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Let G be an euler ian digraph;  let u(G) be the  m a x i m u m  n u m b e r  of pairwise edge-disjoint  
directed circuits of  G, and  ~-(G) the  smal les t  size of a set of  edges t ha t  mee t s  all d i rected circuits  
of  G. Borobia,  Nu tov  and  Penn  showed t ha t  p(G) need not  be equal  to r (G) .  We show tha t  
L,(G) = T(G) provided t h a t  G has  a "linkless" embedd ing  in 3-space,  or equivalently,  if no minor  
of G can be converted to K 6 by A -- Y and Y - A operat ions .  

1. I n t r o d u c t i o n  

Let G be a directed graph (briefly, a digraph; all graphs in this paper are finite, 
and may have loops or multiple edges). Let u(G) be the maximum cardinality 
of a set of mutually edge-disjoint directed circuits of G, and let r (G)  be the 
minimum cardinality of a set of edges that meets every directed circuit of G. Clearly 
u(G) <<'r(G), and for planar digraphs the Luechesi-Younger theorem [2, 3] implies 
that  u ( G ) =  r(G),  but equality need not hold in general. For instance, let Go be 
the digraph with vertex set {al,a2,aa,bl,b2,ba} and edge set 

{(bi, ai): 1 < i < 3} U {(ai, bj): i, j �9 {1,2,3}, i 7~ j}; 

then u(G)= 1 and r ( G ) = 2 .  Since the undirected graph underlying G o is just /(3,3,  

this suggests that  abandoning planarity was a mistake if we want u(G)= 7-(G). 
For eulerian digraphs, the situation seems not so bad. (A digraph is eulerian 

if for every vertex v, its invalency equals its outvalency.) In an eulerian digraph, 
if {C1, . . . ,Ck} is a maximal set of edge-disjoint directed circuits, then every edge 
belongs to one of C1, . . . ,  Ck; and this nice fact leads one to hope that  perhaps 
there are deeper nice things to be discovered. 

It is not always true that  u(G)=T(G) for eulerian digraphs, however. Borobia, 
Nutov and Penn [1] gave the following example: let Go be as before, and add to it 
a new vertex c, and six new edges 

{(c, a i ) :  1 < i < 3} U {(bi,c): 1 < i < 3}, 
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forming an eulerian digraph G1 say. Then v ( G 1 ) =  4, but there are nine directed 
circuits using every edge twice, and so T(G1)> 4 (in fact ~-(G1)=5). 

The undirected graph underlying G1 belongs to the "Petersen family", the 
seven graphs that can be obtained f rom/46 by A -  Y and Y -  A exchanges; see 
Figure 1. 

Fig. 1. The Petersen family 

l 

We say H is a minor of G if H can be obtained from a subgraph of G by 
contracting edges. In [4] we showed that every graph with no minor in the Petersen 
family can be embedded in 3-space so that every circuit bounds a disc disjoint from 
the remainder of the graph; and the example G1 suggests that  perhaps v ( G ) - - r ( G )  
for every eulerian digraph that  admits such an embedding. This turns out to be 
true, as we shall see. Consequently, we have 

(1.1) Let G be an eulerian digraph, such that its underlying undirected graph has 
no minor in the Petersen family. Then u(C)=r(C).  

The proof of (1.1) is perhaps of more interest than the theorem. It seems 
remarkable that, for digraphs embedded in 3-space as above, one can define a notion 
of "uncrossing" directed circuits, analogous to Lovdsz's method [2] of uncrossing 
directed cuts to prove the Lucchesi-Younger theorem. 
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2. P a n e l l e d  f r a m e s  

225 

We denote the unit 3-sphere by S 3. (Throughout, we assume that  all embed- 

dings and all subspaces considered are tame.) For X C_ S 3, its topological closure is 

denoted by X.  A line in S 3 is a subset homeomorphic to the closed unit interval, 

and its ends are defined in the natural way; a circle in S 3 is a subset homeomor- 

phic to the unit circle; and a disc in S 3 is homeomorphic to { ( z ,y ) :x2+y2  ~ 1}. A 
frame is a pair (U,V), where 

(i) U C S 3 is closed, and V C U is finite 

(ii) U - V  has only finitely many arc-wise connected components, called edges, and 

(iii) for each edge e, either ~ is a circle with I~NV I -- 1, or ~ is a line and ~A V  
consists of its ends. 

