PACKING CIRCUITS IN EULERIAN DIGRAPHS

P. D. SEYMOUR

Received March 29, 1994 Revised December, 1994

Let G be an eulerian digraph; let $\nu(G)$ be the maximum number of pairwise edge-disjoint directed circuits of G, and $\tau(G)$ the smallest size of a set of edges that meets all directed circuits of G. Borobia, Nutov and Penn showed that $\nu(G)$ need not be equal to $\tau(G)$. We show that $\nu(G) = \tau(G)$ provided that G has a "linkless" embedding in 3-space, or equivalently, if no minor of G can be converted to K_6 by $\Delta - Y$ and $Y - \Delta$ operations.

1. Introduction

Let G be a directed graph (briefly, a *digraph*; all graphs in this paper are finite, and may have loops or multiple edges). Let $\nu(G)$ be the maximum cardinality of a set of mutually edge-disjoint directed circuits of G, and let $\tau(G)$ be the minimum cardinality of a set of edges that meets every directed circuit of G. Clearly $\nu(G) \leq \tau(G)$, and for planar digraphs the Lucchesi-Younger theorem [2, 3] implies that $\nu(G) = \tau(G)$, but equality need not hold in general. For instance, let G_0 be the digraph with vertex set $\{a_1, a_2, a_3, b_1, b_2, b_3\}$ and edge set

 $\{(b_i, a_i) : 1 \le i \le 3\} \cup \{(a_i, b_j) : i, j \in \{1, 2, 3\}, i \ne j\};\$

then $\nu(G) = 1$ and $\tau(G) = 2$. Since the undirected graph underlying G_0 is just $K_{3,3}$, this suggests that abandoning planarity was a mistake if we want $\nu(G) = \tau(G)$.

For eulerian digraphs, the situation seems not so bad. (A digraph is *eulerian* if for every vertex v, its invalency equals its outvalency.) In an eulerian digraph, if $\{C_1, \ldots, C_k\}$ is a maximal set of edge-disjoint directed circuits, then every edge belongs to one of C_1, \ldots, C_k ; and this nice fact leads one to hope that perhaps there are deeper nice things to be discovered.

It is not always true that $\nu(G) = \tau(G)$ for eulerian digraphs, however. Borobia, Nutov and Penn [1] gave the following example: let G_0 be as before, and add to it a new vertex c, and six new edges

$$\{(c, a_i) : 1 \le i \le 3\} \cup \{(b_i, c) : 1 \le i \le 3\},\$$

Mathematics Subject Classification (1991): 05 C 20, 05 C 70, 05 C 38

forming an eulerian digraph G_1 say. Then $\nu(G_1) = 4$, but there are nine directed circuits using every edge twice, and so $\tau(G_1) > 4$ (in fact $\tau(G_1) = 5$).

The undirected graph underlying G_1 belongs to the "Petersen family", the seven graphs that can be obtained from K_6 by $\Delta - Y$ and $Y - \Delta$ exchanges; see Figure 1.

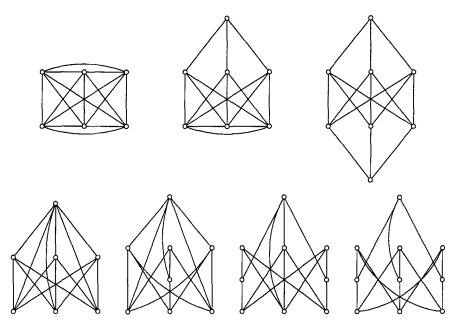


Fig. 1. The Petersen family

We say H is a *minor* of G if H can be obtained from a subgraph of G by contracting edges. In [4] we showed that every graph with no minor in the Petersen family can be embedded in 3-space so that every circuit bounds a disc disjoint from the remainder of the graph; and the example G_1 suggests that perhaps $\nu(G) = \tau(G)$ for every eulerian digraph that admits such an embedding. This turns out to be true, as we shall see. Consequently, we have

(1.1) Let G be an eulerian digraph, such that its underlying undirected graph has no minor in the Petersen family. Then $\nu(G) = \tau(G)$.

The proof of (1.1) is perhaps of more interest than the theorem. It seems remarkable that, for digraphs embedded in 3-space as above, one can define a notion of "uncrossing" directed circuits, analogous to Lovász's method [2] of uncrossing directed cuts to prove the Lucchesi–Younger theorem.

