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Let G be an eulerian digraph; let v(G) be the maximum number of pairwise edge-disjoint
directed circuits of G, and 7(G) the smallest size of a set of edges that meets all directed circuits
of G. Borobia, Nutov and Penn showed that v(G) need not be equal to 7(G). We show that
v(G)=7(G) provided that G has a “linkless” embedding in 3-space, or equivalently, if no minor
of G can be converted to Kg by A—Y and Y — A operations.

1. Introduction

Let G be a directed graph (briefly, a digraph; all graphs in this paper are finite,
and may have loops or multiple edges). Let v(G) be the maximum cardinality
of a set of mutually edge-disjoint directed circuits of G, and let 7(G) be the
minimum cardinality of a set of edges that meets every directed circuit of G. Clearly
v(G) <7(G), and for planar digraphs the Lucchesi-Younger theorem {2, 3] implies
that v(G) = 7(G), but equality need not hold in general. For instance, let Gg be
the digraph with vertex set {a1,a2,a3,b1,b2,b3} and edge set

{(b‘iaai) 11<i< B}U{(aiabj) 1, J € {1’273}7 1 75.7}1
then v(G)=1 and 7(G)=2. Since the undirected graph underlying Gy is just K3 3,

this suggests that abandoning planarity was a mistake if we want v(G)=7(G).

For eulerian digraphs, the situation seems not so bad. (A digraph is eulerian
if for every vertex v, its invalency equals its outvalency.) In an eulerian digraph,
if {C1,...,Ck} is a maximal set of edge-disjoint directed circuits, then every edge
belongs to one of Cp, ..., Cy; and this nice fact leads one to hope that perhaps
there are deeper nice things to be discovered.

It is not always true that v(G)=7(G) for eulerian digraphs, however. Borobia,
Nutov and Penn {1} gave the following example: let G be as before, and add to it
a new vertex ¢, and six new edges

{(c,a3) 11 <@ <3YU{(b;,c): 1 <7 <3},
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forming an eulerian digraph G say. Then v(G1) =4, but there are nine directed
circuits using every edge twice, and so 7(G1) >4 (in fact 7(G1)=35).

The undirected graph underlying Gy belongs to the “Petersen family”, the
seven graphs that can be obtained from Kg by A—Y and Y — A exchanges; see
Figure 1.

Fig. 1. The Petersen family

We say H is a minor of G if H can be obtained from a subgraph of G by
contracting edges. In [4] we showed that every graph with no minor in the Petersen
family can be embedded in 3-space so that every circuit bounds a disc disjoint from
the remainder of the graph; and the example G suggests that perhaps v(G)=7(G)
for every eulerian digraph that admits such an embedding. This turns out to be
true, as we shall see. Consequently, we have

(1.1) Let G be an eulerian digraph, such that its underlying undirected graph has
no minor in the Petersen family. Then v(G)=1(G).

The proof of (1.1) is perhaps of more interest than the theorem. It seems
remarkable that, for digraphs embedded in 3-space as above, one can define a notion
of “uncrossing” directed circuits, analogous to Lovdsz’s method [2] of uncrossing
directed cuts to prove the Lucchesi-Younger theorem.
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2. Panelled frames

We denote the unit 3-sphere by S8, (Throughout, we assume that all embed-
dings and all subspaces considered are tame.) For X C 53, its topological closure is
denoted by X. A line in S3 is a subset homeomorphic to the closed unit interval,
and its ends are defined in the natural way; a circle in S° is a subset homeomor-
phic to the unit circle; and a disc in S3 is homeomorphic to {(z,y):z2+y%<1}. A
frame is a pair (U,V), where

(i) UCS3 is closed, and V CU is finite
(if) U—V has only finitely many arc-wise connected components, called edges, and
(ili) for each edge e, either € is a circle with eNV|=1, or € is a line and eNV
consists of its ends.

We call V the set of vertices of the frame. Thus, a frame is a graph embedded
in S3 in the natural way. If I' is a frame, we write U(T') =U and V(I') =V, and
denote its set of edges by E(T').