We call V the set of vertices of the frame. Thus, a frame is a graph embedded 

in S 3 in the natural way. If F is a frame, we write U(F) = U and V(F) = V, and 
denote its set of edges by E(F).  

Let F be a frame, and let C be a circuit of F. (Circuits in this paper have 

no "repeated" vertices or edges.) A panel for C is a disc A C S 3 such that  
A A U(F) -- bd(A)  = U(C). A frame r is panelled if there is a panel for every 
circuit of F. Now we can state the theorem of [4] more precisely: 

(2.1) For any graph G, there is a panelled frame isomorphic to G if  and only if G 
has no minor in the Petersen family. 

Therefore, to prove (1.1) it suffices to show that  ~ (F)=T(F)  for every eulerian 
directed panelled frame. 

Let G be a digraph. A roll in G is a family (Ci :i C I) of directed circuits of G, 
and its length is E( IE(Ci ) l  :i e I).  A roll (C~: i e I)  dominates a roll (Dj :j �9 J ) i f  
for every edge e of G, 

I{i �9 I : e �9 E(Ci)}] > ] { j � 9  J : e �9 E(Dj)}]  . 

(This implies that  the first roll has length at least that  of the second.) 

Let us say two directed circuits C1, C2 of a digraph G are parallel if the 
common vertices of C1 and C2 appear in the same cyclic order in C1 and in C2. 
We need the following lamina. 

(2.2) Let C1, C2 be directed circuits of a digraph G. Suppose that the roll {C1,C2} 
dominates no roll of cardinality 2 of strictly smaller length. Then C1, C2 are 
parallel. 

Proof. Suppose that  C1, C2 are not parallel. Then there are distinct vertices x, y, 
zEV(C1V~C2)  which occur in the order x, y, z in C1 and in the order x, z, y in 
C2. Let Cz be a directed circuit in the union of the path of C1 from x to y and 
the path of 6'2 from y to x; and define Cy, C~ similarly. Then {C1,C2) dominates 
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{Cx,Cy,Cz},  and hence {Cx,Cy}, and since E(Cz) r  it follows that  {Cx,Cy} has 

length strictly less than that of { C 1 , 6 2 }  , a contradiction. The result follows. I 

Let F be a directed panelled frame. If A1, . . . ,  Ak are panels for circuits of F, 
we say they are mutually laminar if Ai A Aj = bd (Ai) N bd (A j)  for 1 < i < j < k. 

The main result of this section is the following. 

(2.3) Let P be a directed panelled frame, and let (Ci : i E I) be a roll in F. Then 
there is a roll (C~: i E I) dominated by (Ci : i E I), and for each i E I a panel Ai for 

C~ so that (Ai :i E l)  are mutually laminar. 

Proof. We proceed by induction on the length of (Ci : i E I).  We may assume that  
I =  {1,..., k} where k > 1. From the inductive hypothesis applied to (C/:2 < i < k), 

the latter dominates a roll (C~ : 2 < i < k) such that  for 2 < i < k there is 

a panel Ai for C~ with A2, . . . ,  Ak mutually laminar. Thus (C1,C2, . . . ,Ck)  

dominates (C1,C~,.. . ,C~), and therefore if the conclusion of the theorem holds 

for (C1,C~,...,C~k) then it holds for (C1,C2,. . . ,Ck).  Consequently, by replacing 

(C1,C2,. . . ,Ck) by (C1,C~,...,CIk), we may assume that for 2 < i < k there is a 

panel A i for Ci such that A2, . . . ,  A k are mutually laminar. Moreover, from (2.2) 
and the inductive hypothesis, we may assume that  C1, Ci are parallel for 2 < i < k. 