2. Panelled frames

We denote the unit 3-sphere by S^3 . (Throughout, we assume that all embeddings and all subspaces considered are tame.) For $X \subseteq S^3$, its topological closure is denoted by \overline{X} . A line in S^3 is a subset homeomorphic to the closed unit interval, and its ends are defined in the natural way; a *circle* in S^3 is a subset homeomorphic to the unit circle; and a *disc* in S^3 is homeomorphic to $\{(z,y): x^2+y^2 \leq 1\}$. A *frame* is a pair (U,V), where

- (i) $U \subseteq S^3$ is closed, and $V \subseteq U$ is finite
- (ii) U-V has only finitely many arc-wise connected components, called *edges*, and
- (iii) for each edge e, either \overline{e} is a circle with $|\overline{e} \cap V| = 1$, or \overline{e} is a line and $\overline{e} \cap V$ consists of its ends.

We call V the set of vertices of the frame. Thus, a frame is a graph embedded in S^3 in the natural way. If Γ is a frame, we write $U(\Gamma) = U$ and $V(\Gamma) = V$, and denote its set of edges by $E(\Gamma)$.

Let Γ be a frame, and let C be a circuit of Γ . (Circuits in this paper have no "repeated" vertices or edges.) A *panel* for C is a disc $\Delta \subseteq S^3$ such that $\Delta \cap U(\Gamma) = \operatorname{bd}(\Delta) = U(C)$. A frame Γ is *panelled* if there is a panel for every circuit of Γ . Now we can state the theorem of [4] more precisely:

(2.1) For any graph G, there is a panelled frame isomorphic to G if and only if G has no minor in the Petersen family.

Therefore, to prove (1.1) it suffices to show that $\nu(\Gamma) = \tau(\Gamma)$ for every eulerian directed panelled frame.

Let G be a digraph. A roll in G is a family $(C_i:i \in I)$ of directed circuits of G, and its length is $\sum (|E(C_i)|:i \in I)$. A roll $(C_i:i \in I)$ dominates a roll $(D_j:j \in J)$ if for every edge e of G,

$$|\{i \in I : e \in E(C_i)\}| \ge |\{j \in J : e \in E(D_j)\}|$$

(This implies that the first roll has length at least that of the second.)

Let us say two directed circuits C_1 , C_2 of a digraph G are *parallel* if the common vertices of C_1 and C_2 appear in the same cyclic order in C_1 and in C_2 . We need the following lemma.

(2.2) Let C_1 , C_2 be directed circuits of a digraph G. Suppose that the roll $\{C_1, C_2\}$ dominates no roll of cardinality 2 of strictly smaller length. Then C_1 , C_2 are parallel.

Proof. Suppose that C_1 , C_2 are not parallel. Then there are distinct vertices $x, y, z \in V(C_1 \cap C_2)$ which occur in the order x, y, z in C_1 and in the order x, z, y in C_2 . Let C_z be a directed circuit in the union of the path of C_1 from x to y and the path of C_2 from y to x; and define C_y, C_x similarly. Then $\{C_1, C_2\}$ dominates

P. D. SEYMOUR

 $\{C_x, C_y, C_z\}$, and hence $\{C_x, C_y\}$, and since $E(C_z) \neq \emptyset$ it follows that $\{C_x, C_y\}$ has length strictly less than that of $\{C_1, C_2\}$, a contradiction. The result follows.

Let Γ be a directed panelled frame. If $\Delta_1, \ldots, \Delta_k$ are panels for circuits of Γ , we say they are mutually *laminar* if $\Delta_i \cap \Delta_j = \operatorname{bd}(\Delta_i) \cap \operatorname{bd}(\Delta_j)$ for $1 \leq i < j \leq k$.

The main result of this section is the following.

(2.3) Let Γ be a directed panelled frame, and let $(C_i : i \in I)$ be a roll in Γ . Then there is a roll $(C'_i : i \in I)$ dominated by $(C_i : i \in I)$, and for each $i \in I$ a panel Δ_i for C'_i so that $(\Delta_i : i \in I)$ are mutually laminar.