Let T' be a frame, and let C be a circuit of I'. (Circuits in this paper have
no “repeated” vertices or edges.) A panel for C is a disc A € S such that
ANUI) =bd(A)=U(C). A frame I' is panelled if there is a panel for every
circuit of I'. Now we can state the theorem of [4] more precisely:

(2.1) For any graph G, there is a panelled frame isomorphic to G if and only if G
has no minor in the Petersen family.

Therefore, to prove (1.1) it suffices to show that v(I') =7(T) for every eulerian
directed panelled frame.

Let G be a digraph. A roll in G is a family (C;:¢€I) of directed circuits of G,
and its length is ) (|E(C;)|:i€I). A roll (Cj:i€l) dominates a roll (D;:j€J) if
for every edge e of G,

HieT:ee B(C)} > |{jeJ:ec E(Dj)}|.

(This implies that the first roll has length at least that of the second.)

Let us say two directed circuits C, Cq of a digraph G are parallel if the
common vertices of C1 and Cy appear in the same cyclic order in C; and in Cs.
We need the following lemma.

(2.2) Let Cq, Cq be directed circuits of a digraph G. Suppose that the roll {C1,Ca}
dominates no roll of cardinality 2 of strictly smaller length. Then Cy, Cy are
parallel.

Proof. Suppose that C1, C3 are not parallel. Then there are distinct vertices z, y,
2z € V(C1NCy) which occur in the order x, ¥, z in C; and in the order z, z, ¥y in
Cy. Let C, be a directed circuit in the union of the path of C; from z to y and
the path of Cy from y to z; and define Cy, Cy similarly. Then {C1,C2} dominates
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{C%,Cy,C.}, and hence {Cy,Cy}, and since E(C,)#0 it follows that {Cy,Cy} has
length strictly less than that of {C1,C2}, a contradiction. The result follows. |

Let I be a directed panelled frame. If Ay, ..., A are panels for circuits of T,
we say they are mutually laminar if A;NA;=bd(A;)Nbd(Aj) for 1<i<j<k.
The main result of this section is the following.

(2.3) Let T be a directed panelled frame, and let (C;:i€1) be a roll in I'. Then
there is a roll (C}:i€ ) dominated by (C;:i€I), and for each i €I a panel A; for
C! so that (A;:i€I) are mutually laminar.

Proof. We proceed by induction on the length of (C;::€ ). We may assume that
I={1,...,k} where k>1. From the inductive hypothesis applied to (C;:2<i<k),

the latter dominates a roll (C’z' : 2 <1 < k) such that for 2 < i < k there is
a panel A; for C] with Ao, ..., Ag mutually laminar. Thus (C1,Cy,...,Ck)
dominates (Cl,Cé,...,C’,'c), and therefore if the conclusion of the theorem holds
for (C1,Cy,...,C) then it holds for (C1,Cy,...,Ck). Consequently, by replacing
(C1,Ca,...,C) by (C1,Cy,...,C}), we may assume that for 2 < i < k there is a

panel A; for C; such that Ao, ..., Ay are mutually laminar. Moreover, from (2.2)
and the inductive hypothesis, we may assume that C'7, C; are parallel for 2<i<k.

Choose a panel A; for Cp, so that for 2<¢<k €7 and C; are in “general
position”. This means that for every point  of (A1—~bd(A1))N(A;—bd(A;)) there

is a ball BC 83 with z in its interior, so that (B, BNAy1, BNA;, ) is homeomorphic
to

((z,y, 2) : 224y*+2% <1}, {(,0,2) : 2% 22 < 1},{(0,y, 2) : y*+2% < 1},(0,0,0)).

For such a set {A1,...,A}, we define £(Aq,...,AL) to be the set of all arc-wise
connected components of

(Ar=bd(An)n (J (4; -bd(a).
2<i<k

Then (compare [4, Theorem (2.2)]), since the sets A; —bd(A;) (2 < i < k) are
mutually disjoint, we have

