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Algebraic complete integrable systems are integrable systems whose trajectories 
are straight line motions on complex algebraic tori, themselves completions 
of the level manifolds of the system; here space and time must be thought 
of as complex. Such systems can then be solved by quadratures, that is to 
say their solutions can be expressed in terms of Abelian integrals. In fact most 
integrable systems, old and new ones, enjoy this remarkable property. 

Exactly one hundred years ago, S. Kowalewski [15] discovered a necessary 
condition for an n-dimensional system to be algebraic complete integrable: 
namely, it must possess Laurent solutions depending on n - 1  parameters. This 
criterion enabled her to classify all integrable solid body motions about a fixed 
point; among them she discovered her celebrated top. This criterion, used in 
a heuristic way by her, was only proven and fully exploited recently. 

The purpose of this paper is to show how the Kowalewski criterion and 
the theory of Abelian varieties are intimately related. Does the Kowalewski 
criterion guarantee algebraic complete integrability? This outstanding question, 
often called the Painlev6 problem, consists of two parts: (i) given a Hamiltonian 
system in R" having the required number (approximately n/2) of polynomial 
constants of motion and possessing families of Laurent solutions having n -  I 
free parameters, is it algebraic complete integrable? (ii) given a Hamiltonian 
system in R", having families of Laurent solutions with n - 1  free parameters, 
does the system possess the right number of polynomial constants of motion? 
In Sect. I, we answer question (i) and we show how the existence of a coherent 
set of Laurent solutions depending on n - 1  free parameters is necessary and 
sufficient for a Hamiltonian system with the right number of constants of motion 
to be algebraic complete integrable; question (ii) will be addressed elsewhere. 

The main observation is that, if the system possesses several families of 
n-1-dimensional  Laurent solutions (principal Laurent solutions), they must fit 
together in a coherent way; this means the system must, in addition, possess 
n - 2 ,  n - 3  . . . .  dimensional Laurent solutions which are the glueing agents of 
the principal families. The glueing occurs by means of a rational change of 
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coordinates, in which both the generic and lower parameter Laurent solutions 
are holomorphic functions of time and initial data; in terms of these functions, 
the lower parameter solutions are bona fide limits of the generic Laurent solu- 
tions. The generic Laurent solutions correspond to trajectories on the tori pass- 
ing through the divisors (Painlev6 divisors) where the phase variables blow up; 
the lower-dimensional solutions correspond to the intersection of these divisors, 
their singularities and the points where the flow is tangent to these divisors. 
In fact, in most instances, the generic Laurent solutions have the virtue of blow- 
ing up the invariant manifold at infinity, at least embedded into some projective 
space, whereas the rational change of coordinates alluded to above often blows 
down the embedded variety along a variety at infinity. This will be illustrated 
in the example of Sect. 4. 

Section 1 also shows the following striking fact: given an algebraic complete 
integrable system of differential equations, it is possible to replace the original 
set of variables by a new or extended set having the property of forming a 
closed system of quadratic differential equations. Not only is the derivative 
of any new variable expressible quadratically in terms of the new variables, 
but also the derivative of the ratio by an arbitrary variable is expressible quadrat- 
ically in terms of such ratios ! It is indeed these ratios which provide the rational 
change of coordinates which does the gluing discussed above. This procedure 
will be illustrated in the example of Sect. 4. 

In Sect. 2 and 3 we study the nature of Laurent solutions of weight-homoge- 
neous systems; these sections will play an important role in the effective imple- 
mentation of the Kowalewski criterion. At first we show that "formal" Laurent 
solutions, consistent with the weighting, must be convergent. Secondly, finding 
these Laurent solutions is done by an inductive procedure, involving the so- 
called Kowalewski matrix ~ .  Let • be the invariant (or level) manifolds for 
the flow embedded into an appropriate weighted projective space. In Sect. 3, 
we establish the precise relationship between 

- the spectrum of the Kowalewski matrix Z,r 

- the free parameters 

- the weighted degrees of the invariants 

- the singularity of the projective closure d at infinity 

- the description of the Painlev6 divisor. 

Indeed, we show that confining each family of Laurent solutions to the invariant 
manifolds leads to a natural variety, called the Painlev6 variety associated with 
that family; it parametrizes the Laurent solutions on d .  These Painlev6 varieties 
will play an important role in this work. 

In Sect. 4, the techniques of the previous chapters are applied and illustrated 
on a geodesic flow on SO(4), for a certain family of metrics; this flow turns 
out to be equivalent to the motion of a rigid body in fluids, as investigated 
last century by Lyapounov and Steklov. 

Classically, Painlev6 has classified the differential equations of the first and 
second order having "uniform integrals". For complete and definitive results, 
see Bureau 1-22]. In 1982, we applied the Kowalewski criterion to classify the 
integrable geodesic flows on SO(4) I-2, 4]. In 1985 we have shown that the 
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Laurent solutions contain encoded a great deal of information about the invar- 
iant tori, their periods and other geometrical features; these ideas were then 
applied to many integrable systems [5]. In these systems it was shown that 
the Laurent solutions of different dimensions provide the variables which blow 
up and blow down the invariant manifolds at infinity (embedded into projective 
space). Also, among systems of particles with non-nearest neighbor exponential 
interactions (generalized periodic Toda lattices), we found that the only algebraic 
complete integrable systems are those whose interaction is governed by the 
Cartan matrices of Kac-Moody Lie algebras [3]. There we show that the natural 
phase variables xl, x2 .... .  x~, namely the exponentials of the interactions for 
the Toda lattices, have the following divisor structure in terms of l divisors 
on an Abelian variety T ~- t : 

(divisor of xl) = - ~ ai~ O j ,  
J 

where the integers a~j are the entries of the Kac-Moody Cartan matrix. Flaschka 
and Cheng [9] have further studied Laurent solutions of different dimensions 
and tied them in with Lie algebras and Sato's theory. Recently Ercolani and 
Siggia [8] have studied the Laurent solutions going with separable systems. 
There is an extensive literature on applying the Painlev6 test to various systems, 
by Ablowitz, Ramani and Segur [1], Bountis [7], Dorizzi and Grammaticos 
[10], Haine [12], Weiss, Tabor and Carnevale [20], and Steeb [19], just to 
name a few; for excellent review articles, see Kruskal and Clarkson [16] and 
Hietarinta [13]. Also H. Yoshida 1-21] has investigated the relation between 
the spectrum of the Kowalewski matrix and the degrees of the invariants. Finally 
we thank J. Harris, T. Matsusaka and A. Mayer for valuable help with this 
project. 
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w 1. Algebraic complete integrable systems 

A Hamiltonian vector field X1, 

0H 
~=f(z)=J o-~Z-' zeR"' 

//skew-symmetric matrix with polynomial \ 
. . . .  /entries in z, for which the corresponding / 

a=atz)=~Poisson bracket {Hi, Hi} =(8H,/Sz, J 8H/Sz)]  
\satisfies the Jacobi identities / 

(1.1) 
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with polynomial right hand side will be called algebraic complete integrable 
(a.c.i.) when: 

1. the system is completely integrable with polynomial invariants, i.e., besides 
the (polynomial) Casimir functions H1 . . . . .  Hk (functions whose gradients are 
null vectors of J), the system possesses m = ( n - k ) / 2  polynomial constants of 
motion H k +  1 = H . . . . .  H k +  m in involution (i.e., {Hi, H j} = 0), which give rise to 
m commuting vector fields Xi generated by (1.1) applied to Hk+i, 1 <i<m;  for 
generic Ai, the invariant manifolds 

k + ra 

('] {HI=A,,  zeR"}  (1.2) 
1 

are assumed compact and connected and therefore real tori according to the 
classical Arnold-Liouville theorem (see [6]). 

2. The invariant manifolds, thought of as living in ~" 

k + r a  

= ('] {Hi=A, ,  z~ffY} 
1 

are related, for generic A,, to an Abelian variety T m as follows 

= T " \ D  

where D is a divisor in Tm. In the natural coordinates (t~ . . . . .  t~) of T"=~r"/L 
coming from ~m, the coordinates zi=z,(t l  . . . . .  t,,) are meromorphic and D is 
the minimal divisor on T"  where the variables z, blow up. Moreover, the Hamil- 
tonian flows (run with complex time) ~ = J O Hk + JOz (i = 1 . . . . .  m) are straight-line 
motions on Tm. 

An a.c.i, system will be called irreducible when the generic invariant tori 
do not  contain Abelian subvarieties. Poincar~'s reducibility theorem states that 
if an Abelian variety T"  contains an Abelian subvariety T k, there exists another 
Abelian subvariety T z and an isomorphism 

modulo a finite group T k ~ T ~. 
For  a divisor D, define 

T k ~) T I ~ T", 

(1.3) L(D) = { f meromorphic on T "  such that ( f ) >  - D } ,  

i.e., for D = ~ k i D i  a function f~L(D) has at worst a ki-fold pole along Di. The 
divisor D will be called ample when a basis fo . . . . .  fN of L(kD) embeds T m smooth- 
ly into pN for some k, via the map 

p e T"c'~,(fo (p), f l  (P) . . . .  , fN (P)) E •N; 
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then kD is called very ample. It is known that every positive divisor D on 
an irreducible Abelian variety is ample and thus some multiple of D embeds 
T"  into ~N. By a theorem of Lefschetz (see [11]), any k > 3 will work. 

We now state three theorems, containing some concepts to be made precise 
immediately after the statement. 

Theorem 1 (necessary and sufficient conditions for algebraic complete integrabil- 
ity). 

I. a.c.i, system ~ =f(z),  z ell2" with ],=~ the system has a coherent 
invariant tori not containing elliptic curvesJ " tree of Laurent solutions 

II. a regular Hamiltonian system having] 
k + m polynomial invariants in | _ 
involution with a coherent tree of ~=~ the system is a.c.i. 
I_aurent solutions ] 

Theorem 2 (closed systems of quadratic differential equations). I f  an irreducible 
system ~=f(z) ,  zell~", is algebraic complete integrable, there exist polynomials 
Yo = 1, Yl . . . . .  YN of z having the following property:for any choice of holomorphic 
vector field and for arbitrary 0 <- ct <_ N, we have 

d (Yi~=quadraticpolynomial(YO" Y u], i=0 ,  . . . , N ;  
dt \ y , ]  \ y ,  " '  y , /  

in particular, setting ct=O, the Yi form a closed quadratic system. Moreover the 
invariant tori of the system are smoothly embedded into F N by means of the 
map: 

p e T"c'~(y o . . . .  , YN) (P) e ~N. 

Theorem 3 (the complex Arnold-Liouville theorem). Suppose M is an m-dimension- 
al complex compact manifold with m independent meromorphic functions. In addi- 
tion, assume for some divisor D, the affine variety M \ D  supports m everywhere 
independent, commuting, nonvanishing holomorphic vector fields X 1 . . . .  , Xm, with 
flows gt,. Assume that one vector field, say Xa, extends to a holomorphic vector 
field on M having the property that all of its orbits through D go immediately 
into the affine M \ D ,  i.e., 

{g" (p)t0 < Itll < ~(p)} c M \ / ) ,  Vpe/). 

Then M is an Abelian variety and the Xi extend to holomorphic vector fields 
on M. 

In many  problems it is natural  to embed the invariant manifolds s~ into 
weighted projective spaces ~"~ for the weights v =(Vo, vl . . . . .  v,), vie7l, > 1. These 
spaces are defined by identifying all points on the curve 

(So t~~ z 1 t ~, ..., z,t~"), tetE* 

running through the origin; whenever Vo = vl . . . . .  v., we have the isomorphism 
= P". In fact it is always possible to embed ~ into some weighted projective 
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space. Indeed, if a system s  z6{E", has invariants Hi(z), i= 1 . . . . .  N, of 
weighted degrees di, we embed ~r into P~ in the following way: 

N 

~r = N {Hi(z)= ai} c ~ -- {H,(z)= Aizao '} c ~: ;  (1.4) 
1 

let M~ be the locus at infinity, namely 
N 

= {Zo = 0 } :  N {H,(z)= 0}. 
1 

In appendix 1 we shall elaborate on weighted projective spaces P"~ and degree 
considerations. 

Let a system of ordinary differential equations s  zOE", have Laurent 
solutions in t 

zj(t, ~,D~r))=t-kJ(z~~ k j~Z,  >_0, l < j < n ,  r<n,  (1.5) 

whose coefficients z~k)(cO are rational functions on an r-dimensional algebraic 
variety D{'); assume its coordinate ring is generated by the _{k) Whenever the ~ j  �9 

system possesses N polynomial invariants, the variety D tN+~) can be viewed 
as fibered over the space IE N of values A~ . . . .  , A N of the N invariants, with 
/-dimensional fibers, denoted Dt~ To see this, confine the solutions (1.5) to_ 
the invariant manifold d for fixed A~, ..., AN and define 

N 

D tt)(A)-  ('] {the Laurent  ~ solutions z(t, ~, D ~N + l}), 
1 

such that Hi(z(t))= Ai} 
N 

- ( ' ]  {~eD tN+l} suchthat  Fi(~)=Ai}. (1.6) 
1 

The/-dimensional  variety D~~ is called a Painlev~ divisor and has for coordi- 
nate functions the coefficients z~ ~). To see the second equality in (1.6), notice 
that since H is an invariant and since z(t) is a solution of s =f(z) ,  the expression 
I-I(z(t)) must be t-independent; thus 

H (z (t)) = polynomial of (z~ r) (o~)) - F (a), 

and so F is a rational function on DtN+~ Therefore, for fixed but generic A, 
the affine variety Dt*)(A), with running variable p, parametrizes the Laurent 
solutions z(t, p, Dti)(A)), where 0 _< l < m -  1, m = n -  N. 

The following lemma shows how to glue the affine varieties Dt*)(A) to the 
invariant variety ~r 

Lemma 1.1. The following map 

(t, p)~(0 < I tl < ~(p)) x D l(A)c-~z (t, p, D l(A))e ~ '  

is injective ; it defines a biholomorphic map to its image, wherever DZ(A) is smooth, 
and dimension DI(A))= I. 