Proof. We proceed by induction on the length of $(C_i:i \in I)$. We may assume that $I = \{1, \ldots, k\}$ where $k \ge 1$. From the inductive hypothesis applied to $(C_i:2 \le i \le k)$, the latter dominates a roll $(C'_i:2 \le i \le k)$ such that for $2 \le i \le k$ there is a panel Δ_i for C'_i with $\Delta_2, \ldots, \Delta_k$ mutually laminar. Thus (C_1, C_2, \ldots, C_k) dominates $(C_1, C'_2, \ldots, C'_k)$, and therefore if the conclusion of the theorem holds for (C_1, C_2, \ldots, C'_k) , then it holds for (C_1, C_2, \ldots, C_k) . Consequently, by replacing (C_1, C_2, \ldots, C_k) by $(C_1, C'_2, \ldots, C'_k)$, we may assume that for $2 \le i \le k$ there is a panel Δ_i for C_i such that $\Delta_2, \ldots, \Delta_k$ are mutually laminar. Moreover, from (2.2) and the inductive hypothesis, we may assume that C_1, C_i are parallel for $2 \le i \le k$.

Choose a panel Δ_1 for C_1 , so that for $2 \le i \le k$ C_1 and C_i are in "general position". This means that for every point x of $(\Delta_1 - \operatorname{bd}(\Delta_1)) \cap (\Delta_i - \operatorname{bd}(\Delta_i))$ there is a ball $B \subseteq S^3$ with x in its interior, so that $(B, B \cap \Delta_1, B \cap \Delta_i, x)$ is homeomorphic to

$$(\{(x, y, z) : x^2 + y^2 + z^2 \le 1\}, \{(x, 0, z) : x^2 + z^2 \le 1\}, \{(0, y, z) : y^2 + z^2 \le 1\}, (0, 0, 0)).$$

For such a set $\{\Delta_1, \ldots, \Delta_k\}$, we define $\mathscr{L}(\Delta_1, \ldots, \Delta_k)$ to be the set of all arc-wise connected components of

$$(\Delta_1 - \operatorname{bd} (\Delta_1)) \cap \bigcup_{2 \le i \le k} (\Delta_i - \operatorname{bd} (\Delta_i)).$$

Then (compare [4, Theorem (2.2)]), since the sets $\Delta_i - \operatorname{bd}(\Delta_i)$ $(2 \leq i \leq k)$ are mutually disjoint, we have

(1) $\mathcal{L}(\Delta_1,...,\Delta_k)$ is finite, and for each $L \in \mathcal{L}(\Delta_1,...,\Delta_k)$, either

(i) \overline{L} is a line with ends $u, v \in bd(\Delta_1)$, and $L = \overline{L} - \{u, v\}$, or

(ii) L is a circle with one point v in $bd(\Delta_1)$, and $L = \overline{L} - \{v\}$, or

(iii) $L = \overline{L}$ is a circle disjoint from $bd(\Delta_1)$.

We denote the cardinality of $\mathscr{L}(\Delta_1,...,\Delta_k)$ by $\lambda(\Delta_1,...,\Delta_k)$. If this is zero, then $\Delta_1, ..., \Delta_k$ are mutually laminar and the proof is complete. We thus may assume that $\lambda(\Delta_1,...,\Delta_k) > 0$, and we proceed by induction on $\lambda(\Delta_1,...,\Delta_k)$.

If there exists $L \in \mathscr{L}(\Delta_1, \ldots, \Delta_k)$ satisfying (1)(ii) or (1)(iii), then as in the proof of [4, Theorem (2.3)], we may replace Δ_i for some i > 1, say Δ_2 , with a new panel Δ'_2 , so that Δ'_2 , Δ_3 , ..., Δ_k are mutually laminar, Δ_1 , Δ_2 are in general position, and

$$\lambda(\Delta_1,\Delta_2',\Delta_3,\ldots,\Delta_k) < \lambda(\Delta_1,\Delta_2,\ldots,\Delta_k),$$

and the result follows from the second inductive hypothesis. We may therefore assume that every $L \in \mathscr{L}(\Delta_1, \ldots, \Delta_k)$ satisfies (1)(i).