(1) £(Ay,...,A) is finite, and for each LeX(Ay,...,Ag), either
(i) I is a line with ends u, v€bd (A1), and L=L - {u,v}, or
(ii) L is a circle with one point v in bd (A;), and L=T —{v}, or
(iti) L=L is a circle disjoint from bd (A;).
We denote the cardinality of £(Aj,...,Ar) by A(A1,...,Ag). If this is zero,

then Aj, ..., Ag are mutually laminar and the proof is complete. We thus may
assume that A(Aq,...,Ax) >0, and we proceed by induction on A(Aq,...,Ag).
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If there exists L € £(A1,...,Ag) satisfying (1)(ii) or (1)(iii), then as in the
proof of {4, Theorem (2.3)], we may replace A; for some i>1, say Ag, with a new
panel AL, so that A5, Az, ..., Ag are mutually laminar, A;, Ay are in general
position, and

AMAy, A/2, Ag, o AL < A(Aq, Ag, ., Ay,
and the result follows from the second inductive hypothesis. We may therefore
assume that every LEZL(Aq,...,A) satisfies (1)(i).

For each L € £(Aq,...,A}) there are therefore two discs D C A such that
bd (D) —bd (A1) =L. Since £(A1,...,AL) # 0, we may choose L1 €£(Aq,...,A)
and one of its two discs D1, so that Dy is minimal. Let L have ends u, v. Since
L; is arc-wise connected, there exists ¢ with 2 <i <k such that L1 CA; —bd(4;),

say i=2. Thus Ly C Ag. For i =1, 2, let the directed path of C; from u to v be
P;, and let the directed path of C; from v to u be @;. Since Cq, Cy are parallel, it
follows that

V(PINQg) = V(PN Q1) = {u,v}
and hence P,UQ =C{ and PjUQs =Cé are both directed circuits of I'. The roll
(C1,C},Cs,...,Cy) is dominated by (Cy,...,Ck), and therefore the result will follow

from the second inductive hypothesis if we can find appropriate panels for this roll
with A reduced. That is therefore the objective of the remainder of the proof.

From the minimality of D1, and since every L €£(Aq,...,Ay) satisfies (1)(i),
it follows that Dy N(A2U...UAL) Cbd(Dy). Let Al be the union of Dy and the
disc in Az bounded by LUU(Q2); then A) is a panel for Cj. Moreover, A}, Ag,
..., Ay are mutually laminar. (Note that L; is disjoint from Ag, ..., A} since
L1CAs—bd(Ag).)

Among all L € £(A1,As,...,Af) with ends u, v such that L C Ag —bd(Aj),

choose one, Lo say, so that the disc Dy in Ay bounded by Lo UU(Ps) is minimal.
(Possibly Lo=1L1.)

We claim that DyNA; Cbd(D3). For suppose not; then there is a component
L of (A} —bd (A1) N(Ag—bd(Ag)) with LN Dy € bd(Dy). Now L # Ly, and so
LNLy=0, and hence L C Dy. From the choice of Ly, L has an end w#u, v; and
hence w €V (P2)—{u,v}. Since C1, Cy are parallel it follows that w e V (Py)—{u,v},
and hence LN Dy # @, contradicting that Dy N Ay C bd(D;). This proves that
DyN Ay Cbd(Dy). Let A} be the union of Dy and the disc in A bounded by

LaUU(Q1). Then Al is a panel for C}. Moreover, every component of
(A1 - Dbd (D)) N (A3 —bd (AD) U J(A; —bd (A:) : 3 <i < k)

is a member of £(Ay,...,Ay), and for 3<i<k A} and A, are in general position. If
Lo +# Ly, then A} and A} are in general position, and since L ¢ £(A], A}, A, ..., Ay)
and hence

AALL Ay, Ag, . A < ANAL . Ay,
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the result follows from the second inductive hypothesis. We may assume therefore
that Lo=1L;.

Thus Ay, A touch “tangentially” along Li; and by moving them slightly
apart in a neighbourhood of L1, we obtain a set of panels in general position, with
A reduced, and the result follows. [ |

3. The main proof

We need one more lemma about frames, the following; its proof is an elementary
homotopy argument that we omit.

(3.1) Let T be a frame in S3, and let Ay, ..., Ay be mutually laminar panels, so
that every edge of I' belongs to the boundary of exactly two of Ay, ..., Ay. Then

the set of components of S3—AjU.. .UA} can be partitioned into two sets X1, Xg
so that for 1<i<k, A; belongs to the closure of a member of X1 and to the closure
of a member of Xo.