1 whenever they make sense 
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Proof. To show the injectivity of the map, notice at first that different points 
p~D tN+~ lead to different trajectories z(t, p, DtN+i)); indeed different p's lead 
to different coefficients Zk(p) of the series, as the latter generate the coordinate 
ring of DtN+~ Secondly, orbits on d cannot intersect by Picard's theorem. 
The holomorphy of the map and therefore the biholomorphy follow from the 
fact that z(t, p, DtN+~ is a Laurent series in t with smooth coefficients on the 
smooth part of DtN+~ again because the coefficients are the coordinates of 
DtN+ O. Letting 

F'(A) = {z(t, p, D a)(A)), 0 <I t  I< e(p), p~D a)(a)} 

r l :-- { z  (t, p, D (N +/)), 0 < I tl < e(P), P e D (N +/)}, 

we have the following (in)equalities 

dim r t (A) = 1 + dim D~ dim D a)(A) >= l 

dim U = 1 + dim Dr + t) = 1 + N + l. 

Since F l=  U Fl(A) and since FZ(A) c~ U(A')  = q~, we have that dim D~(A) = 1 for 
A 

generic choices of A, ending the proof of Lemma 1.1. 
Following an idea of Kowalewski [15] we have shown in [2] that for a 

system, ~=f(z) ,  zeC"  to be algebraic complete integrable, each phase variable 
zi must blow up after a finite (complex) time and the system must have one 
or several n--1-dimensional families z(t, ~, Dr"-1)), as described above. But, as 
it turns out, much more is true; this will be stated as follows. 

Definition. A system z = f ( z )  in •", having N polynomial invariants Hi (set m 
=-n--N) has a coherent tree of  Painleve solutions, when it possesses families 
of Laurent solutions z(t, p, D~ m- ~ z(t, p, D~m-2)(A)), ...,z(t,p,u~'~t~ )) in t, 
depending on N + m -  1, N + m -  2, ..., N free parameters respectively, such that 
each zi blows up along some Di m- 1)(A). To be precise, the coefficients of these 
Laurent solutions generate the coordinate ring of the algebraic varieties 
Dr_m- 1)(A) . . . . .  D~ ~ of dimension N + m-- 1, ..., N respectively; A 
=(A1 . . . . .  AN) stands for the values of the N invariants Hi. The families 

~(0) A z(t,p, D~m-1)(A)) are called the principal families, and z(t,p, ~,r ( ) )  the lowest 
families. Henceforth we shall omit the argument A; thus D~)-D~k~(A). These 
families organize themselves in a coherent tree, involving 

(D~m- 1), d~m- 1)) (Dt2rn- 1), d(2 m- 1)) Dram- t), dt3 m- x)) 

\ s J 
(Dtlrn - 2), d((n- 2)) (Dr2 m - 2), dr2 m- 2)) 

\ J 
s,, 

Fig. 1.1 
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inclusions Dr, k)< D~)(k </) such that each Dt~ k) has at least one O (k + 1)> D(k). Such 
a tree is depicted in Fig. 1.1; the arrows "*--" in the tree stand for inequalities 
<mean ing  "is glued onto",  whereas the d tk) are integers. Their precise meaning 
will be explained below. Each level of the tree corresponds to solutions depending 
on a number  of parameters,  given by the superscript on D; the subscripts 
~, fl . . . . .  7 refer to the different families. Each n~k) z(t ,  p, ,- , ,  ) can. be viewed as a 
f ibre  bundle over the corresponding (affine) Painleve variety Dr_ k). The graph 

z(t,  Px , D~"-  1)) z(t, P2, O~"- t)) 

\ / 
z (t, q, D ~ z)) 

means that the Painleve solution z(t ,  q, D ~r"-2)) is glued onto  the principal solu- 
tions z(t ,  Pl , D ] ' -  1)) and z(t ,  P2, Dr2 m- 1)), forming a new fibre bundle 

z(t,  p, O(1 m- 1)..[Lo(2m- 1) II o (m-2) ) ,  

over the manifold Dt~ " -  1)II Dtz m- 1) II D~2 m-2). One then performs the glueing pro- 
cedure inductively down the levels of the tree; that  this forms a fibre bundle 
at every step of the way, enabling one to continue down the tree, is part  of 
the content of Theorem 1. 

Wha t  the glueing means is now explained: there exists birational 2 maps 

S~: (t, p i )c~( t ,q)  i = 1 , 2  

and 

T~r"-2): z = ( z l  . . . .  , Zn)C-~ y = ( Y  l , "" ,  YN) 

such that  
(i) both series (i = 1, 2) (holomorphic continuation) 

y(t,  q, O~"-  1)) = Tt, .  - 2) z (Si ( t  ' Pi), D! m- 1)) 

become Taylor  series 3 in 0 < t < e, q ~ N (D ~m- z ) )c  D m- 1. Also we require that 
(ii) the series y( t ,  q, D! m- 1)) parametrizes an m-dimensional complex ball for 

at least one D~"- 1) > D~,,- 2) 
(iii) the families y(t,  q, Dr1 "-1) )  and y(t,  q, Dr2 m- 1)) restricted to q ~ D  ~m- 2) are 

the same. 
(iv) from the above, the vector of  functions 

~(t, q, D~. " -  1)) = (T~"-2 ' ) -  x y(t,  q, D~"-1,)  

= ( h , ( t , q ) ]  for q ~ N ( D ' m - 2 ' ) c D ~  " - 1 '  
\gi(t, q)]l ~_ i z ,  

= z ( t , q , D  ~m-z)) for q ~ D  ~"-2) 

can be represented as ratios of holomorphic  (relatively prime) functions hi and 
g~ (in good coordinates of the ball in (ii)); also from the above the lower family 

2 The maps are given locally in the charts of D~ ~) 
3 N(D ~ 2))= D!"-1) means a small enough neighborhood of D (m- 2~ in D! m-l) 
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z(t, q, D (m-  2)) for q~D ~m- z) is obtained from ~(t, q, D~ m- 1)) by taking the Laurent 
series in t for the ratios h~/g~ and letting q tend to the points of D ~m-z). We 
now require that 

and 

gi (t, q) ~ 0 as a Taylor series in t, for q ~ D tin- 2) 

~] (order of pole o f z  i o n  D~- m -  1)) 
allD[~ - , )  > fixedDt~ - 2) : multiplicity of gl (t,  p )  ; 

the multiplicity of g is the lowest degree r appearing in the decomposition 
g = (g), + (g),+ ~ + ... in homogeneous polynomial (g)~ (see Mumford [25]). 

As mentioned, working one's way inductively down the tree, using the same 
glueing recipe as above, we get the fibre bundle 

z (t, p, I_I D~ )) 
O~_k<_m-1 

allot 

for 

(v) Finally the global condition is required to hold 
N 

1--[ (degrees of Hi)(l.c.m.(vl . . . . .  v , ) ) ' -  1 

�9 ,k  V1 "'" Vn 

d~ k) = degree (the m - 1-dimensional(5(0, p, D~)),c~176 )) in ~~ the image]] 

A system ~=f(z) ,  ze~n, with N polynomial invariants and a coherent tree 
of Laurent solutions, will be called regular when for all principal Laurent solu- 
tion D~ m- 1), the image of D~'- 1) in IP 7 via the map 

peD~'- l~z(O, p, D~'- 1~)~ 

has dimension m - 1 ,  along with all the components of ~1o~-Zlc~ {Zo=0 }. This 
property will be elaborated on in Appendix 2. 

We now prove the three theorems stated above: 

Proof  of  Theorem 2. Since every divisor D on an irreducible Abelian variety 
is known to be ample, we saw in (1.3) that some multiple kD is very ample; 
it suffices to pick any k > 3. A theorem of Koizumi [14] and Mumford [26] 
asserts that D is projectively normal 4 whenever D is linearly equivalent on 
T m to at least 3D0, where Do is an ample divisor. Therefore for any ample 
divisor D, the divisor 3D will be both very ample and projectively normal. 

4 D is projectively normal,  when 
L(kD)  = L(D) | k, 

i.e., every function in L(kD)  is a homogeneous  polynomial  of  degree k of functions in L(D) 
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gt2 (p) 

p'=g tl (p) 
gt2(p'} 

Fig. 1.2 

Applying these ideas to an irreducible a.c.i, system and to the divisor D 

- - 0  {z/-1 =0} c T m, we have that D' = D  or 2D or 3D is very ample and projec- 
1 

tively normal. Thus L(D') consists of polynomials of {z 0 = 1, z 1 . . . . .  z.}; picking 
a basis Yo, Yl . . . .  , YN of them, we have that the Wronskian 

{Yi, Yj} = (Xyi) Y j--  Yi(XYi)eL(2D') 

= ~ aklYkY~, because L(2D')=L(D')  | (1.7) 
O < k < l < N  

is a homogeneous quadratic function of the yieL(D'), and also that 

peTmc'~'(Yo(P), Yl (P), ..., YN(P)) ePN 

embeds T m smoothly into pN. Dividing (1.7) by an arbitrary but fixed y2 leads 
to the statement of theorem 2. 

Proof o f  Theorem 3. We first extend X~ . . . . .  Xm to m everywhere independent 
holomorphic vector fields on M. Indeed, first observe X ~ is everywhere nonvan- 
ishing; by the assumptions, X~ has no fixed points o n / )  and does not vanish 
on M \ / ) .  We now extend X 2 to /). For pe / )  and small e>0,  we have by 
hypothesis 

p ' = g t ' ( p ) e M \ D ,  for all 0<l t~l<e.  

Let Up, c M \ ~  be a neighborhood ofp'  as in Fig. 1.2 and let Up=g-t'(Up,).  
Define for all me Up and t2 small enough the following 

g': (m) -- g- ' l  g,: g,, (m). 

To show this is a definition, we must show the right hand side is independent 
of t~. Indeed 

g-( ,1  + ~) g,2 g,,  + ~ (m) = g -  ~'' + ~') gt2 g,,  g~, (m) 

= g - , l  +~,) g~, gt~ g,l(m) (by commutativity) 
= g - t 1  gt2 g,~ (m). 

Again by commutativity, this definition agrees with gt~ away f rom/) .  Finally 
g~(m) is a holomorphic function of m and t2, because in Up the function gt, 
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is holomorphic and its image is away f rom/9 (i.e., in M\D),  where gt2 is holo- 
morphic. Thus X2 and similarly Xi have been holomorphically extended to 
M. Since X1, ..., X,, are everywhere independent and commuting in M \ / )  and 
gtl is holomorphic, they will enjoy this same property near /) and hence on 
M, and so this accomplishes our first goal. 

Next we show M is conformal to a complex torus flY'~L= T", and so in 
particular M is a K~ihler manifold. Indeed, by the same argument as in the 
Arnold-Liouville theorem (see V. Arnold [6]), one defines a holomorphic local 
diffeomorphism for a fixed origin p~M:  

�9 " ~ M: (t I . . . . .  t,,)r-~g~, g~2.., grin(p). 

The additive subgroup A 

A=-{(tl, ..., tm)6~" suchthat  gt, gt2...g,m(p)=p} 

of ~ "  is discrete and hence is spanned by 2m vectors in ~m, independent over 
R,  as a consequence of the compactness of M. Therefore M is conformal to 

a complex torus ~ ' / A  as claimed, with the Kfihler metric given by ~, d ti | d ~. 
i~1 

But by a famous result of M6ishezon [17], a compact, complex Kfihler manifold 
having as many independent meromorphic functions as its dimension is a projec- 
tive variety. Thus M is both a projective variety and a complex torus, and 
hence an Abelian variety, finishing the proof of Theorem 3. 

Before proceeding to the proof of Theorem 1, we prove 

Lemma 1.2. I f  D ~ ff~k is a disc about the origin with 

q~I:D-~C ~, holomorphic, rank Oz o = k  

~2 : D ~ ~", holomorphic, ~D 2 (O) a k-dimensional set, 

and/fq~E(U) ~ q~l (D), with U an open set in D, then 

~o~ (D) = ~2(D) 

and it is a smooth variety. 

Proof. By the implicit function theorem, q51 (D) is an analytic variety, locally 
given by holomorphic equations, f l  =f2 . . . . .  f ,_k=O, and so qSE(U) satisfies 
these equations as does q~2 (D) (by analytic continuation), and since by continuity 
t~E(D ) is connected, q~l (D)= (~2 (D), as claimed. 

Lemma 1.3 (Weierstrass Preparation Theorem [-18, 25]). I f  H(z), z~ffY +1, is a 
convergent power series about the origin with lowest degree monomial of degree 
k> 1, then after a nonsingular linear change of coordinates a: zc-~,(s, t), s ~ ,  t e~" ,  
we may represent H as follows: 

H = Weierstrass polynomial, unit 

= ( s  k + a 1 ( t )  s k - 1 + . . .  ak  (t))" (1 + 0 (S, t)), (1.8) 
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with 0(s, t) and a~(t) being convergent power series with ai(0)=0;  moreover, the 
monomials of degree k of the Weierstrass polynomial are obtained from the mono- 
mials of degree k of H, upon performing the linear transformation ~. 

Sketch of proof First observe that after a nonsingular linear transformation 
of the form a, the hypothesis guarantees the presence of a term of the form 
c. s k in H;  indeed, almost any transformation ~r will produce that effect, and 
upon rescaling s, set c =  1. Next observe that if the identity (1.8) holds, we 
have the following Laurent representation for its constituents 5: 

Weierstrass polynomial  = s k exp {polar parts(log s-k H (S, t))} 
(1.9) 

Unit  = s k exp {holomorphic parts (log s -  k H (s, t))}, 

where we view the above as Laurent  series in s over the coefficient ring :~ 
of Taylor series in t with nonconstant  terms. Indeed (1.8) implies 

log(s-k H(s,t))=log(l +a~(st) + . . . ~k  )+log(l +O(s,t)) 

= (series in s -  1 over ~ )  + (series in s over ~). (1.10) 

Thus we have shown (1.8) yields (1.9); to deduce formulas (1.8) from the hypothe--  
sis of the lemma, use formulas (1.9) to define the Weierstrass decomposit ion 
(1.8) and Hartog 's  Lemma to prove convergence. Formula  (1.9) then enables 
one to deduce the last assertion in the lemma. 

