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MINIMAL PRIME IDEALS IN
0-DISTRIBUTIVE SEMILATTICES

by
N. K. THAKARE (Aurangabad) and Y. S. PAWAR (Aurangabad)

1. Introduction

Let § be a meet-semilattice. A nonempty subset I of S will be called an

tdeal if
((Yx<{yinSandyeclimplyz€l, and

(ii) if the join of any finite number of elements of I exists in § then
it must be in I.

This definition of an ideal in a meet-semilattice is to be found in VEN-
KATANARASIMHAN [8]. A filter F of S is a nonempty subset of § such that
a,b ¢ F is equivalent to a Ab € F. A proper ideal I of § is called prime if
a ANb€Timpliesa € Iord ¢ I. A proper ideal (filter) of S which is not contained
in any other proper ideal (filter) of S is called a maximal ideal (filter). A minimal
element in the set of all prime ideals of 8 is called a minimal prime ideal.
A proper filter F is called prime provided that, whenever for any finite subset
A of 8,V A exists and is in F, then a € F for some a € A. A semilattice S with 0
is called 0-distributive if

AN, =aNZy=...=a Nz, =0
for z,, ..., z, (n finite) in § imply
a N,V ...V2,)=0,

whenever =, V ... V z, exists in S.

The authors [5] earlier studied such semilattices for the case n = 2.
All the results obtained there are invariably valid for the 0-distributive semi-
lattices introduced here.

The concept of minimal prime ideals was put to advantage by Kist [4]
while investigating commutative semigroups. The purpose of this paper is
to obtain some properties of minimal prime ideals in 0-distributive semilattices.
The study that we shall carry out will, in many ways, be distinct from that
of Kist [4] Our study has resulted in extending the findings of SPEED [6],
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and VENHATANARASIMHAN [9], [10]. We also study special types of minimal
prime ideals the motivation of which stems from the investigations carried
out by €ornisH and STEWART [3].

2. Minimal prime ideals

We begin this section with a characterization of minimal prime ideals
in a O-distributive semilattice in terms of maximal filters. It also provides
us with a useful tool for establishing properties of minimal prime ideals. We
use in its proof a characterization of 0-distributive semilattices obtained
earlier by the authors ([5], Theorem 5).

TeEEOREM 1. Let S be a 0-distributive semilattice. A subset M of S is a
minimal prime ideal if and only if its set complement S — M is a maximal
filter.

Proor. Let M be a minimal prime ideal of 8. As the set complement of a
prime ideal is a proper filter in a semilattice, we get S — M to be a proper
filter in 8. If § — M is not a maximal filter, then it must be contained in some
maximal filter, say F, in S. By 0-distributivity of S (see PAWAR and THARARE
[6)), F' is prime. This makes S — F to be a prime ideal contained in M. It
then contradicts the minimality of M and hence § — M must be a maximal
filter.

Conversely, let S — M be a maximal filters in S. As S is 0-distributive,
8 — M is a prime filter; see [5]. Thus M is a prime ideal. To prove the mini-
mality of M, assume to the contrary. If a prime ideal @ is contained in M,
the filter 8 — @ properly contains S — M and it is against our assumption.

Our next result is an immediate consequence of Theorem 1.

CorOLLARY 2. In a O-distributive semilattice every prime tdeal contains o
minimal prime ideal.

ProoFr. Let P be a prime ideal in a 0-distributive semilattice S. As
8 — P is a proper fitler of S and 0¢ 8, 8 — P must be contained in some
maximal filter, say F, in 8. Then 8 — F is the minimal prime ideal contained
in P and we are done.

Theorem 1 is also used to prove the following equivalent property for
prime ideal to be a minimal prime. For any nonempty subset 4 of S,
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A* ={x€S:x ANa=0,forallac 4}, -

the set of all disjoint elements of 4 in 8.

THEOREM 3. 4 prime tdeal M in a O-distributive semilattice S is minimal
prime if and only if {x}* — M < 4 for any x € M.

Proor. Let M be a minimal prime ideal and z be any element in M.
By Theorem 1, 8§ — M is a maximal filter; and as z ¢ S — M there exists
(see [5]) an element y in S — M such that x A y = 0. Thus y € {x}* — M,
proving that {x}* — M =< @.

Conversely, let a prime ideal M satisfy the given condition. Consider
any element which is not in § — M. Then « € M and hence {z}* — M = g,
by assumption. Thus there eixsts y € {#}* such that y ¢ M. Hence, we get
for any = not in § — M an element y in S -~ M such that z Ay = 0. By a
result of PAwar and THARARE [5], we conclude that § — M is a maximal
filter. An appeal to Theorem 1 now leads to the minimal primeness of M.

