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1 .  I n t r o d u c t i o n  

L e t  S be a meet-semilat t ice .  A n o n e m p t y  subset  I of  S will be called an 
ideal i f  

(i) x ~ y i n S a n d y E I i m p l y x E I ,  and  
(ii) if  the  join of  a n y  finite n u m b e r  of  e lements  of  I exists in S then  

it  mus t  be in I .  
This defini t ion of  an ideal in a meet-semilat t ice  is to be found in VEN- 

KATANARASIlVrgAN [8]. A filter F of  S is ~ n o n e m p t y  subset  of S such t ha t  
a, b E F is equiva len t  to a A b E F .  A proper  ideal I of  S is c d l e d  prime if  
a A b E I implies a E I or b E I .  A proper  ideal (filter) ~ f S  which is no t  conta ined  
in any  o ther  p roper  ideal (filter) of  S is called a maximal  ideal (filter). A minimal  
e lement  in the  set of  all pr ime ideals of  S is c~lled ~ min imal  pr ime ideal. 
A p roper  f i l ter  F is c~lled pr ime p rov ided  tha t ,  whenever  for any  finite subset  
A of  S, V A exists and  is in F ,  then  a E F for some a E A. A semilat t ice S wi th  0 
is called 0-dis t r ibut ive  if  

a A x l  : a A x2  . . . . .  a A x, ,  ~ 0 

for  x 1 . . . . .  x n (n finite) in S imply  

a A ( x l  V . .  • V x ~ )  ~ 0 ,  

whenever  x 1 V • • , V xn exists  in S. 
The  au thors  [5] earl ier  s tudied  such semilat t ices for  ; the case n ~ 2. 

All the  resul ts  ob ta ined  the re  are invar iab ly  val id for the 0-dis tr ibut ive semi- 
lat t ices in t roduced  here. 

The  concept  of  minimal  pr ime ideals was pu t  to advan tage  by  KIST [4] 
while invest igat ing c o m m u t a t i v e  semigroups.  The  purpose  of  this paper  is 
to ob ta in  some proper t ies  of  minimal  pr ime ideals in 0-dis tr ibut ive semilattices. 
The  s t u d y  t h a t  we shall ca r ry  out  will, in m a n y  ways, be dis t inct  f rom t h a t  
of  KIST [4] Our s t u d y  has resul ted in ex tending  the  findings of  SPEED [6], 

A M S  (MOS) subject classi]ications (1970). P r imary  06A20, 06A35; Secondary 
06A25, 06A30. 
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and Vv.~HATA~J~ASI~r~Aw [9], [10]. We also s tudy special types of  minimal 
prime ideals the motivation of  which stems from the investigations carried 
out  by  CoR~r~sH and ST~.WART [3]. 

2. Minimal prime ideals 

We begin this section with a characterization of  minimal prime ideals 
in a 0-distributive semilattice in terms of maximal filters. I t  also provides 
us with a useful tool for establishing properties of minimal prime ideals. We 
use in its proof a characterization of 0-distributive semilattices obtained 
earlier by  the authors ([5], Theorem 5). 

T~OB~.M 1. Let S be a O-distributive semilattice. A subset M of S is a 
minimal prime ideal if and only if its set complement S -- M is a maximal 
filter. 

PROOF. Let  M be a minimal prime ideal of S. As the set complement of a 
prime ideal is a proper filter in a semilattice, we get S -- M to be a proper 
filter in S. I f  S -- M is not  a maximal filter, then it must be contained in some 
maximal filter, say F,  in S. By  0-distributivity of S (see PAWA~ and THAKtLR~. 
[5]), F is prime. This makes S -- F to be a prime ideal contained in M. I t  
then contradicts the minimality of M and hence S -- M must be a maximal 
filter. 

Conversely, let S -- M be a maximal filters in S. As S is 0-distributive, 
S -- M is a prime filter; see [5]. Thus M is a prime ideal. To prove the mini- 
mality of M, assume to the contrary.  I f  a prime ideal Q is contained in M, 
the filter S -- Q properly contains S - M and it is against our assumption. 