Proof of Theorem 1, part I. It  is assumed that the flow X I :  ~=f (z ) ,  zeC",  is 
a.c.i.; therefore the coordinates z~ are meromorphic  functions on the Abelian 
varieties TA m, where m - n - N = n - (number of invariants). Also 

N 

d = ('] {Hi=Ai, z+~"} = T~\D ("- a)(A) 
1 

where the ( m -  1-dimensional) effective divisor 

L) ~ ' - ' ) (A)  = 0 {P ~ Tin, zF 1 (P) = O} = Z components /3~ ' -  1)(A) 
i = 1  ct 

may consist of several components.  Each function z k will be given by the ratio 
of two theta-functions 0~ and Ok of the variables (tl . . . . .  t~ )eC m, where t~ is 
the time variable of each of the commuting flows X i on Tm. Assume now the 
vector field X1 is transversal 6 to every componen t /~m-  1)(A). For  fixed k, consid- 
er one of the components  D~m-I)(A) along which Zk blows up; thus z k has at 

X n X 2 

s expx= 1 +x+...  +_n~! + .... log(1 +x )=x -~ -+ . . .  

6 at least on a Zariski open set 



The complex geometry of the Kowalewski-Painlev6 analysis 15 

least a simple pole along that component/)~"-a)(A).  If  ~Y(p, A) is the trajectory 
of Xa starting at p e T 2 ,  we have 

Zk(C])'(p,A))= 
O ~ ( t t + t , t  2 . . . .  , t~)  

Ok(t a +t ,  t2 . . . .  , t,,)' 
oO 

Z ti tl~J)(p) 
r 

c~ 

2 tJ VktJ)(p) 
'3 

_ 1 v~J(p) ~-o(t), 
t , - .  v~,)(p) 

( t l ,  . . . ,  t m ) = p ~ D ~  m- a)(A), 

upon expanding in a Taylor  series in t, 
and using the fact that z k has a pole 
a long/~m- 1)(A). 

(U~ r), VkC~)~O, s > r > O )  (1.11) 

upon dividing the two Taylor series.(l. 12) 

Observe that the function Ok(t a d- t, t 2 ,  . . . ,  tin) is not identically zero in t, since 
we have assumed (for most  A) the flow Xx is transversal to every component  
of D A, at least in a Zariski open set. 

We now define the affine variety 

D~" - 1}(A) =/~m - a)(A ) n {p, Vk {~) (p) + 0 for each k = 1 . . . .  , n with s as in (1.11)}, 

which supports a fibre bundle, whose fibres are given by the vector of Laurent 
series (1.12); they will be denoted by Zk(t, p, Di  m- 1)(A)), 1 < k < n, for p~D~ '~- n (A) .  
Next we show the coefficients of the Laurent series generate the coordinate 
ring of the variety D~"- 1) = U D~ m- l)(A), obtained by varying A. 

A 

Since the z i generate the field of meromorphic  functions of an affine chart 
of TAm, they generate the field of T~' and so suitable rational functions of the 
zi, restricted to the component  Di m- a)(A), generate its field of rational functions 
and provide a coordinatization in any chart, to wit 

Bi=Ri ( z ) l v~ ,m- , t~  ), j = l  . . . . .  r, 7 (1.13) 

while on TAm we have 

A t = Hi(z) ,  j = 1 . . . . .  N .  

Given the component  D t " -  1)(A) and the corresponding Laurent  series 

(1.14) 

zl(t ,  p, D {m- 1)(A)) = t -k '  ~ z}J}(p, A)  t i, 
j=o 

we claim that the map  

{z~)} o__<i_< o~ c-~(B1 . . . . .  Br, A1 . . . . .  AN)~ D~. - 1) 
l < l ~ n  

(1.15) 

(1.16) 

7 r may be much larger than m -  1 
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is birational. Indeed putting the series (1.15) into (1.13) and (1.14) and setting 
t--- 0 shows this map is rational. To show it is one-to-one, we compute its inverse: 
by definition, the functions A and B specify a unique point (p, A) on D ("- 1); 
consider the unique trajectory running through that point and the functions 
zt evaluated along the trajectory, yielding the Laurent series zt(t, p,D (m-~)) 

= t-k, ~ z~j)t j and thus the set of coefficients z~ j) constructing the inverse map 
j=0  

(1.16). But a rational one-to-one map is automatically birational, concluding 
the proof that the coefficients of the Laurent solutions generate the coordinate 
ring of D ("- 1) 

The arguments given above do not hold if Xt leaves invariant a component 
D' of/)(m-a)(A), at least for generic A~. Then for any pED', the Zariski closure 
{~bt(p), t e P  ~} of the group {~b'(p), t e P  1} is an Abelian subvariety of Ta m, and 
so we have {~bt(p), t e P  x } = O'. If {4~t(p), t e P  ~ } 4:D', the divisor D' would contain 
a continuously varying (parametrized by p) family of Abelian subvarieties, which 
is impossible. Therefore we have that {~bt(p), tEP~}=D ' for p~D', and so by 
Poincar6's reducibility theory of Abelian varieties, we have 

TAm = D' Gelliptic curve (up to an isogeny). 

This shows that if a component of D tr"- I)(A) is invariant under the flow XI,  
the Abelian variety TA ~ must contain an elliptic curve, which contradicts the 
hypothesis. 

So far we have shown the existence of n -  1-dimensional families of Laurent 
solutions z(t, p,D~ r"- I)(A)) such that each coordinate function z I blows up on 
one of them, i.e., we have verified the criterion as initially used by Kowalewski. 

We now show that the next level of Laurent solutions z(t, p, D (m-2)) form 
a fibre bundle over m-2-dimensional  affine 8 subvarieties D~"-2)(A) of/)~"- 1)(A), 
with 

/~m- 2)(A ) _/5~"- 1)(A) c~ { Vk (s) = 0} (a component). 

Indeed 9, setting Vk(~)(p)=0 in (1.12) forces us to recompute the series (1.11), 
as then (1.12) becomes meaningless, yielding a new series for z. Let s 1 >s  be 
the first integer for which Vk(s0(p)4=0 for generic p in /)~"-2)(A); then we have 
from (1.11) 

oo 
~ tJ U(kJ)(p ) 

Zk (•t (p, A)) = "  a l o n g  /~(ra - 2) O { Vk (s') (p) :~= 0} oo 

S! 

e , - ' ,  

8 algebraic by analytic extension and Chow's lemma 
9 the locus where Vk(a)(p)=0 corresponds to places where, for instance,/)~'-1)(A) becomes singular 
or where the flow becomes tangent to/)~"- 1)(A) 
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this Laurent series - which actually may be a Taylor series - forms a fibre 
bundle above the m-2-dimensional  affine subvariety 

D~-Z(A)--Dtm-2)(A)n { Vk(S')(p)4: O, k =  1 . . . . .  n} 

of/~(m- 1)(A). This defines the "inequality": 

{o~m-2)(A) <D(a m- 1)(A))} ~ {D(p m-z) is glued onto O(~ m- 1)}. 

And so it goes, yielding a tree of m - 1 ,  m - 2 ,  m--3 . . . .  ,0-dimensional affine 
varieties D (if- l)  D~m-2) . . . . .  D(~ ~ each of them supporting a fibre bundle of Laur- 
ent series, constructed inductively by the above method. 

Moreover assembling all members of the tree, in the way specified by the 
inequality < yields the original divisor on Tin: 

f i  D~ k)= 0 {p~Tm, z:,-X(P)=O}=Iff(m-')(A) " 
k = O  i = 1  
a l l / /  

Observe that the variety D (m-k) may be glued onto one or several divisors 
D(m-1). The requirements (i) to (v) of the coherence condition is the reflection 
of how the Abelian variety T m looks in good coordinates near these varieties 
D (m-k), this we shall now verify. In a neighborhood of a point of p~.Dt# k) of 
T m, some rational functions yx, ..., YN, of z form a good system of holomorphic 
coordinates on the Abelian variety, and upon enlarging the system if necessary, 
they define a birational map T (k) from (Zl . . . . .  Zn) to (Yl . . . .  , Y/V)" 

(Y l . . . .  , y/V) = T(k)(z l . . . .  , Z.). 

In these new coordinates, the flow X 1 is holomorphic, and the function 

T(k)(z(t, p, Dim - 1))), p~N('D(k)t~ ) ~ D~ m - ~), 0 < I tl < e 

is holomorphic in t and p for al l /~m-1)~D~) ' after perhaps a birational change 
of coordinate p. The orbits in T m emanating from D~ k) must of course be indepen- 
dent of if(m-X)2n(k) verifying (i) and (iii); in addition, since the neighborhood LJCt ~ f l  , 

N(D[k))cB~ m-~) is a section for the X~ flow (as X~ is only tangent to /~m-~) 
on a subvariety), we have that 

{ T(k)(z(t, p, O~m- 1))), p~N(O~k)) c D(~- ~), It I< e} 

parametrizes an m-dimensional complex ball in T m, verifying (ii), and what fol- 
lows will be expressed in good coordinates on the ball. 

Now observe that 

(T(k)) - '  [y(z(t, p, D(~ m- 1)))] =[h,(t ,  p)] 
[gi(t, P)Jl zi_<. 

provides a meromorphic representation of the variables z on T m in the neighbor- 
(m 1) hood N (D~ k)) c / ~ m -  1)= Tm. If Dt~ k) belongs to several/) ,  - , then the local behav- 

ior of zi along each O~ m-l) (away from D~ k)) will be reflected as a factor in 
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the Weierstrass polynomial of the denominator gi(t, p), leading to the summation 
formula stated in (iv) (see also Lemma 1.3). Also note that gi(P, t )~0  in t for 
any pED(pk); otherwise the orbit {z(t, p, D(~"- l)), t eF  1} through peD(~ k) would 
be contained in D(~ "-~) and thus by a previous argument TAm would contain 
an elliptic curve, which has been ruled out. All together, this verifies (iv). 

We now verify (v); indeed, first remember that the invariant manifolds 
can always be embedded into some weighted projective space P~ (see (1.4)), 
yielding ~ .  Thus the correspondence T " r ~ d  leads to the map: 

Since under this correspondence 

q~:/)("- 1)(A) = ~) {z/- ' = O} = I_I D~ )(A) r-'.,sr oo = ~ c~ {z o = 0}, 
i = l  

we conclude that 

k,a k,a 

But by B6zout's theorem (see Appendix 1), we have 

degree (hyperplane c~ ~ }  = degree (do~) 

= ~. degree (components of doo) 

= ~, degrees {~(0, p, D~)), peD~ )} 

k,0t 

concluding the verification of (v) and part I of Theorem 1. 

Proof of Theorem 1, part II. The strategy is to glue the Painlev6 varieties ,,(k) lJ~t , 
N 

appearing in the coherent tree, onto the smooth affine variety ar = ~ {Hi = Ai}, 
thus creating a m-dimensional complex manifold M, such that 1 

ar = M \ / 3  tin- 1), with L) <m- 1) = I_I Dtf). 
O < k < m - 1  

all a 

The coherence condition enables one to assemble the Painlev6 varieties D (k) 
and the expansions z(t, p, D~ )) into a fibre bundle on M. Then the independent 
commuting vector fields X x . . . . .  X,, defined on it and generated by the Hamil- 
tonians Hk+;, 1 <j<m, all extend to commuting holomorphic vector fields on 
M. Thus we will satisfy the conditions of Theorem 3, by showing that M is 
compact and that it has m algebraically independent meromorphic functions. 
Indeed m of the functions zx . . . . .  z, on d will be extended to m independent 
meromorphic functions on M, again using the coherence condition. Finally, 
upon employing the valuative criterion of properness (see Hartshorne [24]), 
condition (v) will yield the compactness of M and then Theorem 3 will do the 
rest. For  the sake of simplicity we will refer to the case m = 2. 
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(m-l) 1 t z ( t ,p ,D~ / 
T [ = P  

d 

Fig. 1.3 

The complex manifold M will be assembled by taking the affine chart ~r 
and by glueing on various charts "a t  infinity", using the Laurent solutions 

'~tkh" the glueing recipe is explained in Lemma 1.1 and illustrated in z(t, p, ~ 1, 
Fig. 1.3. 

The lines p - -cons tan t  lo in the (t, p) plane map to Xl-trajectories of M and 
the p-axis maps to the smooth variety D(ff -~). Moreover  the intersection of 
the affine chart and the one at infinity, for t small and p in an open set cD~ m-~) 
corresponds to 

{z (t, p, D~"- 1)), 0 < I t l < e, p ~ affine part  c Di m- 1)}. 

By Lemma 1.1, the glueing map  (t, p)c-~z(t, p, D~ "-1)) is biholomorphic in the 
intersection of the charts. Observe z(t, p, D~ m- 1)) defined in the chart at infinity 
is a meromorphic  continuation of z as defined in the affine chart. A change 
of parametrizat ion on the smooth manifold Di m- ~) will trivially yield a change 
of parametrizat ion of the chart at infinity. 

We now come to the main point, building charts about  the D~ k) for k < m--  1. 
As announced, consider the case m = 2 ,  where the upper level divisors D~ m- 1) 
are curves and the next level varieties Di m- 2) are points, as illustrated in Fig. 1.4. 

D~ ~) D~ 1) 

D(~ ~ P2 ~Dt21) 
D~0) 

Fig. 1.4 

Then the coherence condition yields the existence of a birational map  72. zc'~y 
depending on D I~ having the properties 

lo We shall purposely confuse the point p with its local parametrization so as to reduce notation 
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(i) y(t ,p,D~l))-Tz(t ,p,D~ 1)) is a Taylor series in the disc Itl<e, 
~ r~(1) p~N(p~) v~ , f o r a = l ,  2, 

r,(1 h (ii) {y(t, p, ~ ,, It[ <e, p~O~ 1)} is a C2-disc, say, for ~ = 1, meaning that 

[Oy D~lh Oy tt D,I))] t = o = 2 ,  rank -~ ( t , p ,  1 p, gp ~" p' 

P = P l  

possibly after a reparametrization x 1, 

(iii) y(t, p~, Dt~l))=y(t, P2, Dt21))-Y(t, Dr~ O< ]tl <e 
D t i ))] (iv) e(t, p, D]')) - T - ' ( y ( t ,  p, 1 .. 