The preceding theorem, in turn, permits us to state the following

THEOREM 4. 4 prime ideal M is a minimal prime ideal in a O-distributive
semilattice S if and only if it contains precisely one of {x}, {x}* for every z € S.

Proor. Let M be a minimal prime ideal in 8. If € M then by Theorem
3, {#}* — M >+ 0. Hence we obtain {z}* ¢ M. Suppose that {z}* C M.
Then x € M will yield that x ¢ S — M. As § — M is a maximal filter, there
exists a y in § — M such that x A y = 0; see [5]. Thus y € {z}* and y § M,
contradicting our assumption {x}* C M. Hence in this case z § M. This com-
pletes the proof of “only if”’ part.

Conversely, let a prime ideal M contain precisely one of {z}, {x}* for
any x € 8. Consider any element y not in 8§ — M. Then y € M gives that
{y}* ¢ M. Hence there exists z in {y}* such that z § M. Thus we get that
for any y not in § — M, there is 2 € 8§ — M such that y Az = 0; and we
are led to the maximality of the filter S — M on account of [5]. Since § is
0-distributive, we get M to be a minimal prime ideal by Theorem 1.

COROLLARY 5. If M is a minimal prime ideal in a O-distributive semilattice
8 and x is an element of M, then {x}** C M.

Proor. As M is a minimal prime ideal and x € M, there is an element
y €8S — M such that # A y = 0 by Theorem 4. If {z}** £ M, there would
be an element z in {x}** with z ¢ M. Then, since S — M is a maximal filter
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(see Theorem 1), y Az€S8 — M. But as y€ {z}* and z€ {z}** we get
Yy Az=0. Thus 0 ¢ 8 — M, contradicting the maximality of § — M. Hence
{x}** must be contained in M, where x € M.

It follows immediately from Theorem 4 and Theorem 1 that

CoROLLARY 6. A filter F in a O-distributive semilattice S is maximal if
and only if F contains precisely one of {x}, {x}* for every x € 8.

We know that I* is the pseudocomplement of an ideal I in the ideal
atltice I(S) when 8§ is a 0-distributive semilattice; see [5]. Further, we have

THEOREM 7. In a O-distributive semilattice S the pseudocomplement of
any ideal I is the intersection of all minimal prime ideals not containing I.

Proor. Recall that P is a prime ideal in a semilattice § if and only if for
any two ideals 4 and Bof S, 8544 N BC Pimplies A C Por B C P. As
I NI* = {0} € M for any minimal prime ideal M, we get I* — M when
I C M. Therefore I* C N {Méeém:I & M} where m denotes the set of all
minimal prime ideals of 8. If I* ¢ N{M €¢m:1I & M}, then there exists
xe N{M¢m:IE M} such that x § I*. Hence for some y €I, x Ay < 0.
But as z Ay £ 0, z A ¥y must be contained in some maximal filter, say F,
of 8. Hence y ¢ S — F, and we infer that I £ § — F. As S — F is a minimal
prime ideal (see Theorem 1) of S, we obtain

N{Mem:I EM} S~ F.
Therefore x € S — F, a contradiction to the fact ¢ F. Thus we must have

N{Mem: I E M) =I*

As mentioned earlier the ideal lattice I(S) of a 0-distributive semilattice
8 is pseudocomplemented, it will be interesting to discuss dense and normal
elements in I(8). An ideal I in a 0-distributive semilattice S is called normal
if it is a normal element of I(8), i.e., if I = I**. As a natural consequence of
Theorem 7, we get

THEOREM 8. Any normal ideal in a O-distributive semilattice is the inter-
section of all minimal prime ideals containing it.

Proor. Let I be any normal ideal in a O-distributive semilattice §.
Then I = I**. By Theorem 7,

(I** = N{Mecm:IE M)}
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I* being an ideal of S. As I NI* = {0} C M and M is prime for every
M ¢ m, we obtain I € M, whenever I* & M. Hence

I**=I= N{Mecm:1C M)

The converse of Theorem 8 happens to be true for principal ideals and is
proved in the following

THEOREM 9. A principal ideal of a 0-distributive semilattice is normal if
and only if it is the intersection of all minimal prime ideals containing it.

Proor. In view of Theorem 8, we need to establish one way implication
only. Let

(@l= N{Me€m:(a] < M}.

Then for any a € S, we have
(@)** = ((a]*]* = N {M € m: (a]* ¢ M};
by Theorem 7,
N{Mem:(@*c M} = N{Mecm:(a] €M},
since M is prime and ‘
(0] = (a] N(a]* S M,

and

N{Me€m:(a] C M} = (a],

by assumption. Thus (a]** = (a].