Our next  result is an immediate consequence of Theorem 1. 

COrOLLarY 2. In  a O-distributive semilattiee every prime ideal contains a 
minimal prime ideal. 

P~ooF. Let  P be a prime ideal in a 0-distributive semilattice S. As 
S -- P is a proper fitler of S and 0 E S, S -- P must be contained in some 
maximal filter, say F,  in S. Then S -- F is the minimal prime ideal contained 
in P and we are done, 

Theorem 1 is also used to prove the following equivalent proper ty  for 
prime ideal to be a minimal prime. For any nonempty subset A of  S,  
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A* ~ {x E S  : x  A a ~ 0, for  all  a E A}, 

the  set  o f  all dis joint  e lements  of  A in S. 

THEOREM 3. A prime ideal M in a O-distributive semilattice S is minimal 
prime ~f and only if  {x}* -- M J: ~ /or any x E M. 

PaooF .  L e t  M be a min ima l  p r ime  ideal and  x be a n y  e lement  in M.  
B y  T h e o r e m  1, S - M is a m a x i m a l  fi l ter;  a n d  as x q S -  M there  exis ts  
(see [5]) an  e l emen t  y in S - -  M such t h a t  x A Y ~ 0. Thus  y E {x}* - -  M,  
p rov ing  t h a t  {x}* M J= 0. 

Conversely ,  let  a p r ime  ideal M sa t i s fy  the  given condit ion.  Consider 
a n y  e l emen t  which is no t  in S - M.  Then  x E M and  hence {x}* - -  M :/= ~, 
b y  as sumpt ion .  Thus  there  eixsts  y E {x}* such t h a t  y ([ M.  Hence ,  we ge t  
for  a n y  x no t  in S M an  e l emen t  y in S M such t h a t  x A Y = 0. B y  a 
resul t  o f  PAWA~ and  THAX~a~E [5], we conclude t h a t  S M is a m a x i m a l  
fi l ter.  An appea l  to T h e o r e m  1 now leads to the  min imal  p r imeness  of  M.  

The  preceding  theorem,  in turn ,  pe rmi t s  us to s t a t e  the  following 

TH~OI~EM 4. A prime ideal M is a minimal prime ideal in a O-distributive 
semilattice S if  and only if it contains precisely one of {x}, {x}* for every x E S. 

PROOF. L e t  M be a min ima l  p r ime  ideal in S. I f  x E M then  b y  T h e o r e m  
3, {x}* M =z~ 9. Hence  we ob ta in  {x}* ~: M.  Suppose  t h a t  {x}* _c M.  
Then  x E M will yield t h a t  x (~ S - M.  As S - -  M is a m a x i m a l  fil ter,  the re  
exis ts  a y in S M such t h a t  x A Y ~ 0; see [5]. Thus  y E {x}* a n d y  (~ M,  
con t r ad ic t ing  our  a s sumpt ion  {x}* c M.  H e n c e  in this case x q M.  This  com- 
ple tes  the  p r o o f  of  "on ly  i f "  pa r t .  

Conversely,  let  a p r ime  ideal M conta in  precisely one of  {x}, {x}* for  
a n y  x E S. Consider  a n y  e l emen t  y no t  in S -  M.  Then  y E M gives t h a t  
{y}* ~= M.  Hence  there  exis ts  z in {y}* such t h a t  z q M.  Thus  we ge t  t h a t  
for  a n y  y no t  in S - -  M,  there  is z E S - -  M such t h a t  y A z -~ 0; and  we 
are  led to  the  m a x i m u l i t y  of  the  f i l ter  S - M on account  o f  [5]. Since S is 
0-dis t r ibut ive ,  we get  M to be a min imal  p r ime  ideal b y  T h e o r e m  1. 

COROIZ, A~Y 5. I f  M is a minimal prime ideal in a O-distributive semilattice 
S and x is an element of M, then {x}** ~ M.  

