
242 

On Supplementary Difference Sets 

JENNI~R WALLIS (New South Wales, Australia) 

Given a finite abelian group V a n d  subsets $1, Sz, ..., Sn of V, write T~ for the 
totality of all the possible differences between elements of S~ (with repetitions counted 
multiply) and T for the totality of  members of  all the T~. If T contains each non-zero 
eJement of  V the same number of times, then the sets $1, $2 . . . . .  S ,  will be called 
supplementary difference sets. 

We discuss some properties for such sets, give some existence theorems and observe 
their use in the construction of  Hadamard matrices and balanced incomplete block 
designs. 

1. Definitions 

Suppose V is a finite abelian group with v elements, written in additive notation. 
A difference set D with parameters (v, k, ).) is a subset of V with k elements and such 
that in the totality of all the possible differences of  elements from D each non-zero 
element of  V occurs 2 times. 

If  V is the set of integers modulo v then D may be called a cyclic difference set: 
these are extensively discussed in Baurnert [1]. 

It is often easier to discuss a subset D of  an abelian group in terms of its incidence 
matrix A = (aij) which is obtained by ordering the elements of  V as v,, v2,..., v v in 
some way and then choosing 

0 i = j  
a~j = + 1  ( v j - -  v~)~D 

0 otherwise 

For  a cyclic difference set if we order the elements of  V as 0, 1 .. . . .  v -  1 we will obtain 
a cyclic or circulant incidence matrix: a circulant matrix B = (b,j) of order v satisfies 
bij =bl ,y-  ~+ 1 ( J -  i+  1 reduced modulo v), while B is back-circulant if its elements 
satisfy b o =b t , i+ j - i  ( i + j -  1 reduced modulo v). 

Throughout the remainder of  this paper I will always mean the identity matrix and 
J the matrix with every element + 1, where the order, unless specifically stated, is 
determined by the context. 

Although there are many equivalent definitions, we define a (v, k, 2)-configura- 
tion to be a (0, 1)-matrix A of order v, with row and column sum k, such that the inner 
product of  any two row vectors is 4. Hence A satisfies 

A A  r = (k - A) I + JlJ. 
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A(v, b, r, k, 2)-configuration or BIBD is a (0, 1) matrix B of size vx b, with row sum r 
and column sum k, such that the inner product of  any two row vectors is 2. That is, 
B satisfies 

BB T = (r -- 2) I + 2.1. 

The reader is referred to Marshall Hall Jr. [7] for further discussion of these configu- 
rations. 

Let St, $2, ..., S, be subsets of  V, a finite abelian group, containing k~, k2 ..... k,  
elements respectively. Write T~ for the totality of all differences between elements of 
Si (with repetitions), and T for the totality of elements of all the T i. If T contains each 
non-zero element of V a fixed number of times, 2 say, then the sets St, $2, ..., S, will 
be called n-{v; k 1, k 2, ..., k , ;  2} supplementary difference sets. The incidence matrix 
for each individual set may be determined as described above. 

Examples 

In all the following cases the numbers are residues modulo 13: 
1. {5, 6, 7, 8, 11}, {1,4, 9, 10, 12}, {1, 9, 10}, {1, 5, 7}, {1, 4, 10}, {1, 7} are 6 -  {13; 

5, 5, 3, 3, 2; 5} supplementary difference sets; 
2. (1,4, 10}, {1, 3, 4}, {3,4, 12}, (6,8, 11}, (1,7} are 5 -{13 ;4 :3 ,  2; 2} supple- 

mentary difference sets; 
3. (1, 4, 9, 12}, {2, 5, 6, 11}, {1, 3, 10, 12}, {2, 5, 6, 7}, (3, 4, 9, 10}, (2, 5, 6, 8} 

are 6 -  {13; 4; 6} supplementary difference sets; 
4. {1, 4, 10}, {3, 4, 12}, ( 0, 5, 7}, {5, 6, 8} are 4 -{13 ;  3; 2} supplementary dif- 

ference sets. 
These examples indicate the existence of supplementary difference sets which have 

a range of k-values. 