= rational functions in y, evaluated at y(t, p, D~ 1)) 

={hi(t,- p)~ for p~N(p, )cD~ 1) 
kg,(t, P)]x <_,<_,' 

=z(t, Dt~ for p=p~ 
with the h~ and g~ being relatively prime holomorphic functions satisfying 

g~(t, pt)+O for 0<ltl<e; 

vi(D~ l)) =-order of pole ofzi on D~ 1), 

upon defining 

we have for all i that 

vi(D] 1)) + vi(D~ 1)) = multiplicity of the series gi(p, t), 

(1.17) 

(1.18) 

~(t, p, D~ 1)) =- T -  1 Tz(t, p, D~ 1)) = z(t, p, D] 1)) on S\subvariety and thus on S, 

proving the assertion. This argument works equally well for z(t, p, D~I)), yielding 
its meromorphic extension ~(t, p, D~I)). Also by meromorphic extension, we have 

s p, D]l))ed,  

1 a of the form (t, p)c~(t', p ' )=  (t + 4~1 (P), q~2 (P)), r x and ~2 being holomorphic; this is necessary when 
the flow is tangent to/~]1) at Pl 

where possibly e (p )~0  as p~p~ .  By Lemma 1.1, the dimension of the image 
z(S, D] 1)) of S, by means of the map (t, p)c-',z(t, p, D]a)), is two-dimensional, and 
so T(z(s, p, D]I))) is two dimensional, because the birational map T is biholo- 
morphic off a divisor in z(S, D]~)), the latter being two-dimensional. Thus the 
image T-1 T(z(S, D]I))) will be biholomorphic to z(S, D] 1)) off a divisor; therefore 
T -  1 Twill be the identity on z(S, D] 1~) off a divisor and thus we have 

S=  {(t, p)]O< Itt <dP) ,  P~Pl},  

(v) The same statement as in the general coherence condition, but with 
m=2.  

We first show ~(t, D{1)~ P, 1 , is a meromorphic extension of z(t, p, D] a)) in (t, p)- 
space. Observe that z(t, p, D] 1)) is defined in a sector of the form 
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wherever it is defined in (t, p)-space. Defining 

[ y(t, p, O]1)) TM [ y(t', p': D~ 1,) 

F1-]  O<ttl<e and Fz= / O < } t [ < e  ~, 

t P"~Pl [ P'"~P2 J 

we show the images F~ and F 2 coincide. Indeed, set 

WI~ N {(t, p)lg,(t, p)#O}={(t ,  pOlO<ltl<e}, 
i = 1  

with the last inclusion a consequence of (iv). By the Weierstrass Preparation 
Theorem (Lemma 1.3) W1 is an open set with a boundary composed of analytic 
subvarieties. Thus 

y(Wl, o(1")= r(z(Wl, o~')) 

is a 2-dimensional set by the same dimension argument given earlier. 
Now using the other expansion ~(t', p', D~21)) associated with Dr21), we also 

construct an open set WE analogous to Wx; indeed, ~(t', p', D~21)) is a ratio of 
holomorphic functions similar to (1.17), which by condition (iii) coincides with 
~(t, Pl, D] 1)) at p' =P2, and thus its denominator g'i(t, p') does not vanish identi- 
cally. As in the above, this is all one needs to show that W 2 is open; thus 
y(W2, O~z 1~) is two-dimensional as is y(W1, O]l)). Moreover, since y(W1, D] 1)) and 

r~(1) y(Wz, uz ) both contain the orbit 

{y(t, O(~ Itl <e} = T{~(t, O(~ Itl <e}, (1.19) 

we have the following inclusions 

d = T-1 (y(Wa, D]1))) n T - I  (y(W2, Dr21))) = {s D(~ I tl < e} ; (1.20) 

the first follows from the definition of W~, whereas the second follows from 
(1.19). Also the sets T-I(y(Wi, D~t)))=~(W~, D~ 1)) are two-dimensional by the 
usual arguments, since the y(W~, D~ 1)) are two-dimensional. Thus (1.20) turns 
the smooth affine variety d into the union of two 2-dimensional components 
meeting along {~(t, O(~ Itl<e}; therefore the sets ~(W1, D] 1)) and ~(W2, O (1)) 
must agree, at least on the connected component containing ~(t, Dr~ and so 
must their image under T, namely y(W1, D]l))cFl and y(W2, D~zl))=Fz, at least 
on a connected component containing y(t, D(~ But by condition (ii), the map 
(t, p)c~y(t, p, D ~1)) has rank 2 at (t, p)=(0, P0, and since y(Wz, D~I))cF2 is 2- 
dimensional with a component of it contained in { y (t, p, O(11)) I I t l < e, p ~ p i } ~/'1, 
we conclude by Lemma 1.2 that the sets F~ and Fz coincide, as promised. 

The variables { (t, p), h t I< e, p ~ P l} form a one-to-one coordinatization of F1 
by the rank condition (ii); since F~ = F2, the set Fz will carry the same coordiniza- 
tion. The connection between the coordinates (t, p) and (t', p') (the latter inciden- 
tally may not be good coordinates) is given by solving the equation in t, p: 

y(t, p, Oil)) = y(t', p', Dt2X)), It'l <e, P'~P2; (1.21) 
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(o.p,)..~ 

_ f  

ll) 
/ D ,  --- I(O. pl l  

D~ 1'=- I(r162 

~ " "  (0. p2 } 

Fig. 1.5 

indeed, using the implicit function theorem, which is possible, again by the 
rank condition (ii), the equation (1.21) can be solved in (t, p): 

(t, p )=  (g(t', p'), h(t', p')) 

= (t' + ~k (p'), ~b (p')). 

(holomorphic functions) 
(1.22) 

To see the latter identity, let q~t be the extension of the flow tk~ generated 
by X I on /'1 and q~ the same Xa generated flow extended to F2; then we 
have the following identities 

dp~ (y(t, p, D~al))) = y(t + ~ p, D~ n) on q 
(1.23) 

q~z(y(t', p', D~21))= y(t' + ~ p', D~z 1)) on F2, 

which moreover are equivalent. Clearly we have q~(z(t, p, Dl l ) )=z( t+~  p, D~I)), 
for small t, and by meromorphic extension the same holds for 2 as well; applying 
the birational map T the latter relation lifts, yielding (1.23). Since the two flows 
~b] and tk~ agree in the affine d ,  and in particular on the two-dimensional 
set ~ r  T-I(F1)N T-I(F2), q~ and q~ must agree on their two-dimensional 
image T ( d ) n  F~ n Fz under T and hence, by analytic continuation, on F~ n F2. 
This yields the equivalence of the two flows given in (1.23), and thus orbits 
in Fz~(t',p') are orbits in F~(t ,p) ,  yielding the second relation in (1.22). The 
map (1.22) enables us to put the divisors D~ ~) and Dr2 t) in the same chart. (See 
Fig. 1.5.) 

The construction of the charts along D~ 1) starting from the chart about 
(t, p~) proceeds as before. In order to continue this construction along Dr2 ~), 
notice that the map (t', p')c'~(t, p) given by (1.22) - although not necessarily 
one-to-one about  (t', p')=(0, P2) - will be one-to-one along any branch near 
(0, P2), because of the special form of the map (1.22). 

Finally we show that all points in the Ft-chart which are neither on D~ t) 
nor on Dr2 a~ correspond to points in the affine, i.e., 

D(1) ~(t,p, ~ )~sl  for (t,p)r 1.5.) 

Indeed, in the El-chart, the functions z(t, p, D! ~)) and the meromorphic extension 
~(t, p, D! a)) coincide near D~ ~), but away from (t, P3- Therefore, also in view of 
(1.22), zi has a pole of order vi (D] x J) along O] t) and h(Dt21)) along Dr21); for notation 
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see (1.18). By assumption (iv) in the coherence condition, we have that each 
coordinate ~i has the following representation: 

~i(t, p, D~I)) = 
hi(t, p) Pi(t, p). unit 

gi(t, p) Qi(t, p) .uni t '  

with hi and gl holomorphic functions which are relative prime, with P~ and 
Qi their respective Weierstrass polynomials (see Lemma 1.3) in t, with 

Qi(t,p)=t" +al(p) t ' - l  +...a,(p), with r=vi(D(1))+vi(D(21)); (1.24) 

the aj(p) are holomorphic functions satisfying a~(p0=0. Moreover, since we 
know that the ~i blow up along D(1 x) and D(2 ~) to order vi(D(1 ~)) and vi(D(21)) 
respectively, the Weierstrass polynomial Qi(t,p) of the denominator gl must 
have the form ~2 

Q(t, p) =(t  + b~ (p))~'(~ + b2(p))~'(~ +...). (1.25) 

Then combining (1.24) and (1.25), we must have s = 0 ;  this shows that the only 
poles of zi in the chart F1 are along D(~ 1) and D(21) of order vi(D(~ 1)) and vi(D(2 x)) 
respectively and thus the functions ~i are finite away from these divisors, as 
claimed. 

To sum up, we have built a complex manifold M, with meromorphic func- 
tions ~,  1 < i<  n, by glueing onto the affine chart ~r the varieties/~t=-1)=I_[D(k) 

k, at 

appearing in the tree, such that the Laurent solutions z(t, p, D~ )) form a fibre 
bundle on M; therefore ~ = M \ / )  tin-l). We now show M is compact. By the 
valuative criterion of properness (see Hartshorne [24]), it suffices to show that 
every punctured analytic arc 

V { z l 0 < l z l < e } c M  

has a completion ~ c  M, upon taking the limit z ~ 0. Since ~r is an affine variety 
and /~t,,-1) is compact, we only have to show this for arcs V c ~ r  terminating 
at ~ ,  i.e., in terms of the embedding ~4 c F~', we have 

limit I: (z) ~ ~'oo c P~'. (1.26) 

But condition (v), together with B6zout's theorem (see appendix 1), shows that 
the meromorphic extension 

- " D  tk) c-~ d 

k,g  

of ~ restricted to LID(~ k), namely 

�9 : LIDP-  
k0a 

12 if the variable t is too special, we may have to replace tc-~t-- t + h (p) in (1.25) 
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is onto. By hypothesis, the arc y = ~r has a limit point on ~r as z ~ 0; then 
taking the inverse map ~-~ this limit point of the arc belongs t o / )  tin- ~). This 
concludes the proof that M is compact and thus the proof of Theorem 1, part II. 

w 2. The convergence of the formal Laurent solutions 

All systems of differential equations ~ =f(z),  z ~ " ,  discussed here will be polyno- 
mial and weight-homogeneous with weights v = ( v l  . . . . .  v.), r i t Z ,  >0, i.e., they 
satisfy 

f / (~ '  z 1 . . . . .  ~-z,)  = ~ '+  lf/(zl . . . . .  z,), for all ~ .  

See w 4 and appendix 2 for specific examples. In general, a function f is called 
(weight) homogeneous of degree N whenever 

f ( a ~ ' z l  . . . . .  a*"Z.)=aNf(z l  . . . .  , Z.), for all aell2*, 

from which it follows that Of/O zj has weight N -  vj. Thus f~ has weight v i + 1, 
and OfdOzy weight vi + 1 -  vj. Observe that a basis for the constants of motion 
of such a system can always be chosen weight-homogeneous. All invariants 
in this paper will be assumed polynomial, and so their weights will be positive 
integers. 

The following lemma states that formal  asymptotic solutions of weight-homo- 
geneous systems consistent with the weights v =(vl . . . .  , v,) are actually conver- 
gent Laurent series: 

Lemma 2.1. The formal  Laurent solutions 

1 (z~O)+zp)t + .), z(O):~O, z i ( t ) = ~  .. (2.1) 

o f  a weight-homogeneous system ~=f(z)  are convergent series; the coefficients 
z t~ belongs to the indicial locus 

cg - (~ {vl z! ~ +f/(z ~~ = 0} (2.2) 
i=1 

and the subsequent coefficients z (k) satisfy 

(=Lz ~ - kI)  z ~) = some polynomial in the z ~ 0 <=j < k, (2.3) 

where the Kowalewsk i  matrix s is the Jacobian matrix of  the locus (2.2): 

of /  (o) 

\OZj ]l~_i,j~n 
(2.4) 
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Proof The proof  inspired by J.P. Fran~oise [23], is an application of the major-  
ant method. Putting the formal series (2.1), written in short 

zi(t) = t- ~'(zl ~ + Ui(t)) 

into ~=f ( z )  yields on the left hand side, upon multiplying the ith component  
by t ~'+1, 

~, tk(k-- vl) z~ *) 
k>=O 

and on the right hand side ~ 3 

t ~' + ~fi(z(t))=f/(z(~ U(t)) (using the homogeneity) 

L ~z~ 1 8#fi =f / (z (O))q  -" (Z (0)) Uj(t)+ E fl! Oz # (z(O)) us(t) 
j = l  I # l > l  

=f~+ L ~f~ ") (2) 2 j = I ~ z j ( Z j  t'~-Zj t + . . . )  

+ ~ t* ~, fl!l Ot~fiOz t~ (z~r ' ...(zt~-))~-" 
k = 2  ai>O 

( # , a > = k  
I#1>1 

In this formula, the fi and its derivatives are evaluated at z (~ Compar ing the 
coefficients of the various powers of t in the above two expression, we get 
(2.2) for k = 0; for k = 1, 

(~_(' - -  I )  Z(1) = 0 

and k > 2 ,  

( (~ -  k) z ( %  = - Y" 
oi>O 

(#,a) =k 
I#1>1 

1 a~f, (z~,,))#, . .(z~o~176 ' 
fl! ~z# 

k > 2 ,  (2.5) 

which establishes (2.3). The coefficients z (~ may or may not contain free parame-  
ters, depending on whether the indicial locus is a cont inuum or not. The matrix 
s162 may have some integer eigenvalues 21=k>l(l<i<n) and this may lead 
to free parameters  in the determination of z (k) by the linear equation (2.5). Then 
the coefficients can be viewed as rational functions on an affine variety W, fibered 
over the indicial locus. Fix a compact  set W 0 = Wand let 

M 1 = 1 + m a x  Iz~J~l. 
l <_i<_n 

1 <=j<=,t~ 
free parameters~ Wo 

(2.6) 

n 

13 fl=(/h ..... fl.),lfll=~fl, 
1 
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By analyticity, there are constants M 2 and M 3 > M~ such that in W0 

~ ( z  ~~ <flrMI2 pl and [(Se-kI)- l[<M3,k>2,+l .  