PROOF. As M is a min ima l  p r ime  ideal and  x E M,  the re  is an  e l emen t  
Y E S - M such t h a t  x A Y : 0 b y  T h e o r e m  4. I f  {x}** ~ M,  there  would  
be an e l emen t  z in (x}** wi th  z ~ M. Then,  since S - -  M is a m a x i m a l  f i l ter  

5* 
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(see Theorem 1), y A z E S --  M. B u t  as y E {x}* and  z E {x}** we get  
Y A z = 0. Thus  0 E S - -  M, cont radic t ing  the  max ima l i t y  of  S -- M. Hence  
{x}** must  be  conta ined in M, where x E M. 

i t  follows immedia te ly  f rom Theorem 4 and  Theorem 1 t h a t  

CO~OL~R¥ 6. A filter ~' in a O-distributive semilattice S is maximal i f  
and only if  F contains precisely one of {x}, {x}* for every x E S. 

We know t h a t  I*  is the  pseudocomplement  of  an ideal I in the  ideal 
at l t ice I(S) when S is a 0-dis t r ibut ive  semilat t ice;  see [5]. Fu r the r ,  we have  

THEOR~.M 7. In  a O-distributive semilattice S the pseudocomplement of 
any ideal I is the intersection of all minimal prime ideals not containing I. 

PRooF. Recal l  t h a t  P is a pr ime ideal in a semilat t ice S if and  only  if  for 
any  two i d e a l s A  a n d B o f S ,  9=/=A N B c P i m p l i e s A  _ P e r  B c P .  As 
I N I*  = {0} ___ M for any  minimal  pr ime ideal M, we get  I*  ~ M when 
1 ___ M. Therefore  I*  _ n {M E 11t : I ~ M} where m denotes  the  set of  all 
minimal  pr ime ideals of  S. I f  I*  c N {M E m: I ~ M},  then  there  exists  
x E  f l { M E m : I ~  M} such t h a t  x (~ I* .  Hence  for some y E I ,  x A y ~ 0 .  
B u t  as x A Y ~ 0, x A Y mus t  be conta ined  in some maximal  filter,  say  F ,  
of  S. Hence  y (~ S --  F ,  and  we infer t h a t  I ~ S --  E.  As S --  F is a minimal  
pr ime ideal (see Theorem 1) of  S, we obta in  

N { M E m : I  ~ - M }  c S - -  F. 

Therefore  x E 8 --  F ,  a cont rad ic t ion  to the  fac t  x E F .  Thus  we mus t  have  

N {MEm:Z $ M} =I*.  

As ment ioned  earlier the  ideal la t t ice  I(S) of  a 0-dis tr ibut ive semilat t ice 
S is pseudocomplemented ,  i t  will be interes t ing to  discuss dense and  normal  
e lements  in I(S). An ideal I in a 0-dis tr ibut ive semilat t ice S is called normal 
if  it is a normal  e lement  of  I(S), i.e., if  I = I**.  As a na tu ra l  consequence of  
~?heorem 7, we get  

T~EORE~ 8. Any  normal ideal in a O-distributive semilattice is the inter- 
section of all minimal prime ideals containing it. 

PROOF. L e t  I be a n y  normal  ideal in a 0-dis t r ibut ive semilat t ice S. 
Then  I = I**.  B y  Theo rem 7, 

(I*)* = fl { M E m - I  q: M}, 
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I*  being an ideal of S. As I I'1I* = {0} c M  and M is prime for every 
M E m, we obtain I c M, whenever I*  ~ M. Hence 

I** = I =  A { M E m : I c M } .  

The converse of Theorem 8 happens to be true for principal ideals and is 
proved in the following 

THEO]aEM 9. A principal ideal o/ a O-distributive semilattice is normal if 
and only if it is the intersection of all minimal prime ideals containing it. 

PgOOF. In view of Theorem 8, we need to establish one way implication 
only. Let  

(a] = A { M E m : ( a ]  ~ M } .  