NOTATION. Although G. Szekeres [12], [13] and A. L. Whiteman [16] have 
used the word 'complementary' for what we call 2 - { v ;  kl, k2; 2) supplementary 
difference sets, we will follow the convention of using complementary difference sets 
for the case when S is a (v, k, ~.)-difference set and R = { r :re  V, r ¢ S }  is its complemen- 
tary (v, v - k ,  v - 2 k  +2) difference set (see Baumert [1 ], Chapter IB). 

NOTATION. If kl = k 2  . . . . .  k n = k  we will write n -  {v; k; 2} to denote the n 
supplementary difference sets. If  

k l  = k2 . . . . .  ks, k,+ 1 = ki+2 . . . . .  k,+j ..... k~ . . . . .  k, 

then we sometimes write n - ( v ;  i : k t , j : k t + l ,  ... ; 2}. A (v, k, 2) difference set repeated 
n-times will be denoted n -  (v, k, 2). 
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NOTATION. We shall frequently be concerned with collections in which repeated 
elements are counted multiply, rather than with sets. I f  Tl and T2 are two such collec- 
tions then T 1 & T 2 will denote the result of adjoining the elements of T~ to T 2, with 
total multiplicities retained. 

An Hadamard matrix H of  order h has every element + 1 or - 1  and satisfies 
HH r =hlh. A skew-Hadamardmatrix H = I + R  is an Hadamard matrix with R r = - R. 
A square matrix K =  +_I+Q, where Q has zero diagonal, is skew-type i f  QT= _ Q .  
Hadamard matrices are not yet known for the following orders < 500: 188, 236, 268, 
292, 356, 376, 404, 412, 428, 436, 472, 476. Skew-Hadamard matrices are as yet un- 
known for the following orders <300: 100, 116, 148, 156, 172, 188, 196, 232, 236, 260, 
268, 276, 292, 296. 

2. Preliminary Results 

LEMMA 1. 
sets satisfy 

The parameters of n - ( v ;  kl, k 2  . . . .  , k~; I} supplementary difference 

1 ( v -  1) = ~ k ; ( k j -  1). (l)  
y = l  

Proof. This follows immediately from the definition by counting the differences. 
This of  course includes the case where $1 =$2 . . . . .  Sn when each S t is a (v, k, 1') 

difference set and 1 =n2'.  Also immediately we have 

LEMMA 2. For n - {v ;  k; 1} supplementary difference sets 2 ( v - 1 ) = n k ( k - 1 ) .  
Although we cannot have a counterpart of the Bruck-Chowla-Ryser theorem for 

supplementary difference sets it is clear that the methods of  Connor are applicable; 
see [7] for more details. 

LEMMA 3. Take any set of  k elements S= (sl, s2, ..., sk} from an additive Abelian 
group V. Let T be the totality of  differences of elements from S. Write 

T = [ s t - s j : i  # j , i , j  = 1.. .k].  

The n i f  we form k sets St={sj: j#i ,  sjES} and let Tt be the totality of  differences of 
elements from St and if  

R = TI & T2 &.. .  & T k 
(all repetitions remain) then 

R = (k - 2) r .  

Proof. The difference occurring from sn and s , ,  n and m fixed, will occur in every 
T~ except Tn and T m and so s n - s  m will occur k - 2  times in R. 
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L E M M A  4. ( D a s  and  K u l s h r e s h t h a  [5]). f f  S and T are as in Lemma 3 but the Si 
are formed by removing j elements systematically from S (so that each possible subset 

of j elements is removed exactly once), then there are (~ )  Si each of ( k - j )  elements. 

The corresponding T~ have ( k - j )  ( k - j -  1) elements and 

R = (  k - 2 ) j  T ,  

where(:)istheusualbinomialcoefficient. 