Applying these estimates to (2.5) leads to the recursive estimate 

Iz~k)l~Ma 
( # , a )  =k 

1#1->2 
a i>o  

for k >= )~, + l. (2.7) 

Define now the series (see Franqoise [23]) 

V(t)=Mlt+ ~ C~k tk, ~kelI;, 
k=2  

where the coefficients ~k are defined inductively by 

Ctk=M 3. ~ MI2Plct~'I...o:~, k>=2. (2.8) 
( /L~)=k 

101->2 
ai>O 

The series V(t) majorizes Ui(t) for all 1 <i<n. Indeed, from the definition of 
~k, M2 and M 3 and the estimate (2.6), Iz~J)t <__ M~ < ~ ,  1 < i<  n, 1 < j <  2,; beyond 

z t;) < ~. for j < k, all i with k > 2, + 1, that we proceed by induction: assume , = j, 
and comparing (2.7) and (2.8) and using the inductive assumption deduce Iz!k)l 
<~k, and the inequality then holds for all k >  1. Finally from the definition 
of the ~k one observes that the series V(t) satisfies 

(nV) 2 
V=Mlt+M3 M2 I_M2nV,  

which amounts to a quadratic equation for V; solving for V yields the desired 
majorant for the functions U~, which therefore converge for t sufficiently small. 

w 3. The spectrum of the Kowalewski matrix, 
and the nature of the free parameters 

Let a weight-homogeneous system ~ =f (z)  have weight-compatible Laurent solu- 
tions 

z~(t)=t-V'(zl~ ...), z(~ 

Then, according to Lemma 2.1, z(~ and z (k), k > 0  satisfies 

(~q~--kI)z(k)=some polynomial in z ~/), O<j<=k, 
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where ~ is defined in (2.4). Note that by the weight-homogeneity of ~=f(z) ,  
we have the following equivalence 

{c~Cg}.~thezi(t)=clt -vi ( i=1  . . . . .  n) solve ~=f(z) .  (3.1) 

As already observed, arbitrary polynomial invariants of ~=f (z )  are sums of 
weight-homogeneous invariants; therefore, given a constant of the motion H, 
the affine invariant manifolds {H(z)--A=O} are naturally embedded into 
weighted projective space IP~ with v 0 = 1, namely 

{H (z)-- Az~ = 0} c ~'~, d = weighted degree of H. 

Also the indicial locus ~ is a subvariety of its hyperplane section, 

c~ ~ {H(z ) -  a Zao = 0} n {Zo = 0}, (3.2) 

whatever be the weight-homogeneous invariant H. Indeed, picking z(~ and 
substituting the solution z(t) mentioned in (3.1) into H yield 

H (z (t)) = H (c 1 t -  ~', .... c, t - v") = t - a H (c) = constant, 

implying H ( c ) = 0  and thus assertion (3.2). For a completely integrable weight- 
homogeneous system, define the invariant manifold 

k + m  

1 

and 

~r = ~ c~ {z0 = 0}. 

From the above it follows that 

c g c d o  o. 

Given c~cg, we adopt  the following notation: 

off M = {invariants H of ~ =f(z) ,  having degree M}, ~M = dim j fM 

Let 

Vc3c~M=f~z(c),H~Jt"M}, tiM =d im ~3CM, 

be the gradients of the constants of motion along < g c d ~  
F1 . . . . .  F ~ ,  e Off M be independent functions such that 

o,U u = span ( ~ - z  (c), i=  1, ..., fly . 

and let 
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Let ~4 

Ep(c) = {we(E ~ such that (Ae~--p)kw =0,  for some k >  1}, 

E~(c) = {velE ~ such that  (v, Eo(c)) =0},  (3.3) 

7y = dim E M (c)= multiplicity of M in spectrum (~) .  

6~ = ~: {non-negative integers e spectrum ~c} 

e~ = 4t= {free parameters in the Laurent solution z(t)= (t- ~ cl . . . . .  t -  TM c,) + ... } 

It is then possible to find Ga+ 1 . . . . .  G , e ~  M (/3= fly, ~ = a M) such that the invar- 
iants/71 . . . . .  Fp, Go+I, . . . ,  G, span 3r "M and such that 

Oz c =0 '  i= f l+  1 . . . . .  ct, (3.4) 

where the invariants G i will (in general) depend on c~C~. 
Throughout  this paper, given a component  of cg, the G's will stand for invar- 

iants with vanishing gradient along cg, whereas the F 's  will be part  of a set 
of invariants whose gradients span the spaces Jg  M. We wish to emphasize that 
the partition of the set of invariants H in F 's  and G's is always relative to 
a component  of  cg. Clearly if a M -  fly > 0 for some degree M, the variety of 

will be singular at ~ and indeed 

(aM-- flY) > deficiency in rank of the Jacobian matrix o f ~  at c, 
M 

and so it is a measure of the severity of the singularity of ~ at c. 
The next theorem discusses the precise relationship between 

- the spectrum of the Kowalewski matrix L,a 

- the degrees of  the invariants 

- the singularity at ~ of the invariant manifolds ~ in P~" 

- the free parameters. 
It also shows that each family of Laurent  solutions leads to a natural  affine 

variety, the Painlev~ variety D; the coefficients z~ k) of the series (2.1) can be 
viewed as holomorphic functions z~k)(p) on D. One of the impor tant  points of 
this paper  is to assemble the Painlev6 varieties, thus forming a compact  variety 
with the Laurent  solutions 

zi(t)=t-~'(z!~ ...) (3.5) 

being the fibres of  a fibre bundle over it. 

Theorem 4. Consider the weight-homogeneous system ~=f(z) ,  zOO" and their 
weight-compatible Laurent solutions (3.5). Decompose the indicial locus ~ of  lead- 

n 

1 
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ing terms of the Laurent solutions (3.5) into its components (not necessarily of 
the same dimension): 

l 
~ = ~ C i ,  

1 

then 
(i) c g c  N {H(z)-Azdo=o}c~{zo=O}aP~ ~, and if the system is algebraic 

a l l H ' s  

integrable, then all components C~ of ~ have the following property: 

{ ~q~c, is diagonalisable 

(spectrum ZCc, ) ~ Z 

(ii) for c �9 cg, _ 1 ~ spectrum SF~, and if ~ = f ( z )  is divergence free 15, then trace 
~ = ~  v~. Moreover if the component C~ leads to Laurent solutions depending 
on n -  1 free parameters, then 

C~c, is diagonalisable 

spectrum ~c,  = { - 1} w { n -  1 integers, > 0 }  

(iii) the tangent space TcCg to cg at a point ceCg is a subspace of Eo(c), i.e., 
T~ cg a Eo (c); therefore dim Tc cg < ?o for all c e cg. 

(iv) the coefficients z ~() of the Laurent solutions z(t) are rational functions 
of the parameters and cs 

(v) f ly  = d im V~ H M < ?~ = multiplicity of M in spectrum 5f c for c ~ cg. 

(vi) V~ffMa ~ Elo(O)for ce~ .  
p * M  

(vii)for each degree M, for each component Cj of C, such that 6(Cj)=e(Cj) 

OFi c~ and for each F1 . . . . .  FoeJ~f ~ such that ~ z  form a basis of V~/g'u, there exist 

appropriately chosen M-eigenvectors of ~q~ and free parameters A 1 . . . .  , Ap which 
appear for the first time and linearly in the coefficient z tM) of the Laurent series 
so that 

Fi M (z I (t) . . . . .  z, (t)) = A i, i = I . . . .  , tim 

holds. The ~" tim parameters Ai thus obtained are called trivial parameters, whereas 
M 

the 6 (C j ) -  ~ tim remaining parameters in the expansion (3.5) are called the effective 
M 

parameters. 

(viii) Assume now the system satisfies condition (i) in the definition of algebraic 
complete integrability; then for each of the irreducible components C~ of  C, such 

.. ~ Of~(z) is ~ =f(z) is divergence free or volume preserving H 2 . -  -= u 
c~z~ 
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that spectrum 5f  c e 7Z. and 6 ( C~)= e( C~), we have that using the asymptotic solutions 
z(t) obtained in (vii), the set of  solutions, 

k + m  

N {Laurent solutions z (t) with z t~ ~ C a such that H i(z (t)) = Ai} 
i = 1  

= A {Laurent solutions z(t) such that G(z(t)) =A} 
~" (ct u -  fly.) invariants G 

~uchthat ~ z  c =0 

= ~ (ct M -  fl~,) polynomial equations between the 

6 (C,) - ~ ffff, effective parameters, 

parametrizes an affine variety of dimension 

6(C~)-( ~ independent invariants), 

called the PainlevO variety D, (associated with C,), along which all the coefficients 
z~ k) in the Laurent solution zj(t) are holomorphic. These coefficients generate the 
coordinate ring of D~. 

Remark 1. The deficiency index ~ M M (Ct --tiC,) is a measure of the severity of 
M 

the singularity of ~ '  along C,; it also determines the number of nonlinear rela- 
tions between the 6 ( C ~ ) - ~  ffff, effective parameters; these relations define the 
Painlev6 variety D, associated with a component C, of C. 

Remark 2. The arguments used to prove (v) and (vi) are inspired by Yoshida 
[21]. 

Proof The first part of (i) has been shown in the considerations preceding this 
theorem, whereas the second part will be shown later. 

(ii) and (iii): We first check the eigenvector equation 

( ~ + I ) ( v l c  1 . . . .  , v,c.) =0, c ~ .  

Indeed, differentiating f~(~V'zl, ..., ~ - z , ) = ~ ' + l f i ( z  a . . . .  , z,) by ~ and setting 
= 1, one deduces, the identity 

~vjzjOs~f_i-(vi+l)fi(z)=O, fora l lz  and i = l , . . . , n ;  
vzj 

J 

then substitute in this equation z = c e c g, using the relation f~(c)= - v  i c~, to yield 
the eigenvector equation; thus we have - 1  ~ Spectrum ~ ,  for ceC~. Remember- 
ing that the coefficients in the Laurent solution satisfy (2.3) and (2.4) (Lemma 2.1), 
the only source of free parameters is 

(I) the indicial locus cg, giving rise to a number of degrees of freedom equal 
to dimension cg. Then 0 is an eigenvalue of ~e~ with at least multiplicity ~o 
>d im T/~, as ~ is the Jacobian matrix of the defining relations of Cg, establishing 
(iii). 
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(II) the integers ke(spec t rum ~9~), k>O, giving rise to at most  ~,k degrees of 
f reedom in the determinat ion of  z (k). Since ~ is an n by n matr ix  and already 

- i e spectrum ~9~, s tatement  (ii) must  hold in order  to have the full n -  1 degrees 
of f reedom in the Laurent  solutions; thus ~o must  be diagonalizable along C. 

(iv) is obvious from the fact that  z (k) is found inductively as a solut ion of  
the linear problem (2.3) and from the way in which the parameters  arise, as 
discussed above (whether there be n -  1 parameters  or less). 

(v) and (vi) will be shown in a number  of steps: 

Step (a). If cerg, then a special solution of ~ = f ( z )  is given by (see (3.1)) 

zi(t) = cl t -  ~', i = 1 . . . . .  n. (3.6) 

Step (b). The variat ional equat ion about  zi(t ) = c~ t -v', namely 

has for solut ion 

~ ,  Of /  r . --v n 
~i--j:l--tclt-Szi ~ ' , . . . , c , t  )~j ,  

r  = r h t p-  v,, 

i =  1 . . . . .  n, (3.7) 

(3.8) 

where q and the constant  p satisfy 

qs = (~'~ - p I) t/, s = In t. (3.9) 

Indeed, substituting (3.8) for ~i in (3.9) leads to 

~fi (c ~ t - ~', .., c, t - ~ ") ~j t p - ~J f l l tP-~'+ r l i ( p -  vl) tP-~'-  ' =  ~ ~ z  j 

~f/  (C1, " ' ,  Cn)(  t -  1)(vi +1 - , j )  ~ j  tp  - v j  

using weight [ ~ ]  = vi + 1 - v j ;  then dividing bo th  sides by t p- ~'- 1 yields 

This establishes Step (b). 

Step (c). If z(t) is a solut ion of ~ = f ( z )  and H(z)  is an invariant  of ~ = f ( z ) ,  

then (~--~Hz (z(t)), ~(t)) is a constant  of mot ion  of the variat ional  equat ion  

= ~ (z (t)) ~. 
U Z  



32 M. Adler and P. van Moerbeke 

Indeed, using the fact t:I(z)=(~z(Z),f(z)l--O , one computes 16 

Step (d). If HM(z) is an invariant of degree M and t/ is defined by (3.8) and 
(3.9), then 

(~H M \ 
(c), t/0n t)/F -M (3.10) Oz 

is constant in t by (c). Indeed, since /_/M is an invariant of ~---f(z), we have 
that the following expression is constant in t: 

v z  / (cl Cn t -  v.) ~]i tP-  vi 

(using the solution (3.7) of the variational 
equation around the solution (3.6)) 

= ( ~ H  z (c), 7(lo t))t  ~ 

using the fact that c3HU/c3z~ has weight M -  v~; this establishes Step (d). 