Then for any a E S, we have 

(a]** = ((a]*]* = A (M E m: (a]* ¢ M}; 

by  Theorem 7, 

n {M E m: (a]* M} = n {M E (a] M}, 

since M is prime and 

and 

( 0 ] = ( a ]  n ( a ] *  c M ,  

n ( M E m : ( a ]  c M }  = ( a ] ,  

by assumption. Thus (a]** = (a]. 

COROLL4~¥ 10. The intersection of all minimal prime ideals of a O-distri- 
butive semilattice is {0}. 

An ideal I in a 0-distributive semilattice S is called dense if I * = { 0 } ,  
i.e., if  I is a dense element of I(S). 

An interesting proper ty  of  non-dense ideals in a 0-distributive semilattico 
is investigated in the following 

T~OREM 11. A n y  non-dense ideal of a O-distributive semilattice is contained 
in a minimal prime ideal and the converse is true for principal ideals. 

P~ooF. Let  I be any non-dense ideal of a 0-distributive semilattice S. 
As I*  =~ {0}, there exists an x =~ 0 in I*.  Let  this x be contained in the maxi- 
mal filter F of S. As S - F is a minimal prime ideal and I* g; S -- F,  we ob- 
tain I ~ S -  F by primeness of  S -- F.  
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Now for the  second assertion, let  the  principal  ideal (a] be conta ined  in 
a minimal  p r ime  ideal M in S. As a E M, {a}* q: M; see Theorem 4. Hence  
(a]* ---- {a}* --/: {0}. This proves  t ha t  (a] is non-dense.  

N e x t  we have  a r a the r  interest ing character izat ion.  

TTrEOI~EM 12. In  a O-distributive semilattice an element belongs to some 
minimal prime ideal if and only if it is non-dense. 

I ~ o o F .  L e t  S be a 0-dis t r ibut ive semilat t ice and  x C M, a minimal pr ime 
ideal of  S. B y  Theorem 1, (x}* ~ M. Hence  (x}* ~= 0 proving t h a t  x is 
non -dense. 

Conversely,  let  x b e  a dense element .  Then  (x}* ---- 0. I f  x belongs to 
some minimal  pr ime ideal M, then  (x} _ M and  (x}* ~ M, cont rad ic t ing  
the min imal i ty  of  M;  see Theorem 4. Hence  x will no t  be in an y  minimal  pr ime 
ideal. 

As every  pseudocomplemented  semilat t ice is 0-distributive,  t h e  resul t  
of  VEN~TANARAS~H~N ([9], L e m m a  VII I )  follows as a corol lary to  the  
following 

T~v.OREM 13. The subsequent statements are equivalent in a O-distributive 
semilattice S: 

(1) Every prime ideal is minimal prime. 
(2) Every prime filter is minimal prime. 
(3) Every prime filter is maximal. 

PROOF. 
(1) ~ (2). L e t  there  be a pr ime f i l ter  F t h a t  is not  minimal.  Then  there  

exists a pr ime f i l ter  F i c E .  Bu t  t hen  S --  F is conta ined in S --  F i. As _F 
and  F i are pr ime fitlers, S F and  S --  F i are pr ime ideals in S. Hence,  b y  
assumption,  S F i mus t  be a minimal  pr ime ideal; and  it  is not  the  case. 
Thus  the  pr ime f i l ter  F must  be a minimal  pr ime filter.  

(2) ~ (3). L e t  F be a pr ime f i l ter  t h a t  is no t  maximal .  Since 0 E S, F 
mus t  be conta ined  in some maximal  filter,  say  M, in S. As S is 0-distr ibutive,  
M mus t  be a pr ime fi l ter;  see [5]. B u t  then,  b y  assumption,  M must  be a 
minimal  pr ime fi l ter .  This is no t  t rue  as F ~ M;  thus  F must  be maximal .  