3. Some Existence Theorems 

W e  n o t e  tha t  wh i l e  there  are  no  non- t r iv ia l  d i f ference sets o f  o rde r  5 there  a r e  

s u p p l e m e n t a r y  dif ference sets o f  o r d e r  5. The re  are  2 - { 5 ;  2; 1}, 2 - { 5 ;  3, 2; 2} a n d  

Table 1 

Ref. Supplementary difference set Source and conditions for existence; 
No. parameters p is a prime power 

2 2--{4r+l;2r+l,2r;2r--1} 
3 2 k - - { v ; k - - 1 ;  2(k --2)} 

4 2(k -- 1) -- {v; k:k -- 1, 
(k--  2):k; ),(k -- 2)} 

(n(k -- 1) + k  + 1) -- {v; k; 2(k -- 1)} 5 

6 4r -- {4r + 1 ; 2r; 2r(2r -- 1)} 
7 4r -- {4r + 1 ; 2r --  1 ; 2(r -- 1) (2r -- 1)} 
8 (4r+2)--{4r+l;2r;2r(2r--1)} 
9 t - - { 6 t + l ; 3 ;  1} 

10 m--{mk+l;k;k--1} 
11 m--{m(k--1)+ l;k;k} 
12 m--  {2m(22+ 1) + 1; 22 + 1 ; 2} 
13 m--  {2m(2~-- 1) + 1;22; 2} 
14 4 - - { 2 k - - 1 ; k ;  2(k- -  1)} 
15 (x+y)--{4r+l;y:2r, x:r;k) 
16 (2+g)--{4r+l;2r;k} 
17 (dq--4k)-{6q+ l;k:6, dq-5k:3;d} 

- 2  k+r 

(v, k, L) difference set exists and lemma 4; 

p = 4 r +  1; from lemma 6; 
2 -- {v; k; 2} supplementary difference sets exist 
and lemma 5 w i t h j = l  on both sets; 
2 - -  {v; k; 2) supplementary difference sets exist. 
Apply lemma 5 to one of the sets and repeat the 
other set (k -- 2) times then lemma 4 gives the result; 
(n + 1) -- {v; n:k, k + 1 ; 2} supplementary differ- 
ence sets exist. Apply lemma 4; 
Number 7 and number 4; 
Number 10 with m = 2, k = 2r and lemma 5; 
Number 11 with m = 2, k = 2r and lemma 5; 
from Bose [4; series T2], Peltesohn [20]; 
p = rnk + 1 ; from Sprott [9; Series A | ;  
p = m(k -  1)+ 1 ; from Sprott [10; Series 1]; 
p = 2m(22 + 1) + 1 ; from Sprott [9; Series B]; 
p = 2m(22 -- 1) + 1 ; from Sprott [9; Series C]; 
p = 2k - -1 ;  from Sprott [I0; Series 5]; 
p = 4 r +  1; x,y, k defined in lemma 7; 
p = 4r + 1 ; 2, ~, k defined in lemma 8; 
p = 6q + 1 ; d, k defined in lemma 9; 
If3 (n + m) -- {v; n:k, m:k + r; 2} supplementary 
difference sets exist. Apply lemma 4. 
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2 -  {5 ; 3 ; 3} supplementary difference sets. It may be that for many orders which have 
no (v, k, 2) difference set there are supplementary difference sets. 

We now consider some constructions and instances of supplementary difference 
sets. Some results are summarized in table 1. 

LEMMA 5. Let (4r + 1) (prime power) = 1 (mod 4). Then there exist 2 -  {4r + 1 ; 
2r + 1, 2r; 2r} supplementary difference sets. 

Proof. If A and B are the incidence matrices of these two supplementary difference 
sets we wish to show AAr+BBr=(2r+l ) l+2rJ .  Define A - C = Q  of [7, p. 209], 
where A and Care  (0, 1) matrices. Then A + C = J - l a n d  Q = 2 A - J + I w h e r e  Q and 
hence A is symmetric. Choose B=A +I and since Q2 = ( 4 r +  1 ) 1 - J  and QJ=O we 
have A 2 + B 2 = (2r + 1) 1+ 2rJ as required. 