Choose apane l  A 1 for C1, so that for 2 < i < k  C1 and Ci are in "general 
position". This means that for every point x of ( A l - b d  (A1))M(Ai-bd (Ai)) there 

is a ball BC_S 3 with x in its interior, so that  (B, B n A 1 , B A A i , x  ) is homeomorphic 
to 

( { ( x , y , z ) :  x2+y2+z 2 << 1},{(x,0, z) :  x2+z 2 _< 1},{(0, y , z ) :  y2+z2 < 1}, (0,0,0)). 

For such a set {A1,... , Ak} , we define Z(A1, . . . ,  Ak) to be the set of all arc-wise 
connected components of 

(A 1 -- bd (A1)) f'l U (Ai -- bd (Ai)) .  
2<i<k 

Then (compare [4, Theorem (2.2)]), since the sets A i -  bd(A/)  (2 < i < k) are 
mutually disjoint, we have 
(1) ~s Ak) is finite, and for each n C~(A1,. . . ,  Ak), either 

(i) L is a line with ends u, vebd(A1) ,  and L = - L - { u , v } ,  or 

(ii) L is a circle with one point v in bd(A1), and L = L - { v } ,  or 

(iii) L=-L is a circle disjoint from bd(A1). 
We denote the cardinality of .~(A1, . . . ,Ak) by A(A1,.. . ,Ak). If this is zero, 

then A1, . . . ,  Ak are mutually laminar and the proof is complete. We thus may 
assume that  A(A1, . . . ,Ak)>0,  and we proceed by induction on A(A1,.. . ,Ak). 
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If there exists L E .~(AI , . . . ,Ak)  satisfying (1)(ii) or (1)(iii), then as in the 
proof of [4, Theorem (2.3)], we may replace Ai for some i > 1, say A2, with a new 

panel AS, so that  AS, A3, . . . ,  Ak are mutually laminar, A1, A2 are in general 
position, and 

~(A1, AS, A3,..., Ak) < ~(A1, A2,..., Ak), 
and the result follows from the second inductive hypothesis. We may therefore 
assume that  every L E~f(A1,..., Ak) satisfies (1)(i). 

For each L E ~ ( A I , . . . , A k )  there are therefore two discs D C_ A1 such that  
b d ( D ) - b d ( A 1 )  = L .  Since ~(A1, . . . ,Ak)  r  we may choose L1 E ~ ( A I , . . . , A k )  
and one of its two discs D1, so that  D1 is minimal. Let L1 have ends u, v. Since 
L1 is arc-wise connected, there exists i with 2 < i  < k such that  L1 C A i - b d ( A i ) ,  

say i = 2. Thus L1 C A2. For i = 1, 2, let the directed path of Ci from u to v be 
Pi, and let the directed path of Ci from v to u be Qi. Since C1, C2 are parallel, it 
follows that  

v(P1 nP2) = v(P~ nQ1) = {~,v} 

and hence P2UQ1 =C~ and P1 uQ2 =C~ are both directed circuits of F. The roll 

(C~, C~, C3,...,  Ck) is dominated by (61,. . . ,  Ck), and therefore the result will follow 
from the second inductive hypothesis if we can find appropriate panels for this roll 
with A reduced. That is therefore the objective of the remainder of the proof. 