Step (e). Whenever pespec t rum(~)  and p # M, we have that 

( ~HM(c),rl>=O, tIeEp. (3.11) 
8z 

Indeed, by the spectral theorem, (3.7) and (3.8) have solution of the form 

r/(In t) = p (In t) e Ep, t e ~E, 

where p(s) is a vector polynomial in s of degree y ~ - 1  and where the vector 
p(o) can be picked arbitrarily in Ep, regardless of whether L~ is diagonalizable 
or not. Substituting these special solutions into (3.10), Step (d) and the inequality 
p - M  =~ 0 force upon us the relation 

- ~ - z  (c),t/(lnt = 0  forall t; 

,6 ~32H=(82.~__HI is the Hessian of H 
8zOz \dz~dzi/~_~,j<=. 
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OH M 
then setting t = l  yields (3.11). Hence ~ - z  (c)s (-] Eo ~ for any invariant H M 

p*M 
of weight M, proving (vi). Since the spaces 0 Er and EM have the same dimen- 

sion, (v) follows from (vi).. p ,  M 
We now prove the second part of (i). By the definition of a.c.i., the solutions 

of ~=f (z )  are holomorphic and single-valued on each of the affine varieties 
~r the latter fill up a Zariski open set in ~". The solution to the variational 
equation about every solution z(t) must be single-valued, or else in a full neigh- 
borhood of z(t), the solutions to ~=f (z )  would not be single-valued (Haine 
[12]). Therefore any solution ~i(t)=th(lnt)t ~ l < i < n ,  p~spectrum 2~0, of the 
variational equation about z(t)=(c~ t -~' . . . . .  c , t  -~.) is single-valued. Thus p 
must be an integer and the ~h(lnt) must be time-independent, leading to the 
conclusion that 2~ is diagonalisable and (spectrum s176 ~ 7Z. 

(vii) At first substitute the Laurent solutions (3.5) into a constant of motion 
H = H M of weight M, 

H~(z~(t) . . . .  , z . ( t ) )  

=t-MHU(z~O)+z~)t+..  -r177162 zr .) 
�9 , ~ 2  1 " ~ 2  " ' ' ,  " " , - n  - - ~ n  " '  

= t -  u H u (z(O) + U (t)) 

=t-M[H(z '~  (z'~ ), U(t))+(U, ~(zO2H (o)) U> -F...] 

�9 t OH . (z,O)) zOO)+. ..] 

i,j>= l 

c~H o 
= ( ~ z  (z ( '),  z~M')+(terms involving z"', O=<i<M). (3.12) 

We claim that on a Zariski open set of any component C, of C, such that 
6(C,)=e(C,), there exists a basis of EM(C~) 

such that 
Vl, ...,V~,VS+I ,...,v~, 

v ~F~ z~O) = ( i' ~z ( )> ~iJ 

(j~ ~__. M M 
t i c . ,  Y = ~ c . )  

l<=i,j<=~. (3.13) 

Indeed, remembering that Vc~ff M is (generically) /~-dimensional and that 
E~(C,) is ~ --dimensional,  we have, using (vi) and (v), the inclusion 

p*M 

f0F~M I V c ~ U = s p a n . ~ l  , i = 1  . . . . .  c N E~(C~)-span(zT~ .. . .  ,~3~ . . . . .  ff~>. 
I. 62 [C~ p*M 
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Since C " =  G EM(C~), we may pick (for generic c e C,) a basis v~ . . . . .  v~ of E M (C,), 
such that (v~, ~ t )  = 6ij, 1 < i,j < fl, from which (3.13) follows. By (2.3), the general 
coefficient z (M) in the Laurent expansion (3.5) is a solution of 

( ~ - M I) z (M) = prior information; 

it is a linear combination of the vectors ViM (1< i<7)  and a special solution 
u M- 1 depending on previous data. Thus we write z M as follows: 

z (M)=E(A '+d i ) v~  + E elv~ + u M - '  (3.14) 
I f l + l  

with 7 M free parameters A~+d~ and e~; the quantities dl can now be chosen 
such that 

FjM (Zl (t), . . . ,  z,(t)) 

_ / c~ F y  .(z(~ "" z M\ + terms z "), / ( involving 0 < i < M ) ,  using (3.12) 
0z 

P OFJ M o ~ FM 
=~l ( A i + d i ) ( ~ ( z (  )),vM?+ ~, ei~/OFiM (z(O" V~t>+<~Z--z (Z'O)), uM- ' ) )), 

+(terms involving z t~ 0 < i < M ) ,  using (3.14) 

M 

= Aj + dj + ~" el l  '~" j (z(~ 

+ terms involving z (i), 0 < i < M,  using (3.13) 

= a j ,  l < j< f l ,  

for an appropriate choice of d i. Note z (M) is linear in u M- ~ and the 7 - fl effective 
parameters etj + 1 . . . .  , er, which remain free. 

(viii) To restrict the Laurent solutions (3.5) specified by (3.14) to the m- 
dimensional invariant manifolds (-] {Hi=Ai}, we clearly must constrain the 

(7 M -  fig) = 6(C j ) -  ~ f i r  effective parameters e i (see (3.14)) by substituting the 
M 
expansions into the remaining relations Gi (having vanishing gradient along 
C~), giving rise to the (affine) Painlev6 variety D~. Before doing this, first observe 
that for k >  a=max(spect rum ~e~o~), one has 

z Ck) (p) = polynomial in z u) (p), 0 < j  < a; 

this is an immediate consequence of the recursion relations (2.3) for g (k} and 
since (spectrum ~)eZ, we have 

det(~q~- kI)EZ\{O}, for k > &  
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Define the Painlev6 divisor 

D r = { Laurent solutions z (t) satisfying H , ( z  (t)) = A , ,  
r =  1 . . . .  , k + m  and z(~ 

= ('] {effective parameters  el such that G (z (t))= A} iv 
a l l  G s u c h  t h a t  

In view of (3.4), the Painlev6 divisor D r going with Cj is defined by ~ ( ~ -  fl~) 
M 

nonlinear relations, between the 6 (C j ) -  ~ fl~ effective parameters e~, hence 
M 

dim D r > 6 (C j ) -  ~ ~u = 6 (C j) -- ( # independent invariants), (3.15) 

and equality follows from Lemma 1.1. This establishes Theorem 4. 

w Example:  a geodesic f low on SO(4) 

The free mot ion of a solid body in an ideal fluid can be interpreted as geodesic 
motion on the dual Lie algebra T * E  3 of the group E 3 = SO(3)• ~x 3. By means 
of a reduction to the coadjoint orbits of e~--~e 3 = so(3)• ~x3o(/, p), this motion 
can be written 

t~n t~H 0 n  P=P^Tf l=l^Ti-+p^ a-p' (4.1) 

H(l ,  p) being the sum of the kinetic energies of both the rigid body and the 
surrounding ideal fluid. Lyapunov and Steklov have considered the following 
Hamiltonian 

3 

n (l, p) = �89 ~,  (1 i --  (a 1 -It- a2 + a3 --  ai) pi) 2. 
1 

This flow on E 3 turns out to be a limit of a geodesic flow 

dH ~ H  
. X " = X "  A O X " '  ~ '=X '  A ~X" 

X ' = ( X 1 , X 2 , X 3 )  , X " = ( X 4 . , X 5 , X 6 )  (4.2) 

on the group S O  (3) x S O  (3) ~- SO (4), for a left-invariant metric 

6 3 

/ =aEz, g+Z&,+3x, x,+3 
1 1 

17 the coefficients z (k~ of the expansions z(t) used here must have the form (3.14) 
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satisfying (A~i-- J-i-- 2~) 

(,~24, ~225, ,~,26) ~--- Ax3A46A21 A54A32A65 
(A46 A32 - -  A65 A 13) 2 

.((A65--A32) 2 (A46--A,3) 2 (A54--A2x)2] 

\ A65A32 ' A46A13 ' ~ ] 

with the following sign specification 

A l a A 4 6 A 2 1 A 5 4 A 3 2 A 6 5  
~14/~25 "~36 ( A 4 6 A 3 2 _ A 6 5 A 1 3 ) 3  ( A 6 5 - A 3 2 ) ( A 4 6 - A l a ) ( A s 4 -  A21)" 

In the classification of algebraic integrable geodesic flows for left-invariant 
metrics there appear three strata of metrics, a first one first considered by Manak- 
ov, a second described above and a third discovered by us in 1984 [4]. Algebro- 
geometrical considerations lead to a natural (linear) change of variables, which 
transforms any of the flows above into a new (much simpler) flow X l 2 = f ~ ( z )  
and a flow X2: ~ = f2 (z) commuting with X 1, with all parameters scaled out: 

X x  : 21 =Z2Z 6 X2:  Z 1 -~-Z5Z 6 

Z 2 : � 8 9  Z3(Z1 "~- Z4) Z2=Z3Z 4 

23 = �89 Z2(Z 1 +Z4)  Z 3 =Z2Z 4 

z4 = z3 z~ z4 = z5 (2 z 3 - z6) 

2~5 ---- 23 Z4 ;:5 = 24(2 Z3 --  Z6) 

Z6~Z1 Z2 Z ~ Z 1 Z  5 

with four quadratic invariants: 

H I = - z ] + z 2 = A I = A  

n 2 =  - z 2  + z 2 = a 2 = B  

Ha=zE--z2 =A3=C/4 

H4 = - (zl --z4) 2 + 2(z2-- zs) 5 + 2 ( z 3 -  z6) 2 = A4 = D. 

The system is purely homogeneous, with z~ having weight 1, the invariants 
4 

have degree 2, and so the invariant surfaces ~r = N {Hi = Ai z 2, Zo = 1} naturally 
embed into p 6 ;  y i e ld ing  1 

4 
~ N { Hi(Z) = h i  Z2, z = (Zo, z 1 . . . . .  z 6 ) ~ 6 }  ~ ~6.  

1 

Consider a fixed vector field ~Xx-I-fiX2. Because of the weights of the zg, 
it is natural to search for Laurent solutions having simple poles: 

z(t) = t- 1 (z(O~ + z(t) t +...). (4.3) 
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The leading term is given by the indicial locus 

~r = {z <~ + : f ,  (z <~ + /~f2  (z <~ ) = o} 

= c + ~ =  E Cx,~+ E ~x,~(~,~), 
X2,Y 2= 1 X2,y 2= I 

consisting of four lines 

Cx,r={(-2XY(1-Z),X, Y,, -2XYZ,  2XZ, 2 Y(1-Z)),Zer (4.4) 

independent of (~, fl) and four points 

( ~  --2fiX 2flY - a X Y  
Cx,r(a, fl)= X Y, a (a+2f l ) '  ~ (a+2f l ) '  f l (~+2fl) '  

- -~X (ct +2tiff) ~) (4.5) 
fl(a + 2 fl)' 

depending on (~, fl). Along Cx. r the gradients 

6~H 1 t~H 2 
8z =4XYZ(O,O,O, 1, Y,0), 8z =4XY(1--Z)(1,0,O,O,O,X) 

(4.6) 
~H3 ~H4 - - = 2 ( 0 ,  X , -  Y, O, O, 0), - - = 4 X Y ( 1 - 2 Z ) ( 1 ,  Y, - X , - i , - - Y , X )  
Oz Oz 

span a 3-dimensional space showing that ~ is singular along each line Cx,r; 
incidentally, the gradient of the Z-dependent quadrics 

H_H1 H2 2H3+ H4 
Z 1 - -Z  1 - 2 Z  

--I_2z--Z1 q'-2 z2 

(4.7) 

which is a family of rank 3 quadrics, vanishes along Cx,r. At the 4 points 
~x,r the gradients (4.6) are independent, showing smoothness of ~ along ~x,r. 
According to Theorem 4, (ii), (iii) and (v), the considerations above lead to a 
priori information on the ~ -mat r ix  (the Jacobi matrix of the equations defining 
~g): 

along Cx,r: - 1, 0, 2, 2, 2espectrum ~r 

at fix, r: - 1, 2, 2, 2, 2~spectrum ~ .  
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Since Tr 5e = ~ weights = 6, it follows at once that 

along Cxr: spectrum 5e = ( -  1, 0, 1, 2, 2, 2), 

at ~x r: spectrum L# = ( -  1, - 1, 2, 2, 2, 2). 

In view of (vii) in Theorem 4, and since the gradients (4.6) span a 3-dimension- 
al space along Cx,r, the null-vectors of & a - 2 I  may be chosen such that the 
corresponding free parameters in the Laurent solution are exactly A, B, C; they 
are trivial parameters. Besides the parameter Z in the leading term z (~ of the 
Laurent series (4.3), there is one other effective parameter U, leading at once 
to the Laurent solution 

z( t )=~.  Lv 1 +  4 

B 
(l-Z) 

Z - 4  

--1 
1 
1 

~ Z + 2  
\ z -1  

-(z 1 t  

- 2 )  

2 (z - 2) 
/ 2(Z+ 1) 

- -C  [ - - ( Z - k - l )  / ] +O(t3 ' 

\ -(Z+l) / / 
- ( Z - 2 ) ] /  / 

(with 1=(1,  1, 1, 1, 1, 1), and ff =diagonal  (z(~ 

(4.8) 

convergent by means of lemma 2.1. We have at once Hi(z(t))=Ai for i=  1, 2, 3 
and the Painlev6 divisor D (X, Y) is obtained by putting, in view of Theorem 4 
(viii), the Laurent solution z(t) into the constant of the motion (4.7) with zero 
gradient; an elementary computation shows 

U 2 
H(z(t)) = - -  

1 - 2 Z  

and since the value of the invariant H equals 

A B C D 
Z -  1 - Z  2 ~ 1 - - 2 ~ '  
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the Painlev6 variety consists of4isomorphichyperelliptic curves, D = ~, D(X, Y), 
X 2 = y2 = 1 

,49, D(X, Y): U 2 + ( 2 Z  - 1 )  1 - Z  

covering the 4 lines C(X, Y). For  the general vector field ~X1 qt-flX2 the Laurent  
solutions (4.3) could be computed as well; although the expressions (4.8) would 
be different, the Painlev6 divisor would have the same form (4.9); for c~X~ + fiX2, 
the leading term ( in (4.8) would become ((c~+2flZ) -1. Observe that some 
of the coefficients of the Laurent solutions (4.8) blow up and thus the solutions 
cease to make sense at the points Z =0,  1 and ~ on the curve. Therefore D(X, Y) 
is actually the curve (4.9) with the three points Z =0 ,  1, ~ removed, whereas 
/)(X, Y) is the full curve; on the latter the coordinates U and Z behave as 
follows 

Z = 0  Z = I  Z = o v  

(branch point) (branch point) (branch point) 

z=~As2 1 - z = B s  2 Z - l=~-sC 2 

2 2 2 
U = - - (1 + 0 (s2)) U = - ~ (1 + 0 (s2)) U = - -- (1 + 0 (s2)). 

s s s 
(4.10) 