CoroLLARY 10. The intersection of all minimal prime ideals of a 0-distri-
butive semilattice is {0}.

An ideal I in a 0-distributive semilattice S is called dense if I*={0},
i.e., if I is a dense element of I(S).
An interesting property of non-dense ideals in a 0-distributive semilattice
is investigated in the following

THEOREM 11. Any non-dense ideal of a 0-distributive semilattice ¢s contained
tn a minimal prime ideal and the converse is true for principal ideals.

Proor. Let I be any non-dense ideal of a 0-distributive semilattice S.
As I* = {0}, there exists an « 5= 0 in I*. Let this  be contained in the maxi-
mal filter ¥ of 8. As § — F is a minimal prime ideal and I'* €8 — F, we ob-
tain I € § — F by primeness of § — F.
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Now for the second assertion, let the principal ideal (] be contained in
a minimal prime ideal M in 8. As a € M, {a}* & M; see Theorem 4. Hence
(a]* = {a}* < {0}. This proves that (a] is non-dense.

Next we have a rather interesting characterization.

TaeorEM 12. In a 0-distributive semilattice an element belongs to some
minimal prime ideal if and only if it is non-dense.

Proor. Let 8 be a 0-distributive semilattice and x ¢ M, a minimal prime
ideal of 8. By Theorem 1, {x}* & M. Hence {z}* = 0 proving that z is
non-dense. ,

Conversely, let  be a dense element. Then {x}* = 0. If x belongs to
some minimal prime ideal M, then {x} € M and {x}* C M, contradicting
the minimality of M; see Theorem 4. Hence = will not be in any minimal prime
ideal.

As every pseudocomplemented semilattice is 0-distributive, the result
of VENKATANARASIMHAN ([9], Lemma VIII) follows as a corollary to the
following '

THEOREM 13. The subsequent statements are egquivalent in a 0-distributive
semilattice S:

(1) Every prime ideal is minimal prime.

(2) Every prime filter is minimal prime.

(3) Bvery prime filter is maximal.

Proor.

(1) = (2). Let there be a prime filter F that is not minimal. Then there
exists a prime filter F';,  F. But then § — F is contained in § — F,. As F
and F, are prime fitlers, S — F and § — F, are prime ideals in S. Hence, by
assumption, § — F; must be a minimal prime ideal; and it is not the case.
Thus the prime filter F must be a minimal prime filter.

(2) = (3). Let F be a prime filter that is not maxzimal. Since 0 ¢ S, F
must be contained in some maximal filter, say M, in 8. As § is 0-distributive,
M must be a prime filter; see [5]. But then, by assumption, M must be a
minimal prime filter. This is not true as F < M; thus F must be maximal.

(8) = (1). By Corollary 2, if I is a prime ideal in 8 that is not minimal
then I contains a minimal prime ideal, say I,. But then 8 — I < 8 — I,.
Clearly, both § — I and S — I, being prime filters of S must be maximal
by assumption; however it leads to a contradiction.
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Let us have a characterization of minimal prime ideals in the following

THEOREM 14. A prime ideal P is a minimal prime ideal in a 0-distributive
semilattice S if and only if P consists of all elements x € S such that x A\ y = 0
for some y ¢ P.

Proor. Let P be a minimal prime ideal in § and 2 € P. Then by Theorem
3, there exists an element y in {x}* - P. Clearly y A « = 0 and y ¢ P. Next,
suppose that z A x = 0 for some z ¢ P. Then z A x = 0 € P; and primeness
of P leads to the conclusion that z € P. Thus P consists of all elements z ¢ §
such that Ay = 0 for some y ¢ P.

3. Minima! nrime annihilator ideals

As before, let § be a O-distributive semilattice. Denote by B(S) the
set {A*: 0 -« A C S}. As A* is an ideal for any subset 4 of S, we call 4*
to be an annihilator ideal. Thus B(S) is the set of all annihilator ideals in 8.
B(S) is partially ordered by set inclusion and the greatest lower bound is the
set intersection. Anawms [1] showed that B(S) is a Boolean lattice. In an attempt
to characterize minimal prime annihilator ideals, we need the following

Lemma 15. An annihilator ideal A* is a prime ideal in a O-distributive
semilattice S if and only if A* is a dual atom in B(S) )ie., A* C B* -« §
implies that A* — B¥*),

ProoF. Assume that 4* is a prime ideal and A* € B* == S. The last
assumption implies that s A b; s« 0 for some s € S and some nonzero b, € B.
For any b€ B* as b A b, = 0, we get b A b, € A*; this in turn implies that
either b ¢ A* or b, € A*. Since A* < B*, we get b, ¢ A*. Thus b € A* and
we have B* = A* leading to the conclusion that A* is a dual atom of B(S).