We use (3.1) and (2.3) to prove the following.

(3.2) Let T be a directed, eulerian panelled frame. Let k>0 be an integer, and let
there be k directed circuits of " so that every edge of I is in at most two of them.
Then v(T') > k/2.

Proof. We may assume that k is maximum with the given property. From (2.3),
there are k directed circuits Cj, ..., C}, of T, so that every edge is in <2 of them,
and for 1 < ¢ < k there is a panel A; for C; so that Ay, ..., Ay are mutually
laminar. Since I' is eulerian, it follows from the maximality of k that every edge
of T" belongs to exactly two of Cjy, ..., Cg. Choose a partition X3, X2 as in (3.1).
Fix an orientation ¢ of $3. For j =1, 2, let €; be the set of all C; (1 <i<k)
such that, if we orient A; in the sense of the direction of C; then the component
of 83 —(A1U...UAg) on the positive side of A; (defined by the product of ¢ and
the orientation of A;) belongs to X;. Thus, 8;U82={C1,...,C}, and ;NG =0.
Moreover, let e E(I'), and let e€ E(Cy), E(C2) say. Since e belongs to the closure
of only two components of §3 —(A;U...UA), and exactly one of them is in X7,
it follows that one of C1, C5 belongs to ¥1 and the other to 85. Consequently, for
j=1, 2 the members of §; are mutually edge-disjoint. Hence v(I') > |C;|, and so
20(T)>|81| +|62| =k, as required. |

The sets of integers, real numbers, non-negative integers, and non-negative real
numbers are denoted by Z, R, Z,, Ry respectively. Let G be a digraph. For any

function w: E(G) — Z., we define v(G,w) to be the maximum k such that there is
a family (C1,...,Cy) of directed circuits of G (not necessarily all distinct) so that

Hi:1<i<k, ec E(C;)} < wle)
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for every edge e of G. We say that w: E(G)—Z is a circulation if for every vertex
vof G,

Z(w(e) ce €6t (v)) = Z(w(e) te €67 (v)),

where 6% (v), 6% (v) are the sets of edges of G with tail v and head v respectively. A
digraph is flat if it is isomorphic to a directed panelled frame. From (3.2) we have:

(3.3) Let G be a flat digraph, and let w: E(G) — Z be a circulation. Then
v(G,2w)=2v(G,w).

Proof. For each edge e, replace e by w(e) parallel edges, forming a digraph H.
Now H is flat, by [4, Theorem (5.1)). From (3.2) applied to H, we deduce that
v(G,w)>v(G,2w)/2. Since the reverse inequality is trivial, the result follows. 1

It is known that for any w, the following all exist and are equal

sup k~1(@, kw), lim k710(G, kw), lim 275u(G, 2%w).
k>0 k—o0 k—oo

We denote their common value by v*(G,w). From (3.3) we have

(3.4) Let G be a flat digraph, and let w: E(G) — Z4+ be a circulation. Then
v(G,w)=v*(G,w).

Proof. From {3.3), it follows by induction on k that for all k>0,

275G, 2Fw) = v(G, w).
But v*(G,w) is the limit of the left side, and the result follows. ]

Henceforth it is sometimes convenient to use vector notation for functions
w: E(G) = R. All our vectors will belong to RE(G). A potential is a vector p

satisfying wTp=0 for every circulation w. We need the following lemma.

(3.5) Let G be a digraph, and let z € RE(G) such that wTz is integral for every
(0,41)-valued circulation w. Then there is a potential p such that w+pEZf(G).
Proof. Define N(z)={e€ E(G):z(e) ¢ Z}; we proceed by induction on |N(z)|. If
N(xz)=0 then the result holds with p=0; and so we may assume that there exists
f€N(z). Let f have head u and tail v.

Suppose first that there is a circuit C of the undirected graph underlying G,
with E(C)NN(z)={f}. Let w be a circulation in G such that w(e) =1 for all
edges e in C, and otherwise w(e)=0. By hypothesis, w” z is integral; but wie)z(e)
is integral for every e € E(G)—{f}, and so w(f)z(f) is integral, a contradiction.
Thus there is no such C.