For each $L \in \mathscr{L}(\Delta_1, ..., \Delta_k)$ there are therefore two discs $D \subseteq \Delta_1$ such that $\operatorname{bd}(D) - \operatorname{bd}(\Delta_1) = L$. Since $\mathscr{L}(\Delta_1, ..., \Delta_k) \neq \emptyset$, we may choose $L_1 \in \mathscr{L}(\Delta_1, ..., \Delta_k)$ and one of its two discs D_1 , so that D_1 is minimal. Let L_1 have ends u, v. Since L_1 is arc-wise connected, there exists i with $2 \leq i \leq k$ such that $L_1 \subseteq \Delta_i - \operatorname{bd}(\Delta_i)$, say i = 2. Thus $\overline{L}_1 \subseteq \Delta_2$. For i = 1, 2, let the directed path of C_i from u to v be P_i , and let the directed path of C_i from v to u be Q_i . Since C_1, C_2 are parallel, it follows that

$$V(P_1 \cap Q_2) = V(P_2 \cap Q_1) = \{u, v\}$$

and hence $P_2 \cup Q_1 = C'_1$ and $P_1 \cup Q_2 = C'_2$ are both directed circuits of Γ . The roll $(C'_1, C'_2, C_3, \ldots, C_k)$ is dominated by (C_1, \ldots, C_k) , and therefore the result will follow from the second inductive hypothesis if we can find appropriate panels for this roll with λ reduced. That is therefore the objective of the remainder of the proof.

From the minimality of D_1 , and since every $L \in \mathscr{L}(\Delta_1, \ldots, \Delta_k)$ satisfies (1)(i), it follows that $D_1 \cap (\Delta_2 \cup \ldots \cup \Delta_k) \subseteq \operatorname{bd}(D_1)$. Let Δ'_2 be the union of D_1 and the disc in Δ_2 bounded by $L \cup U(Q_2)$; then Δ'_2 is a panel for C'_2 . Moreover, Δ'_2 , Δ_3 , \ldots , Δ_k are mutually laminar. (Note that L_1 is disjoint from Δ_3 , \ldots , Δ_k since $L_1 \subseteq \Delta_2 - \operatorname{bd}(\Delta_2)$.)

Among all $L \in \mathscr{L}(\Delta_1, \Delta_2, ..., \Delta_k)$ with ends u, v such that $L \subseteq \Delta_2 - \mathrm{bd}(\Delta_2)$, choose one, L_2 say, so that the disc D_2 in Δ_2 bounded by $L_2 \cup U(P_2)$ is minimal. (Possibly $L_2 = L_1$.)

We claim that $D_2 \cap \Delta_1 \subseteq \operatorname{bd}(D_2)$. For suppose not; then there is a component L of $(\Delta_1 - \operatorname{bd}(\Delta_1)) \cap (\Delta_2 - \operatorname{bd}(\Delta_2))$ with $L \cap D_2 \not\subseteq \operatorname{bd}(D_2)$. Now $L \neq L_2$, and so $L \cap L_2 = \emptyset$, and hence $L \subseteq D_2$. From the choice of L_2 , L has an end $w \neq u$, v; and hence $w \in V(P_2) - \{u, v\}$. Since C_1, C_2 are parallel it follows that $w \in V(P_1) - \{u, v\}$, and hence $L \cap D_1 \neq \emptyset$, contradicting that $D_1 \cap \Delta_2 \subseteq \operatorname{bd}(D_1)$. This proves that $D_2 \cap \Delta_1 \subseteq \operatorname{bd}(D_2)$. Let Δ'_1 be the union of D_2 and the disc in Δ_1 bounded by $L_2 \cup U(Q_1)$. Then Δ'_1 is a panel for C'_1 . Moreover, every component of

$$(\Delta_1 - \operatorname{bd}(D'_1)) \cap ((\Delta'_2 - \operatorname{bd}(\Delta'_2)) \cup \bigcup (\Delta_i - \operatorname{bd}(\Delta_i) : 3 \le i \le k))$$

is a member of $\mathscr{L}(\Delta_1, \ldots, \Delta_k)$, and for $3 \leq i \leq k$ Δ'_1 and Δ_i are in general position. If $L_2 \neq L_1$, then Δ'_1 and Δ'_2 are in general position, and since $L \notin \mathscr{L}(\Delta'_1, \Delta'_2, \Delta_3, \ldots, \Delta_k)$ and hence

$$\lambda(\Delta_1',\Delta_2',\Delta_3,\ldots,\Delta_k<\lambda(\Delta_1,\ldots,\Delta_k),$$

the result follows from the second inductive hypothesis. We may assume therefore that $L_2 = L_1$.