Let p =2qr + 1 be a prime power and let Q be a generator of  the cyclic group G of 
order 2qr. Define the subgroups L~ and Hi of G by 

H~ = {02Jq+i:0 ~<j-<< r -  1} 0 ~< i ~< 2q -- 1 

Li = {QJq+i:0 ~<j ~< 2 r -  1} 0 ~< i~< q - 1. 

Now Sprott [1954] shows that Lo ..... Lq_ 1 are supplementary difference sets as 
are Ho, ..., H2~-l. 

We show that a collection such as 

Lio, Lq ..... L~., Hi,, H,, ..... /-/~,, .... ,//,,,/-/i,, .... Hi; 

Jl times Jt times 

where s < q - 1  and t < 2 q - 1  may be supplementary difference sets. Das and Kulsh- 
reshtha's result could then be applied to the L i to form sets with r elements (as have 
the H,). These sets with r elements would then be in suitable form for constructing 
a BIBD.  

First we note that the totality of  differences from any Li are 

[qyq+, _ Qk,+i:j # k, 1 <.j, k <~ 2r] ] 

={Qk~+i: l<~k<'2r}[QYq-kq- l : j~k ' l<~j<~2r]i  (2) 
= Li [sundry elements] 

= aoLo & alL1 & "'" & a~-lL~-i (3) 

where (2) has 2r(2r-1)e lements  and (3) has 2r(ao + a l  + ' "  +aq-1) elements so 

a 0 + a l + ' " + a q - 1  = 2 r - l .  

Similarly the totality of differences from any Hi are 

[o2jq+t _ q2kq+g:j :~ k, i ~<j, k ~< r] 

= H t [sundry elements] 
= boHo & bill1 & "'" & b2~-lH2~-i 
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where 

Now 
b o + b  I -4-...+ b2q_ 1 = r - - 1 .  

- -  1 = 0 rq SO 
Hi r even 

- H~ = Hr~Cmod2~)+i = H~+q r odd 

and hence, for odd r, bi=bq+ ~. 

A construction with r odd andp (prime power) =4r  + 1 

Define 
Hi = {04J+~:0 ~<j ~< r -  1} 
L i = {OZJ+~:0 ~<j ~< 2r - 1} 

The differences from H i are 
boLt & blLi+ l 

where 2(b o +b l )  = r -  1 ; the differences from L i are 

aoL~ & alLi+ l 
where ao +a ,  = 2 r -  1. 

Then we have 

i = 0, 1,2, 3, ) 
i = 0, 1. ; (4) 

(5) 

(6) 

LEMMA 6. Let S be a collection of  sets 

H~ .. . . .  Hi, L o . . . . .  Lo i = 0  or 1 

x times y times 

where 4r + 1 is a prime power, r is odd, H t and L i are defined above, in (4), b o and ao are 

defined in (5) and (6), 

x = 2 ( 2 r -  1 - 2ao) k / [ 2 ( 2 r -  1) bo - ( r -  1) ao],  
y = -  2 ( 2 r -  1 - 2bo) k / [ 2 ( 2 r -  1) bo - ( r -  1) ao],  

k is an integer chosen so that x andy  are integers, and i is chosen by the rule "ifai>aj+ 
and b~ > b~+u choose i=1 ,  otherwise choose i=0 ' .  Then S is a collection o f  

(x + y ) - -  {4r + 1; y:2r, x : r ;  k} 

supplementary difference sets. 
Example. For  the following primes 

Prime Differences from L o Differences from Ho Supplementary 
difference sets 

13 2L o & 3L 1 L 1 L o, H~ are 2-{13; 6, 3; 3} 

37 8L o & 9L 1 2Lo & 2L1 Ho 
61 14Lo & 15L1 4Lo & 3L1 Lo, Ho are 2-{61; 30, 15; 18) 
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Another construction with r odd and p (prime power) =4r  + 1 

Let L~ and H~ be as defined above. Now f o r p = 4 r + l  the two Li have 2r elements 
and the four H~ have r dements. 