From the minimality of D1, and since every L c~(A1,. . . ,Ak) satisfies (1)(i), 
it follows that  D1N(A2U.. .UAk)C_bd(D1).  Let A S be the union of D1 and the 

disc in A2 bounded by LUU(Q2); then A S is a panel for C;. Moreover, AS, A3, 
. . . ,  A k are mutually laminar. (Note that L 1 is disjoint from A3, . . . ,  Ak since 
L1 C_ A 2 - b d ( A 2 ) . )  

Among all L E~(A1,A2, . . . ,Ak)  with ends u, v such that  L C_ A 2 - b d ( A 2 ) ,  
choose one, L2 say, so that  the disc D2 in A2 bounded by L2 U U(P2) is minimal. 
(Possibly L2 = L1.) 

We claim that D2NA1 C bd(D2). For suppose not; then there is a component 
L of (A 1 - b d ( A 1 ) ) N ( A 2 - b d ( A 2 ) )  with LAD2 (Z bd(D2). Now LCL2, and so 
LNL2=O,  and hence LC_D2. From the choice of L2, L has an end w e t ,  v; and 
hence w C V(P2)-{u,v}. Since C1, C2 are parallel it follows that  w C V(P1)-{u,v}, 
and hence LAD1 r ~, contradicting that  D1 N A2 C_ bd(D1). This proves that  
D2MA1 C bd(D2). Let A~ be the union of D 2 and the disc in A 1 bounded by 

L2UU(Q1). Then A~ is a panel for C~. Moreover, every component of 

(A1 - bd(D~) )  n ((A S - bd(AS)  ) U U ( A i  - bd (Ai ) :  3 < i < k)) 

is a member of~(A1, . . . ,  Ak), and for 3 < i < k A~ and Ai are in general position. If 

L2 ~ L1, then A~ and A S are in general position, and since L ~ ( A ~ ,  AS, A3,. . . ,  Ak) 
and hence 

I l 
A(A1, A2, A3, . . . ,  Ak < A(AI, . . . ,  Ak), 



228 P. D. SEYMOUR 

the result follows from the second inductive hypothesis. We may assume therefore 
that  L2 -- L1. 

Thus A1, A 2 touch "tangentially" along L1; and by moving them slightly 
apart in a neighbourhood of L1, we obtain a set of panels in general position, with 
A reduced, and the result follows. I 

3. The main proof 

We need one more lemma about frames, the following; its proof is an elementary 
homotopy argument that we omit. 

(3.1) Let F be a frame in S 3, and let A1, .. . ,  A k be mutually laminar panels, so 
that every edge o f f  belongs to the boundary of exactly two orAl ,  . . . ,  A k. Then 

the set of components of S 3 -  A 1 U . . .  UA k can be partitioned into two sets X1, X2 
so that for 1 < i < k, Ai belongs to the closure of a member of X1 and to the closure 
of a member of X2. 

We use (3.1) and (2.3) to prove the following. 

(3.2) Let P be a directed, eulerian panelled frame. Let k >_ 0 be an integer, and let 
there be k directed circuits o f f  so that every edge o f f  is in at most two of them. 
Then v(F) _> k/2. 

Proof. We may assume that  k is maximum with the given property. From (2.3), 
there are k directed circuits C1, . . . ,  Ck of F, so that  every edge is in _< 2 of them, 
and for 1 < i < k there is a panel A i for Ci so that  A1, . . . ,  A k are mutually 
laminar. Since F is eulerian, it follows from the maximality of k that  every edge 
of F belongs to exactly two of C1, . . . ,  Ck. Choose a partition X1, )(2 as in (3.1). 

Fix an orientation a of S 3. For j = l ,  2, let i~j be the set of all Ci ( 1 < i K k )  
such that, if we orient A i in the sense of the direction of Ci then the component 
of S 3 -  (A1 U. . .UAk) on the positive side of Ai (defined by the product of a and 
the orientation of Ai) belongs to Xj.  Thus, ~ I U ~ 2 = { C 1 , . . . , C a }  , and l~iN~2=0.  