(3) ~ (1). B y  Corollary 2, if  I is a p r ime  ideal in S t h a t  is no t  minimal  
then  I contains a minimal  pr ime ideal, say  I r B u t  t hen  S --  I c S --  I 1. 
Clearly, bo th  S --  I and  S --  I i being pr ime fil ters of  S must  be max ima l  
by  assumption;  however  it  leads to  a contradict ion.  
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Le t  us have  a charac ter iza t ion  of  minimal  pr ime ideals in the following 

THEOREM 14. A prime ideal P is a min imal  prime ideal in  a O-distributive 
semilattice S i f  and only if  P consists of all elements x E S such that x A y : 0 
for some y ~ P.  

PROOF. Le t  P be a minimal  p rhne  ideal in S and  x E P.  Then  by  Theorem 
3, there  exists an e lement  y in {x}* P.  Clearly y A x --  0 and  y ~ P.  Next ,  
suppose t h a t  z A x ~- 0 for some x ~ P .  Then  z A x = 0 E P ;  and  primeness 
of  P leads to  the conclusion t ha t  z E P.  Thus  P consists of  all e lements  x E S 
such t ha t  x A y ~ = 0  for some y C P .  

3. Minimal prime annihilator ideals 

As before,  let  S be a 0-dis t r ibut ive semilattice. Denote  by  ~(S)  the  
set {A* : ~ ~ A c S}. As A* is an ideal for  any  subset A of  S, we call A* 
to be an annihi la tor  ideal. Thus  ~(S)  is the  set of  all annihi la tor  ideals in S. 
~ (S)  is par t i a l ly  ordered  by  set inclusion and  the greates t  lower bound  is the 
set intersection.  ADAMS [1 ] showed t ha t  ~ (S)  is a Boolean lattice. In  an a t t e m p t  
to character ize  minimal  pr ime :~onnihilator ideals, we need the following 

LE~nVlA 15. A n  annihilator ideal A*  is a prime ideal in a O-distributive 
semilattice S i f  and only i f  A*  is a dual  atom in ~3(S) )i.e., A*  c B* ~- S 
implies that A*  = B*). 

PI~OOS. Assume tha t  A* is a pr ime ideal and A* ___ B* ~ S. The last  
assumpt ion  implies t ha t  s / k  bt ~ 0 for  some s E S and some nonzero b 1 E B. 
Fo r  a ny  b E B* as b/k bt = 0, we get  b A b~ E A*; this in tu rn  implies t h a t  
e i ther  b E A* or b 1 E A*. Since A* ___ B*, we get  b 1(~ A*. Thus  b E A* and  
we have  B* = A* leading to the  conclusion t h a t  A* is a dual  a tom of  !D(S). 

Conversely,  let  A* be a dual  a tom in !D(S). As A* J= S, there  exists an 
8 E S such t ha t  s / k  a ~ 0 for some nonzero a E A. Again s q {a}* will imply  
t h a t  {a}* J :  S. Since A* is a dual  a tom,  S ~ {a}* ___ A* implies t h a t  {a}* = 
--~A*. F o r  a ny  b E S ,  as { a A b } *  ~ {a}*, e i ther  { a } * =  { a A b } *  or 
{a/~ b}* = S. I f  b ~ {a}*, then  {a A b}* = {a}*. For,  if  {a A b}* = S, then  
a E {a /k  b}* will yield t ha t  a A b = 0; i.e., b E {a}*. To prove  t h a t  A* = {a}* 
is prime, let  x A Y E { a } *  and x q { a } * .  Then  as {a A x}* ---- {a}* and  as 
Y E {a A x}*, we get  y E {a}*. 

l~ecall t h a t  an e lement  x in a semilat t ice  is meet-pr ime if  a A b ~ x 
implies a ~ x or b ~ x; see SzAsz [7], p. 51. I t  is well-known tha t  in a Boolean 
algebra an e lement  is a dua l  a tom if and  on ly  if it is meet-pr ime;  (see [8], 
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p. 51). This permi ts  us t() character ize  pr ime annihi la tor  ideals in a 0-distri- 

bu t ive  semilat t ice as 

LEMMA 16. In  a O-distributive semilattice an annhilator ideal A* is prime 
if and only if A* is a meet-prime element of ~(S). 