To check how the four 5-dimensional families of Laurent  solutions hang 
together in a coherent way, we need to construct birational maps T for each 
of the points Z = 0, 1, ~ on the four curves D(X, Y), X, Y=  _ 1. Notice this 
system is regular, in the sense of w 1, because the four 5-dimensional families 
of Laurent solutions have a leading term parametrized by a curve. To verify 
the coherence, it is more efficient to search for functions of increasing degree 
behaving like lit and then make ratios of such functions; this idea is related 
to Kodaira ' s  embedding theorem, which states that the functions having a k-fold 
pole along an "ample"  divisor of a compact  variety embed the variety smoothly 
into some projective space. The following functions constitute a basis of polyno- 
mials having degree < 3, and behaving like lit (modulo the constants of  motion): 

z o = l ,  z l , . . . , z6 ,  

Z 7 =  --  2 Z2 Z3"-[- Z2 Z6-'}- Z3 Z 5 

ZS-,.~- - -Z1Z6- . [ -nz1z3- -Z4Z 6 Z9= --Z4ZS"-[-nz2z4--Z1Z5 

Z l o =  --Z~'-b(2Z2--Z5) 2 Z l l  = --Z2 + ( 2 Z 3 - - Z 6 )  2 

zlz = 2(zl z3 Z s -  z2 z, z6) 

Z13=2(ZsZ3Z6- -Z2Z1Z4)  Z14=2(Z6Z2Z5--Z3Z1Z4)  

z l s = 2 ( z l  zz z s -  z,  z3 z6). (4.11) 



40 M. Adler and P. van Moerbeke 

The leading terms in 

are the following: 

with 

zi=t-l(z~~ 1_<i<15 

(z(~ ~ . . . . .  z(6~ = (-- 2 X Y(1 - Z ) ,  X, Y, - 2 X Y Z ,  2XZ,  2 Y(1 - Z ) )  

(7"(0), " " ,  ~ l  ll--'r(O)'~-- _ U (X Y, 2X(1 - Z ) ,  2 YZ, -4 (1  - Z ) ,  --4Z) 

(Z~l~ , . . . , ~ l s l  - ( - -  A o  + B o  + C o ,  X ( A o  + B o  - C o ) ,  

Y (Ao + Bo + Co), X Y ( -  A o + Bo - Co)) 

A(1 - Z )  BZ 
A ~  Z ' B~ I - Z '  Co-CZ(1- -Z) ,  X, Y= + I 

(4.12) 

Notice that the involution 

I ' I ' (zI ,Z2,Z3,Z4,ZS,  Z6, t, U , X ,  Y,Z,A,B,  C,D) 

'~"(Z4, Z3, Z2, g l ,  Z6, Z5, t, U, Y~X, 1 - Z , B , A ,  --C,D) 

cuts down the computing labour by roughly half. 
The birational map 72. zc-~y, which will be used to check coherence reads 

as follows: 

T:(2o . . . .  , Z6) t"~(Yo . . . .  , YlS), where yi=zJzlz 
(4.13) 

T -  1 : (Yo . . . . .  Y l 5) c-~ (z o . . . .  , z6) ,  where z i = YJYo 

and turns out to be the same for all points Z = 0 ,  1, ~ .  Since we expect D 
=XD(X, Y) to be an ample and projectively normal divisor on an Abelian 
surface, we may also expect the functions (Yo, -.., Y~s) to form a closed system 
of quadratic differential equations, whatever be the flow ~ X 1 + 13X2, as explained 
in Theorem 2. Indeed, one verifies 

\Zl2,1( zi /" = X I  (z~2)= quadratic polynomial (z~2 ..... Z12]Z~s]' 0_<i< 15 

and thus 

)>i= Xl(y3 = quadratic polynomial (Yo, -.-, Y15), 0 < i <  15. 

(4.14) 

To do this, it suffices to compute the Wronskian {z i, Zj}--~-ZjXlZi--zIX1z j of 
the functions z~ with Ztz. Again the labour involved is considerably reduced 
by means of the involution/7. The actual calculation proceeds as follows: express 
the leading term of the Wronskian 

(~,(0) ,.A1) ~,(I) 7(0)~ 

{2i, Z j} = t2 + . . . ,  using (4.8), 



The complex geometry of the Kowalewski-Painlev6 analysis 41 

in terms of quadratic polynomials of z!~ 

(z!O) zT)_.(1)~(o)~ 
~ i  - - j  J 

= quadratic polynomial (Z~o ~ z (~ �9 " " ~ 151~ 

implying that the following difference has a simple pole along D: 

{zi, z~} - same quadratic polynomial (Zo . . . . .  zl 5) =-~ + . . .  

1 5  

one then expresses this function as a linear combination ~. clzi, with constant 

coefficients. This leads to the following result: o 

{Zo, z12} =2H3 z, z4-(z I +z4) zls 
2 

z'5 zx x + HI + 3 H2 + 2H3--H4] {zl, zlz} = z7 z,2 + ~ -  [2Z,o + 

- H3 z, [Zl, +Ha + Hz + 2 H3] 

{zz, z,2} =H3 z, Z9, {Z5, Z12 } = Z9 Z15 {Z7, ZI2 } = - - H  3 Z 8 Z 9 
2 ' 

{Zs, z,z} = -4H3z4(Hzz3+ 2 ( - ~ - - H z  +H3 + ~ 4 ) )  

Z 1 2  
2 (z '3+z2(-H'+2H3))  

H1 Ha 

z~5 (zl(3 i_ii + 2Hz +6iI3_fi,~)+ z 4 ( _ H t _ 2 H E  + 2H3 + ff4)) 
2 

q.-4H3zl(ZlHl-{-z4(g3-q H4 2 H1-)) 

{zI3,zlz}=2H2H3z4z9, {z15,zlz}=2H3(H1z6zs-H2zsz9) 

with the missing equations deduced from the involution H and the observation 
that zx 2 - - z ~ 2; this establishes (4.14). 

Putting the expansions for Zo .... , z ~ 5 into the rational map T, letting t "~ 0, 
and using the local behavior of the curves D(X, Y) near the points Po, Pl, Poo 
(corresponding to Z=0,  I, ~), one computes that a neighborhood on D(X, Y) 
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of the points Po, Pl,  poo(X, Y) is mapped to the following segments of curve 
in 1 a15 (remember X, Y= _ 1) 

y ( O , p , D ( - S ,  Y))lz~o 

=lim,~o T ( z ( t , p , D ( - - X ,  Y))lz=.~_ ~~o 

=(0  . . . . .  O, 1, X , - - Y , - X Y ) + s ( O  . . . . .  O, X2Y, X,O, 2, O, O, O, 0,0) 

S 2 
-~-(o, 2 x y  - x ,  r;o, o, 2 r, o ..... 0)+ O(s3), 

y(O, p, D(X ,  -- Y))lz~, 

= limo T(z(t ,  p, D(X ,  - Y)))I,_Z=~s~~O 

=(0 . . . . .  0, 1,X, --Y, - X Y )  

+s(O ..... o , -  ~---Y-Y, o , -  Y, o , -2 ,  o, o, o, o)+ O(s~), 

y(O, p, D ( - X ,  -- Y))lz~ 
: l i m  r ( z ( t ,  p, D ( -  X ,  - Y)))1�89 ~ 

=(0  . . . . .  O, 1 ,X ,  - -Y ,  - X Y )  

+s(O . . . . .  0,0, --X, Y, --2, 2, 0,0, O,O)+O(s2). (4.15) 

One first observes that the following three points coincide 

lim y(0, p, D(- -X,  Y))= lim y(0, p, D(X ,  -- Y)) 
P ~ P o  P ~ Pl 

= lim y ( O , p , D ( - - X ,  -- Y)) 

i.e., po(--X, Y ) = p l ( X ,  -- Y ) = p o ~ ( - - X ,  -- Y) (see figures 4.2 and 4.3 below). 
Moreover, the tangents to the three branches at this point lie in a 2-dimensional 
plane, because the sum of the coefficients of s vanish. The function 
y(t, p, D ( - X ,  Y)) is the solution to the differential equation (4.14) in t, with 
initial condition given by the segment y(O, p, D ( - - X ,  Y)) above; therefore its 
solution y(t,  p, D ( - X ,  Y)) is a holomorphic function in (t, p) for 0 < l t l < e  and 
P"~Po, confirming condition (i) of the coherence; for instance, near Po the first 
few terms can be computed from the differential equations: 18 

y(t,  p, D(X ,  -- Y)) 

= ~ ( - - s t ( t  + 2s )+O(4) ,  - - X Y ( t  + 2s) 2 + 0(3), 

2 X s 2 + O (3), -- 2 Y S  2 "Jr O (3),  S Y t  2 "}- 0 (3), 

X t 2 + O(3), -- Y (t + 2 s) 2 + O(3), ...). (4.16) 

1 a O(n) denotes a Taylor series in s and t of multiplicity n 
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Because of the uniqueness of the solution of differential equations, the solu- 
tion running through the point po(--X, Y)=pl(X,  - Y ) = p ~ ( - X , -  Y) is the 
same whichever expansion D ( - X ,  Y), D(X, - Y )  or D ( - X ,  - Y )  is used, con- 
firming condition (iii); to be specific we have 

lim y(t ,p,D(--X, Y))= lim y(t,p,O(X, --Y))= lim (t ,p,D(--X, -Y ) )  
P--*Po P~Pl P~P~ 

t 5, ----~-t  , - ~ - t  , - ~ -  t4, ~ ~ Y  t , - f f t ,2  X 2 --~t ,Y 2 =(--1~2 X Y  2 XH3 4 YH3 
\ - -  

XYH312 X -~t,t,Y ) t3 ,~ t ,  - - t , t ,X , -Y , ,  - - X Y  
I 

+ higher order terms. (4.17) 

Combining the formulas (4.15) and (4.17), one readily checks rank 

~(~-' 0~-s) ~=t=o =2, confirming condition (ii). As pointed out in (4.13), the inverse 

map T-1: y c-~ z = (Y~/Yo)o <=i_<_ ~ s yields the functions z l (0 <i< 6) as meromorphic 
functions on T 2 near the point po( -X ,  Y). Computing the ratios YHYo of the 
Taylor series appearing in (4.16), one finds 

T-  '(y(t, p, D ( - X ,  Y)))z=~s2 

~ - ( Z 1 , . , .  , Z6)(S , t) 
=(XY(t+Zs)2+O(3) - -2Xs2+0(3)  2Ys 2 

\ st(t+2s)+O(4) "st( t+2s)+O(4) 's t( t+2s)+O(4)" 

--XYt2+O(3) -X t2+O(3)  Y(t+2s)2+O(3)] 
(4.18) 

st(t + 2s)+O(4)' st(t + 2s)+O(4)' st(t + 2s)+O(4) ]" 

These new expressions for zi=h~(t, s)/gi(t, s) are the analytic extensions of the 
expressions z~ defined by the original Laurent series; notice that the Taylor 
series 

gi(t, s)= st(t+ 2s)+ 0(4), 

of multiplicity 3, accounts for the simple poles of zi along the three curves 
D ( -  X, Y), D(X, - Y) and D ( -  X, -- Y) intersecting in one point po(-  X, Y). 

By making ratios in (4.17), it is easy to compute the Laurent series for 
z~ along the trajectory running through the common point po( -X ,  Y), namely 

(Z 1 . . . . .  Z6)(t , 0) 
- ~ 3 1 8 X Y I ~  S Y 8 X Y  8 X  8A Y3) 

\ ~3 '  ' t '  t '  A3t 3' A3t 3' 

+ higher order terms; (4.19) 

in fact, the leading terms are readily seen to satisfy the system ~ = f l  (z), going 
with X1, as they should (see the beginning of this section). These expressions 
also show that gi(t, 0)~ 0; this ends the verification of condition (iv). 
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To check item (v) in the coherence condition, we investigate the image of 
the origin (t, s)= (0, 0), under the map 

( t ,  S ) t " ~ ( Z l ,  . . .  , Z6) ( t  , S ) E ~  6 (4.20) 

given by (4.18). Since the ratios are 0/0 for s = t - - 0 ,  one examines how the 
limits along the lines running through the origin (t, s)=(0, 0) are mapped by 
means of (4.20); to do this consider the map of a disc A around (0, 0) to A x p1, 
defined by 

A ~ A  x ~  1 

(t ,s)~(t ,s,~,~) with s~=t~. 

Making the substitution s = t~/~, and letting t ~ 0 in (4.18), the vector (Zl, ..., z6), 
viewed projectively, tends to the line 

Exr = {~x.r (~, fl) [ (~, fl)ep1} (~x,r as in (4.5)), 

or in other terms, the birational map T blows down the line Ex, r, i.e. it is 
an exceptional divisor. The line Ex. r has degree two, because setting a linear 
combination of the coordinates in Ex, r equal to zero leads to a quadratic equa- 
tion in s/ft. Moreover the generic Laurent solutions are double covers of the 
lines Cx, r. To summarize, we have 

[degree(D(X, Y))+degree T - l ( p o ( - X ,  Y))] = 16, 
X , Y = + I  

which coincides with the degree of the generic hyperplanc section of d 
4 

= (~ {H i = Ai}, thus confirming condition (v). By Theorem 1, this system is alge- 
1 

braic completely integrable on tori T 2; the tori are Jacobi varieties of the hyperel- 
liptic curves D(X, Y). 

The behavior of the variety ~ in p6 is straightforward; wc have 

d o= ~ (C(X, Y)+E(X,  Y)) 
X , Y =  + 1 

with the intersection pattern of figure 4.1. Moreover ~ is smooth along the 
E's and has a double crossing along the C's. 

~ ' ~  ~ , ' ~  

/ ""- cl- . l 

/<x -. ) c'"-" 
C1-1,-1 ) 

Fig. 4.1 ~ t  ___ ~ ( C ( X ,  Y ) + E ( X ,  Y)) 
X,u177 
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z6:0 
Zs:0 

\ zl=0 

C(-X.Y) z~:0 

C[-X,-Y] 

Fig. 4.2 detailed view of Fig. 4.1 

p(-x,-v) E(X.Y) ~ '~z3=0 

z2=0 

C(X.-Y; 

X2 D'{'(1'-1) X1 ..... 

