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DIOPHANTINE APPROXIMATION IN POSITIVE
CHARACTERISTIC

J. F. VOLOCH (Rio de Janeiro)

§ 1. Introduction

Let & be a field of characteristic p > 0. We will be interested in the
approximation of elements y € k[ [x]], algebraic over k(z), by elements of k(x)
(where x is a variable) with respect to the valuation ord = ord,_,.

Let y € k[ [x]] and define

a(y) = lim sup od(y —1)
H(r)—oo H(r)
rek(x)

where
H(P|Q) = max {deg P, deg @}

Define d(y) = [k(x, y): k(z)]. Then Mahler [3], transposing a classical

result of Liouville, proved that «(y) < d(y), and he gave an example (y =2 xpdl
i=0

which had «(y) = d(y) = p, and thus showed that his bound was, in general,
best possible.

Later, Osgood [4] showed that, if y does not satisfy a Riccati equatlon,
Y =ay*+ by + ¢, @, b, ¢ € k=), then

()+3].

a(y) g[ )

He actually showed that
d 3
ord (y — 7) g[ﬂ%]ﬂ(r) +0
for any r € k(x) where C is an effective constant depending on y.
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In this paper we shall be concerned with the approximation of algebraic
functions y € k[ [x]] satisfying

ay? + b

1) _
( y ot d

where a, b, ¢, d € k[x], ad — bc 5« 0 and ¢ is power of p.

We shall show that if y satisfies (1) then there exists an effective constant
C for which ord (y — r) << a(y)H(r) + C for any r € k(z). We shall also give
several results that will enable us to bound «(y) effectively by some constant
smaller than d(y) in several cases. This will then give an effective improvement
of the Liouville—Mahler Theorem for certain y satisfying (1). Note that there
are cases of y satisfying (1) for which a(y) = d(y).

We shall also give several examples that illustrate our method and
discuss the sharpness of our results.

ReMARK 1. If y satisfies (1), then y satisfies a Riccati equation.

REMARK 2. If d(y) = 8, then y satisfies (1) with ¢ = p, in fact,
1, y, y?, y** are linearly dependent over k(z), so one deduces immediately
that y satisfies (1).

§ 2. The main results

Let y € k[[x]] satisfy
_ay' + b

1 )
M ot d

a,b,c,d€k[x], ad — be =< 0.
Let d(y) be as above, note that d(y) < g + 1. Let

A = max {deg a, deg b, deg c, deg d}
and B = ord (ad — bc). Assume that d(y) > 1.

THEOREM 1. For any r € k(x), we have either H (ry<<A(g—1) or

ord (y — 1) < aly) Hr) + XDA4 | (B+20rdy)
qg—1 g—1

Before proving the theorem we verify a lemma.

Lisa 1. If 1y, 1, € b(@), 1 = 22 +2 , then
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(@) H(r)) — 4 < H(ry) < H(r) + 4;
(ii) if ord (y? — r,) > O, then

ord (y — rp) <ord (4 — 1) + B

and ord (y — r) > 0;
tford (y? — r,) > ord y + B, then

ord (y —r,) >ord (y? — r;) — 2ord y — B.

PRrROOF.

. N . __aP +bQ )
(i) Let r, = PQ, P,Q € k[z], (P,Q) = 1, then r, = P do T do and, ob
viously, H(r,) < H(r,) + A. Let

m = max {deg (aP + bQ), deg (cP + dQ)}.

We claim that H(r,) > m — deg (ad — bc). In fact, if e € k[ X ] divides aP + bQ
and cP + d@, then e divides (ad — bc)P, (ad — be)Q, so e|ad — bc. This proves
the claim.

We now prove that

m > H(r,) — A + deg (ad — bc).
This will complete the proof of (i).
We have that
deg (adP + bdQ) <m + A,
deg (bcP + bdQ) < m + A,
s0 deg (ad — bc)P < m + A. Similarly, deg (ad — be)Q < m + A.