Using the  character is t ic  p rope r ty  of  minimal  pr ime ideals in a 0-distri-  
bu t ive  semilat t ice ' - -  Theorem 3 - we now prove  

L v , ~ A  17. Every prime annihilator ideal is minimal prime in a O- distri- 
butive semilattiee. 

PROOF. L e t  an annihi la tor  ideal A* in a 0-dis t r ibut ive semilat t ice 2 
be prime. F o r  a ny  x E A*, we have  x A a = 0 for ev e ry  a E A. T h a t  is A c (x}* 
and  hence A c_ cx}* -- A* proving t h a t  (x}* -- A* ~: fJ. Thus,  b y  T h e o r e m  
3, we get  A* to be a minimal  pr ime ideal in S. 

Now we ste+te our  main result  in which we summerize  the  charac ter -  
izations of  minimal  pr ime annihi la tor  ideals. 

S the 
T~rV, OR~M 18. For any nonempty subset A of a O-distributive semilattice 
following statements are equivalent: 
(1) A* is a dual atom in !~(S). 
(2) A* is a meet-prime element of !~(S). 
(3) A* is a minimal prime annihilator ideal. 
(4) A* is a prime annihilator ideal. 

We no ted  earlier t ha t  !~(S) is a Boolean latt ice.  I f  !~(S) satisfies the  
ascending chain condit ion then  !~(S) is finite. Thus  there  wiU be only  f ini te  
n u m b e r  of  dual  a toms in !~(S) when it  satisfies the  ACC. In  accordance  wi th  
this  observat ion and L e m m a  17, we are led to 

L v . ~ A  19. A O-distributive semilattice S contains a finite family of mini- 
real prime ideals with intersection {0} when ~(S) s~tisfies AGC. 

PROOF. As ~ (S)  satisfies ACC, there  will be only  f inite n u m b er  of  dua l  
atoms,  say  A~ . . . . .  A* (n finite) in !~(S). As A* is a dual  a tom,  we get  A~ = 
= {al}* for  some nonzero  a i E Ai, i = 1 . . . . .  n; see the  p roo f  of  L e m m a  15. 

/2 

L e t  0 =~-x E f'l A~. As !~(S) satisfies ACC, {x}* must  be conta ined  in some 
1 

A~ for j ~ n; see CO~NISH [2]. Since x C A~ = {al}*, we have  x A a i = O. 
12 

a i E {x}* _ A~ implies t h a t  a i = 0 and  this is impossible. Hence  N A~ {0}. 
1 
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As A* (1 ~ i ~ n) are minimal prime ideals, the conclusion of the lemma 
follows immediately. 

Use of Lemma 19 further leads to 

THEOREM 20. Let S be a O-distributive semilattice. I /  !~(S) sati~fie.sACC 
then the set complement of union of dual atoms in ~3(S) is the set of all dense 
elements of S. 

PROOF. Let  A* . . . . .  A* n finite, be the distinct dual atoms of !~(S) 
n 

and let x be any element of S -- U At.  I f  x A Y = 0 for some y v~ 0, then as 
1 

{y}* ~= S, we have {y}* _c A~ for some j ~ n. Thus x E {y}* c A] implies 
n 

tha t  x E U A~; a contradiction. Hence x A y = 0 implies y = 0, i.e., {x}* = 
1 

= {0}. Therefore S -- UAI g D where D denotes the set of all dense elements 
1 

of S. On the other hand, if x E ~J A*, then x E A] for some ~ ~ n. Denote 
1 

A] A (n A,.*) = { x A y : x E A ] , y E A A t } .  
i~] iCj 

Clearly 
7l 

A~ ^ (NAD c N A* 
~ j  1 

/2 

But as A A t  = {0), (see Lemma 19), we get 
1 

A~ A N At = (0}. 

There fore ,  t h e r e  m u s t  e x i s t  s o m e  y =/: 0 in N A *  s u c h  t h a t  y A x = 0. H e n c e  

12 n 

(x}* ¢ (0}. Thus no element of U At  is dense. Therefore, D c_ S -- U At  
1 1 

and we are through. 
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