DI11(_%_1 ) Din(-1,1 ) 

X~ 
X3 = 2 X, -X2 

. . . . . .  I ~ ' ' D ~ T ( a  1) 

D{~ ~Dl~ 1, 1) 

(1) (0) Fig. 4.3 fourhyperellipticcurvesD (X,Y)andfourpointsD (X,Y),aUparametrizingLaurentsolutions 

To conclude, the variety ~ in F 6 is transformed into a Jacobi variety by 
blowing down the exceptional divisors E(X, Y) and by blowing up ~ along the 
lines C(X, Y); this leads to T 2, with 4 hyperelliptic curves on it, intersecting as 
in Fig. 4.3. 

Associated with each flow ctX 1 +fiX2, there are four principal Laurent solu- 
tions Dill(X, Y)=-D(X, Y) and four lowest solutions D(~ Y), which fit  together 
according to the tree, 

(D(~ - 1), 2) (D(~ 1), 2) (D(~ - 1, - 1), 2) (D(~ - 1, 1), 2) 

as represented by means of divisors in Fig. 4.3. 
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The Laurent solutions in the tree are as follows: 
Flow X1 : 

~(1) X z(t, Z,  ~ ( , Y))= t - I ( -2XY(1  -Z) ,  X, Y, - 2 X Y Z ,  2 X Z ,  2 Y(1 -Z) )+O(1)  

[8xr_ x 
z(t, D(~ Y)) = 3 \ A s  t 3' t ' 

Y - 8 X Y  - 8 X  8 Y \  
t ' A at  3 ' A 3t  3 '  A a t  3 J 

+ higher order terms. 

Flow o~X 1 + f iX2:  (generic ~, fl) 

z(t, Z,  D~ Y)) 

= t -  t ( -  2 X Y ( 1  - Z), X, Y, - 2 X Y Z ,  2 X Z ,  2 Y(I --Z)) (~ + 2 f l Z ) - '  + 0(1) 

z(t, n(~ Y)) 

= t -  1 [ a + 2 f l  XY,  - - 2 f i X  2 f l Y  - - a X Y  - - a X  (a+2fl) Y)+O(1) 
\ aft ~(a+2fl) '  a (a+2 f l ) '  fl(a+2fl) '  fl(a+2fl) '  ~fl 

Appendix 1 

We give some basic facts about weighted projective spaces ~ for the integer 
weights v=(Vo, vl . . . . .  vn), vi> 1. A standard projective space IP" is obtained 
by identifying all points on the lines running through the origin in ~"+ 1. A 
weighted projective space ~ with variables zi having weights v i is defined by 
identifying all points on the curve 

(Zot~~ t ~, ...,ZntV"), t E ~ *  

running through the origin. There is a natural surjection 

Vo v1 ~:  P ~  F~'~: (Yo, Y, . . . . .  y.) c~ (Yo, Y, . . . . .  Y,~") (1) 

whose kernel in P~ is given by a discrete group action # and thus 

n 

t,= Oz".  
i = 0  

In analogy with F n, the space ~ is covered by n + 1 charts specified by z~ 4=0 
(i = 0, 1 . . . . .  n). In ~ ,  it will be convenient to consider the following "hyperplane" 

where 

a, O, x e ~ ,  (2) ai Xi = 
i = o  

d=l.c.m.(vl . . . . .  vn) and di=d/vv  (3) 
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This is the generic equation in F~ of smallest degree. Through the map 4~- ~, 
the hyperplane equation (2) in l>", corresponds to a homogeneous equation 
of degree d, 

/ = 0  i = 0  

It is also via the map ~ that most degree questions in P~" can ultimately be 
reduced to questions in ~". The degree of an m-dimensional variety V c ~'~ is 
defined as the number of intersection points of V with an n-m-dimensional  
"plane", the latter being the intersection of m "hyperplanes" (2). 

Example. Consider an n -  m-dimensional variety V in IP~ defined by 

and let 

v= (~ {F,(x)=0,x~} 
i = 1  

p~ V~(xo(p ) ,  x l  (p), . . . ,  x , ( p ) )~ '~  

be a parametrization. Then the degree of V can be computed in two different 
ways: on the one hand by the definition above we have 

aim v ( . ] 
degree V= number of points in s~=, ~pe V,, i~=oa~'x,(p)d'=o~f; (4) 

on the other hand, the degree of V in ~'~" can be computed by means of B6zout's 
theorem: namely one first computes the degree of q~-l(V) in F", using the 
map �9 defined in (1) and then one takes account of the quotient by the discrete 
group action/~, yielding 

f i  {degrees of F/}. d" nl 

degree V= i= l (5) 
V 0 It I . . . V  n 

Appendix 2. Regular systems 

In most lower-dimensional examples, we have the equality 

dim Ci = dimension (invariant manifolds)-  1 

for all components Ci of c~ in the indicial locus; this is equivalent to the relation 

~~ =dim(ker  ~c,) = m -  1 (see (3.3)); 
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,L / I . \  
Fig. A.1 

in other terms, the divisor D on T"  is a finite cover of cg. However in higher- 
dimensional situations, almost always we have 

? ~  1, 

i.e., the trajectories, which in the affine cover the whole of the invariant manifold 
~r flow towards a lower dimensional ( < m -  1) manifold cg ~ ~ ,  = ~ n {Zo = 0}, 
creating a singularity of codimension >2,  as depicted in Fig. A.I. Also, the 
leading term z ~~ of the Laurent  solutions contain strictly less than m--1 free 
parameters. Usually this situation is easily remedied by preparing the system; 
this is done by adjoining 6 = m - 1  _?o  polynomials P~, . . . ,  Po in the phase vari- 
ables z I . . . . .  z. of weighted degrees l~ . . . . .  In, such that the full set of leading 
terms z~ ~ _(o). of z l, z. and �9 . - ,  z , n  -t- 0 . . . ,  

Pi(z(t)loj , - v . + , t . ( o )  . . ( 1 )  , •  .), i=1 ,  6, 

depend on m -  1 free parameters on each D i, where v,+i is defined as the degree 
of the pole of P~ along the expansion Dfi we assume this can be done independent- 
ly of j. The polynomials Pk must be chosen such that the dimension of the 
variety 

k + m  6 

N = 0} N = 0} 
1 1 

is what it should be. In order to respect the weight homogeneous structure 
of the problem, we now adjoin 6 variables z.+ 1, --., z,+~ of weight v.+~ . . . .  , v,+o 
defined by 

z,+iztd-v"+'-Pi(z)=O, i = I  . . . . .  6. 

These 6 equations of degree li are now added to the relations expressing the 
constants of motion. The reason for multiplying z.+i by  z~ -~-+1 is that z.+i 
blows up like t -v"+', which respects the weight v.+~ of z.+i.  Consider now the 
enlarged system: the new locus at infinity ~r contains the image of D under 
the map 

D - + ~ = ~  +~ 
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Then D will become a finite covering of C of degree [D/G]. To conclude this 
trick, which is crude, remedies the situation depicted in Fig. A.1; in the new 
picture the trajectories all flow to m--l-dimensional components of ~r still 
leaving us with a discrete number of trajectories flowing to a generic point 
and still leaving us with components of d ~  not reached by the Laurent solutions 
of ~ =f(z). 

Example. We consider the following system of differential equations in zl, ..., z6 

~l=Zl(Zs-Z4) ~ 4 = z 3 - z l  

z2=z2(z6-zs)  z 5 = z 1 - z 2  

Z3=Z3(Zg--Z6) Z6=Z2--Z3, 

related to the 3-body periodic Toda lattice. Clearly the variables zl,  z2, z 3 have 
weight 2 and z4, zs, z6 weight 1; the system has the following constants of 
motion 

HI -~- Zl Z2 Z3 .-~- A l Z6o 

Hz=z4 +z5 +z6=2Azzo  

113 = �89 + z~ + z~)-- z 1 -  z 2 -  z3 = a3 z03 

H,  = z, z 5 Z 6 -I- Z 1 Z 6 -~ Z 2 Z 4 "[- Z 3 Z 5 = A 4 g o  3 . ( 1 )  

The indicial locus 

viz~~ + f.(z~~ i= 1 . . . . .  6, 

for these equations consists of three points 

cg= {1, 0,0, 1, -1 ,  O} w {0, 1, 0,0, 1, --1} w {0, O, 1, --1,0, 1) 

~ - C l - q - C 2 - . t - C 3 ,  

with spectrum LP- ( - -  1, 1, 1, 2, 3, 3); 

each one leads to a Laurent solution depending on 5 free parameters 

zi(t)=t-2(z~~ )} 
- 1 (0) (1) i = 1, 2, 3, 

Z i + 3 ( t ) = t  ( Z i + a + Z i + 3 t +  . . .  

with leading terms 

on Cx 

(z~~ ..., Ztr~ (i, 0, 0, 1, -- 1, 0) 

(z~' ~, ..., z~ l)): (o, o, o, r, Y, z )  

on C 2 on C3 

(0, 1,0, O, 1, - 1 )  (0, O, 1, --1, O, 1) 

(0, O, O, Z, Y, Y) (0, O, O, Y,Z, Y). 

The parameter Z is effective, since there are two degrees of freedom at the 
first step in the expansions and only one invariant H 2 of weighted degree one. 
From this table, it is seen at once that both zt +z4zs and z2+zsz  6 never blow 
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up worse than t -  1 ; therefore taking any arbitrary linear combination of them, 
for instance the difference, and defining z7 by the equation 

Z7 = ZO 1 p (z) ~ z O 1 [(z1 ..It_ z4 z5 ) _ (z 2 ..~ z5 z6)] ' 

one sees it has weight 1, behaves like t-1 in the affine chart z o = 1 and has 
the leading behavior 

on C~ o n  C 2 on C 3 

z~7~ Z Z - -2Z .  

Therefore the regularized system is expressed in the variables z~ . . . . .  zv with 
equations (1) and 

Z o Z T - ( z l  + z4 zs)+(z2 + z5 z6). 

References 

I. Ablowitz, M.J., Ramani, A., Segur, H.: Nonlinear evolution equations and ordinary differential 
equations of Painl~ve type. Nuovo Cim. 23, 333-338 (1978) 

2. Adler, M., van Moerbeke, P.: The algebraic integrability of geodesic flow on S0(4). Invent. Math. 
67, 297-326 (1982), with an appendix by D. Mumford 

3. Adler, M., van Moerbeke, P .  Kowalewski's Asymptotic Method, Kac-Moody Lie Algebras and 
Regularization, Commun. Math. Phys. 83, 83-106 (1982) 

4. Adler, M., van Moerbeke, P.: Geodesic flow on SO(4) and the intersection of quadrics. Proc. 
Nat'l. Acad. Sci. USA 81, 4613-4616 (1984) 

5. Adler, M., van Moerbeke, P.: A systematic approach towards solving integrable systems, preprint 
1985, to appear in revised form in (Perspective in Mathematics). New York: Academic Press 
1989 

6. Arnold, V.I.: Mathematical methods of classical mechanics. Berlin-Heidelberg-New York: Sprin- 
ger 1978 

7. Bountis, T.: A singularity analysis ofintegrability and chaos in dynamical systems. In: Singularities 
and Dynamical Systems. Proceedings, Heraklion, Greece, North-Holland-Amsterdam 1983 

8. Ercolani, N., Siggia, E.: Painlev6 property and geometry. Preprint, (Dec. 1987) 
9. Flaschka, H.: The Toda lattice in the complex domain. Preprint, (Dec. 1987) 

10. Dorrizzi, B., Grammaticos, B., Ramani, A.: A New Class of Integrable Systems. J. Math. Phys. 
24, 2282-2288 (1983) 

11. Griffiths, P., Harris, J.: Principles of algebraic geometry. New York: Wiley I nterscience 1978 
12. Haine, L.: The Algebraic integrability of geodesic flow on SO(n). Comm. Math. Phys. 94, 271-287 

(1984) 
13. Hietarinta, J.: Direct methods for the Search of the second invariant. Phys. Rep. 147(2), (March 

1987), North-Holland-Amsterdam 
14. Koizumi, S.: Theta relations and projective normality of Abelian varieties. Am. J. Math. 98, 

865-889 (1976) 
15. Kowalewski, S.: Sur le probl~me de la rotation d'un corps solid autour d'un pointe flxe. Acta 

Math. 12, 177-232 (1889) 
16. Kruskal, M., Clarkson, P.: The Painlev~ and Poly-Painlev6 tests for integrability. P. Winternitz 

ed., Presses Univ. de Montr6al. Montreal Lectures Notes, (Aug. 1985) 
17. M6ishezon, B.G.: On n-dimensional compact varieties with n algebraically independent mero- 

morphic functions. Am. Math. Soc. Transl. 63, 51-177 (1967) 
18. Siegel, C.: Topics in complex functions theory, vol. 3. Tracts in Pure and Applied Mathematics, 

pp. 4-12. New York: Wiley 1973 
19. Steeb, W., Kloke, M., Spieker, B., Kunick, A.: Integrability of dynamical systems and the singular- 

point analysis. Found. Phys. 15, (1985) 



The complex geometry of the Kowalewski-Painlev6 analysis 51 

20. Weiss, J., Tabor, M., Carnevale, G.: The Painlev6 property for partial differential equations. 
J. Math. Phys. 24, 522-526 (1983) 

21. Yoshida, H.: Necessary conditions for the existence of algebraic first integals, I: Kowalewski's 
exponents. J. Celest. Mech. 31,363-379 (1983) 

22. Bureau, F.J.: Les syst~mes diff6rentiels non-lin6aires dans le champ complexe. Etude globale; 
essai de synth~se. Actas del V Congreso de la Agrupaci6n de Matem~tticos de Expresi6n Latina. 
114-142 (1978) 

23. Fran~oise, J.P.: Integrability of quasi-homogeneous vector fields (preprint) 
24. Hartshorne, R.: Algebraic Geometry. Berlin-Heidelberg-New York: Springer 1977 
25. Mumford, D.: Algebraic Geometry I. Complex Projective Varieties. Berlin-Heidelberg-New York: 

Springer 1976 
26. Mumford, D.: Tata Lectures on Theta II. Boston-Basel: Birkh~iuser 1984 

Oblatum 31-V-1988 & 11-VII-1988 & 26-IX-1988 