Consequently there is a partition X, Y of V(G) such that v € X, v €Y and
every edge with one end in X and the other end in Y belongs to N(z). For e€ E(G)
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with head a and tail b, define g(e)=1ifa€Y and be X, g(e)=-1if a € X and
beY, and g(e) =0 otherwise. Then q is a potential. Choose £ >0 maximal such
that z(e)+eq(e) >0 for every edge e. (This is possible since z(e) >0 for every e,
and q(f) = —1.) Define 2’ =z +¢eq. Now N(z') C N(z), for if e € E(G) — N(x)
then g(e) = 0. Moreover, N(z') # N(z) by the maximality of e. Now for every
(0,+1)-valued circulation w,

wle! = wT:c + szq =wlz

since q is a potential, and so w”«’ is integral. From the inductive hypothesis there

(

is a potential p’ so that '+ p’ GZE G). Let p=eq+p; then p is a potential, and

z+p€ ZE(G) , as required. 1

Let G be a digraph and w: E(G)— Z4 a function. We define 7(G,w) to be
the minimum of ) .y w(e), taken over all X C E(G) such that X N E(C)#8 for
every directed circuit C. Finally, we deduce our main result.

(3.6) Let G be a flat digraph. Then v(G,w) = 7(G,w) for every circulation w :
E(G)—Z+.

(@)

Proof. Let P be the set of all :cE]Rf such that

D (a(e):e € B(C)) 21

for every directed circuit C of G. For any w: E(G) — Zy let P(w) denote the set

of all z € P with wTz minimum. If w is a circulation, we call P(w) a circular face
of P.
(1) For any circulation w: E(G) — Zy, v(G,w) = wlz for all z € P(z). In

T

particular, w' x is integral.

For w'z = v*(G,w) from the linear programming duality theorem, via a
standard argument; and v*{G,w)=v(G,w) from (3.4)

The main step in the proof is the following.

(2) Every circular face contains an integer point.

We prove (2) by induction on |E(G)|. It suffices to show that every minimal
circular face contains an integer point; so let w: F(G)—Zy be a circulation so that
P(w) is a minimal circular face. -

Suppose first that w{f)=0 for some edge f of G. Let G’ be obtained from G

by deleting f, let P’ be the polyhedron in RE(G') corresponding to P, and let w’ be
the restriction of w to E(G’). Then G’ is flat and «’ is a circulation in G’, so from

the inductive hypothesis, there is an integer point z’ € P'(w'). Define z EZE(G) by
z(e)=1'(e) (e€ E(G")) and z(f) =1. Then z € P, and we claim that x € P(w).
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For let y € P(w), and let ' be the restriction of y to E(G’). Then ¢’ € P’, and
so w'Ty > wTz! from the choice of z/. But wlz=wTy and wlz=wTz since
w(f)=0, and so wTy>wTz. Hence x € P(w), since € P and y€ P(w). Since z is
integral, it follows that P(w) contains an integer point, as required.

We may therefore assume that w(f) >0 for every f € E(G). Consequently, and
since P is a polyhedron, there exists an integer n >0 such that for every (0,+1)-

valued circulation w' in G, w+w'/n>0 and P(w+w') C P(w). Since P(nw)=P(w)
and P{nw+w')=P{w+w'/n), we may assume (by replacing w by nw) that n=1.

Now let € P(w), and let w' be a (0,+1)-valued circulation in G. By (1), w’'z
is integral, and since z € P(w)=P(w+w') (because P(w+w')C P(w) and P(w) is
a minimal circular face) it follows from (1) that (w+w')Tz is integral. Subtracting,
we deduce that w'T'z is integral, for every (0,41)-valued circulation w’. By (3.5)

there is a potential p so that x—}-pGZf(G) . Since p is a potential it follows that for
every directed circuit C of G, ) (p(e):e€ E(C))=0 and so z+p€ P; and also since

p is a potential it follows that wp=0, and so & +p€ P(w). Hence P(w) contains
an integer point. This proves (2).
Now to prove the theorem, let w: E(G) — Zy be a circulation. By (2), we

may choose an integer point € P(w). Then 7(G,w) <w”« since z is integral, and
wT z=v(G,w) by (1). Since trivially v(G,w) < 7(G,w), the theorem follows. |
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