Thus Δ_1 , Δ_2 touch "tangentially" along L_1 ; and by moving them slightly apart in a neighbourhood of L_1 , we obtain a set of panels in general position, with λ reduced, and the result follows.

3. The main proof

We need one more lemma about frames, the following; its proof is an elementary homotopy argument that we omit.

(3.1) Let Γ be a frame in S^3 , and let $\Delta_1, \ldots, \Delta_k$ be mutually laminar panels, so that every edge of Γ belongs to the boundary of exactly two of $\Delta_1, \ldots, \Delta_k$. Then the set of components of $S^3 - \Delta_1 \cup \ldots \cup \Delta_k$ can be partitioned into two sets X_1, X_2 so that for $1 \le i \le k$, Δ_i belongs to the closure of a member of X_1 and to the closure of a member of X_2 .

We use (3.1) and (2.3) to prove the following.

(3.2) Let Γ be a directed, culerian panelled frame. Let $k \ge 0$ be an integer, and let there be k directed circuits of Γ so that every edge of Γ is in at most two of them. Then $\nu(\Gamma) \ge k/2$.

Proof. We may assume that k is maximum with the given property. From (2.3), there are k directed circuits C_1, \ldots, C_k of Γ , so that every edge is in ≤ 2 of them, and for $1 \leq i \leq k$ there is a panel Δ_i for C_i so that $\Delta_1, \ldots, \Delta_k$ are mutually laminar. Since Γ is eulerian, it follows from the maximality of k that every edge of Γ belongs to exactly two of C_1, \ldots, C_k . Choose a partition X_1, X_2 as in (3.1). Fix an orientation σ of S^3 . For j = 1, 2, let \mathcal{C}_j be the set of all C_i $(1 \leq i \leq k)$ such that, if we orient Δ_i in the sense of the direction of C_i then the component of $S^3 - (\Delta_1 \cup \ldots \cup \Delta_k)$ on the positive side of Δ_i (defined by the product of σ and the orientation of Δ_i) belongs to X_j . Thus, $\mathcal{C}_1 \cup \mathcal{C}_2 = \{C_1, \ldots, C_k\}$, and $\mathcal{C}_1 \cap \mathcal{C}_2 = \emptyset$. Moreover, let $e \in E(\Gamma)$, and let $e \in E(C_1), E(C_2)$ say. Since e belongs to the closure of only two components of $S^3 - (\Delta_1 \cup \ldots \cup \Delta_k)$, and exactly one of them is in X_1 , it follows that one of C_1, C_2 belongs to \mathcal{C}_1 and the other to \mathcal{C}_2 . Consequently, for j = 1, 2 the members of \mathcal{C}_j are mutually edge-disjoint. Hence $\nu(\Gamma) \geq |C_j|$, and so $2\nu(\Gamma) \geq |\mathcal{C}_1| + |\mathcal{C}_2| = k$, as required.

The sets of integers, real numbers, non-negative integers, and non-negative real numbers are denoted by \mathbb{Z} , \mathbb{R} , \mathbb{Z}_+ , \mathbb{R}_+ respectively. Let G be a digraph. For any function $w: E(G) \to \mathbb{Z}_+$, we define $\nu(G, w)$ to be the maximum k such that there is a family (C_1, \ldots, C_k) of directed circuits of G (not necessarily all distinct) so that

$$|\{i: 1 \le i \le k, e \in E(C_i)\}| \le w(e)$$

for every edge e of G. We say that $w: E(G) \to \mathbb{Z}$ is a *circulation* if for every vertex v of G,

$$\sum (w(e): e \in \delta^+(v)) = \sum (w(e): e \in \delta^-(v)),$$

where $\delta^+(v)$, $\delta^+(v)$ are the sets of edges of G with tail v and head v respectively. A digraph is *flat* if it is isomorphic to a directed panelled frame. From (3.2) we have:

(3.3) Let G be a flat digraph, and let $w : E(G) \to \mathbb{Z}_+$ be a circulation. Then $\nu(G, 2w) = 2\nu(G, w)$.