Hence H(r,) + deg (ad — be) << m + A, as desired.
(ii) We have that

(ad — be)(y? — ry)
(cy? + d)(ery + d)

If ord (y? — r;) > 0O then, since y € k[[«]], we have r, € k[[#]]. In partic-
ular,

(2) ord (y — r,) = ord

(et + d)(er, + ) € K[[=]],
80
ord (y — 1)) <ord (49 — ) + B

by (2), and ord (y — r,) > 0.
Assume that

{3) ord (¥ — ;) >ordy + B> 0.
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Let
m = ord (cy? + d),
then
ord (ay? + b) = m — ord ¥.
Also
ord (acy + ad) > m
and

ord (acy + bc) > m — ord y.
It follows that

ord (ad — be) > m — ord y
or
(4) m < ordy + B.
By (8) we have that

ord (cr; + d) = ord (cy? + d) = m.
Hence, by (2),
ord (y — r;) > B — ord (y? — r,) — 2m,

which by (4) completes the proof.
aX9+b
cX7+d

N times. Given r € k(z), define ry, = RN(r), r, = r.
Lemma 1 (i) then implies that

|H(7'N+1) — qH(ry) | <4,

Proor of Theorem 1. Let R(X) ==

which implies

a0 — (L= 4 <Aoo <gH) + (£ 4.

If H(r) > 1 , then H(ry) — oo ag N — oo.

Further, we have either
1 .
ord (y — rn) < —(ord y + B)
q

or
ord (y — ryy) >gqord(y — ry) — 20ordy — B
by Lemma 1 (ii).
If
2ordy — B

ord (y — r) >
q—1

and BN = RoRo ...

oR,
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then it follows by induction that ord (y — r,) is increasing with N. Since
otherwise Theorem 1 is trivial, we may assume that this is the case. Then we
have, by the above, that

_ N oy @ —1)
ord (y —ryy) > ¢V ord(y —r) — (2ord y + B) ——q —
and
" —1
Hiry) <q"H() + | — ]A.
Assuming that H(r) > A/(g — 1), we have
i ord (y —rn) i o 0rd (¥ — 7n)
aly) > im sup —— > ) > h}\lnﬂglf Hirm) >
*) > fim £0rd @ —n) — (2ordy + B)g" — Djlg — 1) _
Nevoo gV H(r) + A@Y¥ — Di(g — 1)
_ ord (y —r) — (2ord y + B)/(g — 1)
H(r) + Alg — 1 ’

which proves Theorem 1.

THEOREM 2. If 1, € k(x) is such that
() ord (y — n) > «H(r)) — Bl — 1) — xd[ig — 1)
for some o > 2, then there exists some other ry € k(x) satisfying (5) with

24 + B +q + (B + ad)/(g—1)
o — 2

(6) H(ry) <
and r, = R"(r,) for some n > 0.

Proor. We prove that if r € k(x) satisfies (5) but not (6), then there
exists r, € k(x) satisfying (5) and H(r;) < H(r) and B(r;) = r. Since the height
takes positive integer values, the theorem will follow by infinite descent.

Tet s = ﬂ .
cr—a
By Lemma 1 (ii) we have lsince r= Z:i;)

ord (y? — 8) >ord (y — r) — B.

Let ¢ = p" and let m be an integer (0 <<m < n) with s = /" for some
r, € k(x) and m maximal. We claim that m = n. If not, then

ord (y?"™" — 1)) > ~1—(ord (y — r) — B)
pm
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and
ord (r) = ord ((y** ™" — 7)) > ord (7" — 1) — 1 >

™ 21017(ord (y—r)—B)—1

If 7] » 0, we have ord (r]) < H(r) but

H(ry) < 2H(r) < -;;,,—H(s).
So, by Lemma 1 (i),

ord (r}) < 525 (H(r) + 4).

Hence, by (7) and (5),

24 +B +qg+ (B+ ad)g—1
o — 2

H(r) <

This contradicts the hypothesis made at the beginning, so r; = 0 and there-
fore m is not maximal. This implies that m = n, so s = r{. As above we con-
clude that

Ord(y—rl)zl(ord(y——r)___B)z_l_[“H(r)__ B . xA _ ]
7 q g—1 q—1

But, by Lemma 1 (i),
Hr)>H@E) — A=LHp)— 4
q

80

ord (y — ry) > aH(ry) ~%[1 + —T (B + acA)]
= aH(r)) — (B + ad)/(¢ — 1),

hence r, satisfies (5).
To prove the theorem we now only need to show that H (rl) < H(r).
Supposing the contrary,

Hr) < Hiry) = %H(s) < —;— (H(r) + A),

8o H(r) < Ajq — 1, which implies (6). Since we assumed that » did not satisfy
(6), we arrive at a contradiction. So H(r;) < H(r) and Theorem 2 is proved.
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§ 3. Examples

Some examples will be constructed based on the following proposition.

ProposrrioN 5. Let y € k[[z]], v ¢ k(z) and 7, € k(x), r, — y as n tends

to co. Assume also that for some positive constants ., B we have
1im_%"_")=“, 1im_{i_("£ﬁ=,g_
n—eo H(ry) n~e  H(rp)

If @ > pY2 4 1 then «(y) = «.
The proof is based on the following lemma.