Conversely, let 4* be a dual atom in B(S). As A* >« S, there exists an
8 € S such that s A a == 0 for some nonzero a € 4. Again s ¢ {a}* will imply
that {a}* 5« S. Since A* is a dual atom, S -4 {a}* D A* implies that {a}* =
= A*. For any b€ S, as {a A b}* D {a}*, either {a}* = {a AN B}* or
{a ANb}* = 8. If b ¢ {a}*, then {a A b}* = {a}*. For, if {a A b}* = S, then
a € {a A b}* will yield that @ A b = 0; i.e., b € {a}*. To prove that A* = {a}*
is prime, let x A y € {a}* and x ¢ {a}*. Then as {a A z}* = {a}* and as
y€{a Nax}* we get y € {a}*.

Recall that an element z in a semilattice is meet-prime if a A b < x
implies a <{ x or b < «; see SzAsz [T], p. 51. It is well-known that in a Boolean
algebra an element is a dual atom if and only if it is meet-prime; (see [8],
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p- 51). This permits us to characterize prime annihilator ideals in a 0-distri-
butive semilattice as

LemMA 16. In a 0-distributive semilattice an annhilator ideal A* is prime
if and only if A* is a meet-prime element of B(S).

Using the characteristic property of minimal prime ideals in a 0-distri-
butive semilattice '— Theorem 3 — we now prove

LemMMA 17. Every prime annihilator ideal is minimal prime in a 0- distri-
butive semilattice.

Proor. Let an annihilator ideal A* in a 0-distributive semilattice S
be prime. For any « € A*, we have z A @ = Oforeverya € 4. Thatis 4 C {x}*
and hence A C ox}* — A* proving that {x}* — A* 5« @, Thus, by Theorem
8, we get A* to be a minimal prime ideal in S.

Now we state our main result in which we summerize the character-
izations of minimal prime annihilator ideals.

TaEOREM 18. For any nonempty subset A of a 0-distributive semilattice
S the following statements are equivalent:

(1) A* is a dual atom in B(S).

(2) A* is a meet-prime element of B(S).

(8) A* is a minimal prime annihilator ideal.

(4) A* is a prime annihilator ideal.

We noted earlier that B(S) is a Boolean lattice. If B(S) satisfies the
ascending chain condition then B(S) is finite. Thus there will be only finite
number of dual atoms in B(S) when it satisfies the ACC. In accordance with
this observation and Lemma 17, we are led to

Lemma 19. A 0-distributive semilattice S contains a finite family of mini-
mal prime ideals with intersection {0} when B(S) satisfies ACC.

Proor. As B(S) satisfies ACC, there will be only finite number of dual
atoms, say AF, ..., A} (n finite) in B(S). As A} is a dual atom, we get 4] =
= {a;}* for some nonzero a,€ 4,, 4 = 1,...,n; see the proof of Lemma 15.

Let 02z ¢ N Af. As B(S) satisfies ACC, {}* must be contained in some
1
Ay for j < m; see CornisE [2]. Since z € A7 = {a;}*, we havenx Aa;=0.

a; € {x}* C A% implies that @, = 0 and this is impossible. Hence 1 A} = {0}.
1
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As AF (1 <% <n) are minimal prime ideals, the conclusion of the lemma
follows immediately.

Use of Lemma 19 further leads to

THEOREM 20. Let S be a 0-distributive semilattice. If B(S) satisfiesACC
then the set complement of union of dual atoms in B(S) is the set of all dense
elements of S.

Proor. Let AY¥,..., 4% n finite, be the distinct dual atoms of B(S)

n

and let # be any element of § — |J Af. If x A y = 0 for some y = 0, then as
1

{y}* = S, we have {y}* < A} for some j < n. Thus z € {y}* < A} implies

n

that « € [J 4¥; a contradiction. Hence z A ¥ = 0 implies y = 0, i.e., {z}* =
1
= {0}. Therefore S — (J4} < D where D denotes the set of all dense elements
1

n
of S. On the other hand, if x € |J 4}, then x € A7 for some j < n. Denote
1

AF A (N4 ={zANy:x€d], yeN4]).
i] i#]
Clearly
n
AN4Apn N4
1

1#1
n
But as N 4} = {0}, (see Lemma 19), we get
1
A7 AN 4f = {0}.
itf
Therefore, there must exist some y = 0 in [} A} such that y A = 0. Hence
i#]
n n
{x}* s« {0}. Thus no element of |J 4] is dense. Therefore, D < 8 — |J A}
1 1

and we are through.

*
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