Proof. For each edge e, replace e by w(e) parallel edges, forming a digraph H. Now H is flat, by [4, Theorem (5.1)). From (3.2) applied to H, we deduce that $\nu(G,w) \ge \nu(G,2w)/2$. Since the reverse inequality is trivial, the result follows.

It is known that for any w, the following all exist and are equal

$$\sup_{k>0} k^{-1}\nu(G, kw), \ \lim_{k\to\infty} k^{-1}\nu(G, kw), \ \lim_{k\to\infty} 2^{-k}\nu(G, 2^kw).$$

We denote their common value by $\nu^*(G, w)$. From (3.3) we have

(3.4) Let G be a flat digraph, and let $w : E(G) \to \mathbb{Z}_+$ be a circulation. Then $\nu(G,w) = \nu^*(G,w)$.

Proof. From (3.3), it follows by induction on k that for all $k \ge 0$,

$$2^{-k}\nu(G, 2^k w) = \nu(G, w).$$

But $\nu^*(G, w)$ is the limit of the left side, and the result follows.

Henceforth it is sometimes convenient to use vector notation for functions $w: E(G) \to \mathbb{R}$. All our vectors will belong to $\mathbb{R}^{E(G)}$. A potential is a vector p satisfying $w^T p = 0$ for every circulation w. We need the following lemma.

(3.5) Let G be a digraph, and let $x \in \mathbb{R}^{E(G)}_+$ such that $w^T x$ is integral for every $(0,\pm 1)$ -valued circulation w. Then there is a potential p such that $x+p\in\mathbb{Z}^{E(G)}_+$.

Proof. Define $N(x) = \{e \in E(G) : x(e) \notin \mathbb{Z}\}$; we proceed by induction on |N(x)|. If $N(x) = \emptyset$ then the result holds with p = 0; and so we may assume that there exists $f \in N(x)$. Let f have head u and tail v.

Suppose first that there is a circuit C of the undirected graph underlying G, with $E(C) \cap N(x) = \{f\}$. Let w be a circulation in G such that $w(e) = \pm 1$ for all edges e in C, and otherwise w(e) = 0. By hypothesis, $w^T x$ is integral; but w(e)x(e) is integral for every $e \in E(G) - \{f\}$, and so w(f)x(f) is integral, a contradiction. Thus there is no such C.

Consequently there is a partition X, Y of V(G) such that $u \in X$, $v \in Y$ and every edge with one end in X and the other end in Y belongs to N(x). For $e \in E(G)$

with head a and tail b, define q(e) = 1 if $a \in Y$ and $b \in X$, q(e) = -1 if $a \in X$ and $b \in Y$, and q(e) = 0 otherwise. Then q is a potential. Choose $\varepsilon \ge 0$ maximal such that $x(e) + \varepsilon q(e) \ge 0$ for every edge e. (This is possible since $x(e) \ge 0$ for every e, and q(f) = -1.) Define $x' = x + \varepsilon q$. Now $N(x') \subseteq N(x)$, for if $e \in E(G) - N(x)$ then q(e) = 0. Moreover, $N(x') \ne N(x)$ by the maximality of ε . Now for every $(0, \pm 1)$ -valued circulation w,

$$w^T x' = w^T x + \varepsilon w^T q = w^T x$$

since q is a potential, and so $w^T x'$ is integral. From the inductive hypothesis there is a potential p' so that $x' + p' \in \mathbb{Z}_+^{E(G)}$. Let $p = \varepsilon q + p'$; then p is a potential, and $x + p \in \mathbb{Z}_+^{E(G)}$, as required.

Let G be a digraph and $w: E(G) \to \mathbb{Z}_+$ a function. We define $\tau(G, w)$ to be the minimum of $\sum_{e \in X} w(e)$, taken over all $X \subseteq E(G)$ such that $X \cap E(C) \neq \emptyset$ for every directed circuit C. Finally, we deduce our main result.

(3.6) Let G be a flat digraph. Then $\nu(G, w) = \tau(G, w)$ for every circulation $w : E(G) \to \mathbb{Z}_+$.