Lemma 2. Let y € k[ [=]], y § k(x). If ry 5= ry € k(x), H(ry) > H(r,) and
ord (y — r;) > a«H(r,) for some o > 0, then H(r,) > (o« — 1)H(r,).
Proor.
ord (r, — r)) =ord (r, — y + y — ;) > min {ord (y -- ),

ord (y — ry)} > aH(ry).
On the other hand,

ord (ry — ry) < H(ry — 1) < H(ry) + H(ry),
hence H(r,) > (x — 1)H(r,), as desired.

Proor of Proposition 5. Obviously, a(y) > x. Assume that a(y) > «,
then for ¢ > 0 sufficiently small there exists s, — y with

ord (y — s,) > (x + &) H(s,),
also for n large
ord (y — r,) > (& — &) H(r,), ord (y — r,) < (& + &) H(r,).
Given n, choose m with H(r,) < H(s,) < H(r,,,,), 80 7, 5% 8, 5= Tpyy 5= T'me
By the lemma we have, if » is large, that
(@ — 1 — &)H(ry) < H(s,) and H(s;)(@ — 1 — &) < H(rpmy1)s
hence
(¢ —1— g g—————H(’mﬂ) .
: H(r;,)
As n — oo, we have m — oo, s0 (@ — 1 — ¢)? < f. Making ¢ — 0 we get
(@ — 12 < B or « < B2 + 1; this contradicts the hypothesis, proving the
result.

PROPOSITION 6.
(i) Let f(x) € k[x], deg f = m, ord f = n > 0, and let y € xk[[x]] satisfy
y? — y = f(x). Then n > m(q¥® + 1)|g implies a(y) = ng/m.

4 Periodica Math. 19 (3)
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(ii) Let f(z) € k[z], deg f = m and ord (f — 1) = n > 0, let d be a divisor
of g — 1 withd > gV + 1, and let y € 1 + zk[[x]] satisfy y* = f(z). If njm >

> (¢¥2 + 1)/d, then a(y) = 7::

al

Proor.
(i) We have
y = — Sy,
i=0
Let
N
m=§mﬂ

Then Proposition 4 applies with « = ng/m, § = g.
(ii) We have that

oo __(q-—l),(f
y= q fx) ¢
If
N _a—lgy _g—1 71 B it V]
rv=JIfe) ¢ =fle) * 7' =flx) a .,

i=0

then Proposition 4 applies with « = nd/m, § = q.

REMARK. The examples of (i) are a variation on Mahler’s example [3]
and the examples of (ii) with m = n» are a variation on Osgood’s examples [4].
For p = 2 and d = ¢ — 1, examples similar to (ii) appear in [1].

Proposition 6 thus gives, when » < m, several examples where Theorem 1
applies, giving an effective improvement on the Liouville—Mahler Theorem.
The examples of (ii) can be seen as analogues of d-th roots of rational numbers
close to 1 in absolute value. For this class of numbers, Bombieri—Mueller [2]
have recently given ‘“good” effective improvements on Liouville’s Theorem,
better than those of Baker—Feldman.

For the examples in (ii) we also have

a1
_f®) T y+0

¥’ 0-y+1

8o, in the notation of Theorem 1, 4 = m(q — 1)/d, B = 0, a(y) =%d—. So

Theorem 1 reads

(11) ord (y — 7) g—:%H(r) +n Vrekx), H(r) > m/d.
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But for r,, we have, as in the proof of Proposition 5 (ii), ord (y — ry) =
= ngN*! and
N+1 __ 1Ym
H(ry) = @ = Lm ,
d

so we have equality in (11). Therefore Theorem 1 is best possible in this case.

Another example is due to Baum and Sweet [1]. Take P(x) € k[x], £ a
field of characteristic 2. Let m = deg P > 0 and consider y satisfying

P)y® + 2™y + P(x) = 0.

Then, by [1] Corollary 3, ¥ has bounded partial quotients! (note the
change in notation, our z is their x-1), so a bound as in Theorem 1 follows.
This illustrates the following result.

TueoreM 7. If y € k[[2]], d(y) > 1, satisfies (1) (in particular, if d(y) = 3),
then y has bounded partial quotients if and only if a(y) = 2.

Proor. The “only if”’ part is well known and the “if”’ part follows from
Theorem 1.

The content of Theorem 7 is that if a “Roth” type theorem holds for
y, l.e.

(Ve > 0)[ord (y — 1) < (2 + &) H(r) + O(1)],

then it follows that this last equation holds for ¢ = 0 and also with an effective
o).
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