Moreover, let eEE(F) ,  and let eEE(C1), E(C2) say. Since e belongs to the closure 

of only two components of S 3 -  (A 1 U...  UAk), and exactIy one of them is in X1, 
it follows that  one of C1, C2 belongs to ~1 and the other to ~2. Consequently, for 
j = 1, 2 the members of ~j are mutually edge-disjoint. Hence v(F) _ ]Cj[, and so 

2 (r) > IVll + IV21= k, as required. ] 

The sets of integers, real numbers, non-negative integers, and non-negative real 
numbers are denoted by Z, R, Z+, ]Ir respectively. Let G be a digraph. For any 
function w:E(G)-~Z+, we define v(G,w) to be the maximum k such that  there is 
a family (C1,..., Ck) of directed circuits of G (not necessarily all distinct) so that  

f { i :  1 < i < k, e e <_ 
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for every edge e of G. We say that  w : E(G) --* Z is a circulation if for every vertex 
v of G, 

: e = : e 

where 6+(v), 6+(v) are the sets of edges of G with tail v and head v respectively. A 
digraph is fiat if it is isomorphic to a directed panelled frame. From (3.2) we have: 

(3.3) Let G be a flat digraph, and let w:  E(G) --+ Z+ be a circulation. Then 
u(G,2w)=2u(G,w). 

Proof. For each edge e, replace e by w(e) parallel edges, forming a digraph H.  
Now H is flat, by [4, Theorem (5.1)). From (3.2) applied to H,  we deduce that  
~,(G,w) >~,(G,2w)/2. Since the reverse inequality is trivial, the result follows. II 

It  is known that  for any w, the following all exist and are equal 

supk- lu(G,  kw), lim k- lu(G,  kw), lim 2-ku(G, 2kw). 
k>O k--*cr k--~or 

We denote their common value by v*(G,w). From (3.3) we have 

(3.4) Let G be a nat digraph, and let w : E(G) --+ Z+ be a circulation. Then 

Proof. From (3.3), it follows by induction on k that  for all k > 0 ,  

2 - % ( a ,  2 % )  : w) .  

But u* (G, w) is the limit of the left side, and the result follows. | 

Henceforth it is sometimes convenient to use vector notat ion for functions 
w : E(G) --+ •. All our vectors will belong to R E(G). A potential is a vector p 

satisfying wTp=O for every circulation w. We need the following lemma. 

(3.5) Let G be a digraph, and let x C R E(G) such that wTx is integral for every 

(O,:s circulation w. Then there is a potential p such that x + p E Z f  (a). 

Proof. Define N(x) = {e E E (G) :  x(e) ~ Z}; we proceed by induction on ]N(x)]. If 
N(x) = 0  then the result holds with p = 0 ;  and so we may assume that  there exists 
f C N(x).  Let f have head u and tail v. 

Suppose first that  there is a circuit C of the undirected graph underlying G, 
with E ( C ) N N ( x ) =  {f}. Let w be a circulation in G such tha t  w ( e ) =  :t:1 for all 

edges e in C, and otherwise w(e )=  O. By hypothesis, wTx is integral; but  w(e)x(e) 
is integral for every e E E ( G ) -  {f},  and so w(f )x ( f )  is integral, a contradiction. 
Thus there is no such C. 

Consequently there is a parti t ion X,  Y of V(G) such tha t  u E X,  v E Y and 
every edge with one end in X and the other end in Y belongs to N(x). For e E E(G) 
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with head a and tail b, define q(e) = 1 if a �9 Y and b 6 X,  q(e) = - 1  if a E X and 
b E Y, and q(e) = 0 otherwise. Then q is a potential. Choose r >_ 0 maximal  such 
that  x ( e ) + r  0 for every edge e. (This is possible since x(e)>_ 0 for every e, 

and q( f )=-1 . )  Define x' =x+r Now g(x')C_ N(x), for if e �9 E ( G ) - N ( x )  
then q(e) = 0. Moreover, g(x') # g(x) by the maximali ty  of ~. Now for every 
(0, •  circulation w, 

wT x I = wT x + r q = wT x 

since q is a potential, and so wTx r is integral. From the inductive hypothesis there 

is a potential pl so that  x' + / E  Z E(G). Let p = r + / ;  then p is a potential,  and 
E(G) 

x + p E Z +  , as required. | 

Let G be a digraph and w : E(G) ~ Z+ a function. We define T(G,w) to be 
the minimum of ~ e e x  w(e), taken over all X C_ E(G) such tha t  X ~ E(C)~  ~ for 
every directed circuit C. Finally, we deduce our main result. 