Proof. Let P be the set of all $x \in \mathbb{R}^{E(G)}_+$ such that

$$\sum (x(e): e \in E(C)) \ge 1$$

for every directed circuit C of G. For any $w: E(G) \to \mathbb{Z}_+$ let P(w) denote the set of all $x \in P$ with $w^T x$ minimum. If w is a circulation, we call P(w) a circular face of P.

(1) For any circulation $w: E(G) \to \mathbb{Z}_+$, $\nu(G, w) = w^T x$ for all $x \in P(x)$. In particular, $w^T x$ is integral.

For $w^T x = \nu^*(G, w)$ from the linear programming duality theorem, via a standard argument; and $\nu^*(G, w) = \nu(G, w)$ from (3.4)

The main step in the proof is the following.

(2) Every circular face contains an integer point.

We prove (2) by induction on |E(G)|. It suffices to show that every minimal circular face contains an integer point; so let $w: E(G) \to \mathbb{Z}_+$ be a circulation so that P(w) is a minimal circular face.

Suppose first that w(f) = 0 for some edge f of G. Let G' be obtained from G by deleting f, let P' be the polyhedron in $\mathbb{R}^{E(G')}$ corresponding to P, and let w' be the restriction of w to E(G'). Then G' is flat and w' is a circulation in G', so from the inductive hypothesis, there is an integer point $x' \in P'(w')$. Define $x \in \mathbb{Z}_+^{E(G)}$ by x(e) = x'(e) $(e \in E(G'))$ and x(f) = 1. Then $x \in P$, and we claim that $x \in P(w)$.

For let $y \in P(w)$, and let y' be the restriction of y to E(G'). Then $y' \in P'$, and so $w'^T y' \ge w'^T x'$ from the choice of x'. But $w^T x = w'^T y'$ and $w^T x = w'^T x'$ since w(f) = 0, and so $w^T y \ge w^T x$. Hence $x \in P(w)$, since $x \in P$ and $y \in P(w)$. Since x is integral, it follows that P(w) contains an integer point, as required.

We may therefore assume that w(f) > 0 for every $f \in E(G)$. Consequently, and since P is a polyhedron, there exists an integer n > 0 such that for every $(0, \pm 1)$ valued circulation w' in G, $w+w'/n \ge 0$ and $P(w+w') \subseteq P(w)$. Since P(nw) = P(w)and P(nw+w') = P(w+w'/n), we may assume (by replacing w by nw) that n = 1.

Now let $x \in P(w)$, and let w' be a $(0, \pm 1)$ -valued circulation in G. By (1), $w^T x$ is integral, and since $x \in P(w) = P(w+w')$ (because $P(w+w') \subseteq P(w)$ and P(w) is a minimal circular face) it follows from (1) that $(w+w')^T x$ is integral. Subtracting, we deduce that $w'^T x$ is integral, for every $(0, \pm 1)$ -valued circulation w'. By (3.5) there is a potential p so that $x+p \in \mathbb{Z}_+^{E(G)}$. Since p is a potential it follows that for every directed circuit C of G, $\sum (p(e):e \in E(C))=0$ and so $x+p \in P$; and also since p is a potential it follows that $w^T p=0$, and so $x+p \in P(w)$. Hence P(w) contains an integer point. This proves (2).

Now to prove the theorem, let $w: E(G) \to \mathbb{Z}_+$ be a circulation. By (2), we may choose an integer point $x \in P(w)$. Then $\tau(G, w) \leq w^T x$ since x is integral, and $w^T z = \nu(G, w)$ by (1). Since trivially $\nu(G, w) \leq \tau(G, w)$, the theorem follows.

References

- [1] A. BOROBIA, Z. NUTOV, and M. PENN: On doubly stochastic and non-identity permutation matrices, manuscript 1994.
- [2] L. LOVÁSZ: On two minimax theorems in graph theory, J. Combin. Theory, Ser. B, 21 (1976), 96-103.
- [3] C. L. LUCCHESI, and D. H. YOUNGER: A minimax relation for directed graphs, J. London Math. Soc., 17 (1978), 369-374.
- [4] N. ROBERTSON, P. D. SEYMOUR, and R. THOMAS: Sachs' linkless embedding conjecture, J. Combin. Theory, Ser. B, 64 (1995), 185-227.

P. D. Seymour

Bellcore 445 South St. Morristown, New Jersey 07960, U.S.A. pds@bellcore.com