 59 59 74 77
20 36 41 46 54 58 70 74
25 35 38 42 47 56 64 70 83
27 35 38 41 46 55 63 73 69 81
32 34 37 39 43 54 60 68 67 78 78
36 34 36 38 41 53 58 65 73 66 75 76
45 33 35 37 39 52 56 60 66 64 71 73
48 33 35 36 38 51 55 59 64 64 70 78 73
50 33 34 36 38 51 55 59 63 63 69 77 72 381
64 33 34 35 36 50 53 56 59 62 66 72 77 70 77
75 32 33 34 35 50 52 54 57 61 65 69 74 69 75 81
80 32 33 34 35 50 52 54 56 61 64 68 72 69 74 80
100 32 33 33 34 49 51 53 54 60 63 66 69 68 72 76 81
125 32 32 33 34 49 50 51 53 60 62 64 66 67 70 73 U7
150 32 32 33 33 49 50 51 52 59 61 63 65 67 69 72 T4
200 32 32 32 33 48 49 50 51 59 60 61 63 66 68 70 72
Inf. 31 31 31 31 47 47 47 47 57 57 5T 57 64 64 64 64

6.3 Comparisons of relative savings

Tables 1 and 2 show the relative savings due to RSS compared with SRSWOR
for finite populations with linear and quadratic range when N > m?r, i.e. when
the sampling fraction & = 57 < # Note that the relative savings increase with
the set size for both populations. However, for a given set size, the number of
cycles, and the population size, the relative savings seem to be slightly higher for
linear range over quadratic range. We also observe that the last row of Table 1
corresponding to N — oo matches with the values obtained by Dell and Clutter

(1972) for the continuous uniform distribution as expected. Both tables suggest
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an optimal choice of m for fixed n = mr, and it is in its maximal value satisfying
n = mr, where r is to be a positive integer. Finally, the following observation
may be of some practical significance. Relative-savings-wise, near-uniform finite
populations of size N > 25 are pretty close to their uniform continuous population
counterpart, whereas for right-skew finite populations, it is N > 50.
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