(3.6) Let G be a fiat digraph. Then u(G,w) = r(G,w) for every circulation w: 
E(G)-~E+. 

Proof. Let P be the set of all x �9 R E(G) such that  

: e �9 E(C)) > 1 

for every directed circuit C of G. For any w : E(G) --~ Z+ let P(w) denote the set 

of all x E P with wTx minimum. If w is a circulation, we call P(w) a circular face 
of P.  

(1) For any circulation E ( a )  Z+,  = for a11 x e P ( x ) .  

particular, wTx is integral. 

For wTx = ~*(G,w) from the linear programming duality theorem, via a 
standard argument; and ,*(G,w)--,(G, w) from (3.4) 

The main step in the proof is the following. 

(2) Every circular face contains an integer point. 
We prove (2) by induction on ]E(G)[. It  suffices to show that  every minimal 

circular face contains an integer point; so let w:E(G)--~ Z+ be a circulation so that  
P(w) is a minimal circular face. 

Suppose first that  w(f) - -0  for some edge f of G. Let G'  be obtained from G 

by deleting f ,  let p l  be the polyhedron in R E(G') corresponding to P,  and let w j be 
the restriction of w to E(Gt).  Then C t is flat and w I is a circulation in G t, so from 

the inductive hypothesis, there is an integer point xlE Pl(wl). Define x E Z E(G) by 

r = xt(e) (e E E(G')) and x(f) = 1. Then x E P,  and we claim tha t  r E P(w). 
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For let y E P(w), and let y~ be the restriction of y to E(G~). Then y~ E P~, and 

so w~T y ~ > w~T x ~ from the choice of x ~. But wT x = w~T y ~ and wT x = wtT x ~ since 

w ( f ) = 0 ,  and so wTy>wTx.  Hence xeP(w) ,  since x E P  and yeP(w) .  Since x is 
integral, it follows that  P(w) contains an integer point, as required. 

We may therefore assume that  w(f) > 0 for every f E E(G). Consequently, and 
since P is a polyhedron, there exists an integer n > 0 such tha t  for every (0, •  

valued circulation w' in G, w+w'/n>O and P(w+w') C_P(w). Since P(nw)=P(w) 
and P(nw+w')=P(w+w' /n) ,  we may assume (by replacing w by nw) tha t  n =  1. 

Now let xEP(w), and let w' be a (0,+1)-valued circulation in G. By (1), wTx 
is integral, and since xEP(w)=P(w+w')  (because P(w+w')CP(w)  and P(w)is 

a minimal circular face) it follows from (1) that  (w+w~)Tx is integral. Subtracting, 

we deduce that  w'rx is integral, for every (0 , •  circulation w t. By (3.5) 

there is a potential  p so that  x + p  E Z+ E(G) . Since p is a potential  it follows that  for 

every directed circuit C of G, ~ ( p ( e ) : e  E E(C))= 0 and so x + p  E P; and also since 

p is a potential  it follows that  wTp=o, and so x+pE P(w). Hence P(w) contains 
an integer point. This proves (2). 

Now to prove the theorem, let w : E(G) ~ Z+ be a circulation. By (2), we 

may choose an integer point xEP(w). Then r(G,w)<_wTx since x is integral, and 

by (1). Since trivially u(G,w)<_T(G,w), the theorem follows. ] 
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