We consider the totality of differences from the set 

/-/1 u Ha = differences between dements of/-/1 
& differences between elements of H a 
& [dements of  Ha - elements of/ /1]  
& -- [dements of Ha - elements of/ /1]  

= (blL o & boL~) & (blLo & boL~) (7) 
&/-/1 [sundry elements] & - H 1 ['sundry elements] 

= (2blLo & 2boLl) & (eHo & fH1 & gH2 & hH3) 
& (gHo & hill & ell2 & fHa)  

= x L  o & ( 2 r  - -  1 - -  x )  L1, 

where counting elements we see that  ( b l + b o ) 2 r = r ( r - 1 )  and ( e + f + g + h ) r = r  2 
and x is written for 2b~ +e+g. 

Similarly the totality of  differences between elements of How H 2 = (2r-- 1 - x )  Lo 
& xL 1 and between the elements of 

HouH1 = (bo + bi + l + n) L o & (b o + bl + p  + m) L 1 t 
= y L  o & ( 2 r  - -  1 - y )  L1  . (8)  

where x and b~ are as before and ( p + m + l + n ) r = r  2. Then 

LEMMA 7. Let S be a collection of 2 copies of  rio u H1 and tz copies of  H, u H~+ 2, 
where 4r + 1 is a prime power, r is odd, H~ is defined above in (4), x and y are defined in 
(7) and (8), 

2 = (2r - 1 -- 2y) kl(2r - 1) (u - y) ,  /2 = - (2r - 1 - 2u) k/(2r - 1) (u - y) ,  

k is an integer so that 2 and # are both integers and i and u are chosen by the rule ' i f  
( x > r - ½ a n d y , > r - ½ ) o r  ( x < r - ½  and y < r - ½ )  i=0,  u = 2 r - 1 - x ,  otherwise choose 
i=1 and u = x. Then S is a collection of 

(2 +/~) - {4r + 1; 2r; k} 
supplementary difference sets. 

Example. For the following primes of the form p = 4 ( 6 s + 3 ) +  1 

Prime Differences from Differences from Supplementary Parameters 
Ho u H 1 //1 u H a Difference sets 

13 3Lo& 2L1 3Lo& 2L1 HeuH1, HouH2 2-{13;6;5} 
37 7Lo & 10L1 9Lo & 8L1 HouH1, 3(HIuH3)  4-{37; 18;34} 
61 13Lo & 16L1 15Lo & 1 4 L ~  HouH1, 3(H1uH3) 4-{61;30;58} 
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A construction with r = 3  andp (prime power) = 2 q r +  1 

Define H i and L i as before. Then 

H i = {Q2J~+t:0 ~<j ~< 2} 0 ~< i.<< 2q - 1 

Li = {¢J~+/:0 ~<j < 5} 0 ~< i ~< q - 1. 

The totality of  differences from Hi is 

boHo & btH1 &"" & bz~-lH2,-1 

and since r is odd this equals 

boLo & biLl & "" & b~-lLq-1. 

Now there are six elements in L i and three in H i so 

6(bo + bt + ' " +  bq-1) = 6  

so only one b i#0 .  Suppose Hi, is the set whose differences are L v 
Let S =  {Lil, Lt2 .. . . .  L J ,  where a given Lj may occur more than once, but where 

at least one L i (of those defined above) is not included. Then the totality of  differences 
from elements in S is 

coLo & ctL1 & "" & c~_ 1Lg- 1 

which has 2r (c o + ct + ' "  + c~_ t) elements but there are 2r ( 2 r -  1) differences from L t 
and so if we take k sets we have 2r ( 2 r -  1) k differences. Hence 

Co + ct + ' " +  c~-t = ( 2 r -  1) k = 5k. 

Let d--max(co,  Cl, ..., cq-l) .  Now form 

r=Hjo ,  Hjo ..... Hjo, Hj,,Hjl ..... Hit .. . . .  Hjq ,,Hj~ , ..... Hjo_ 1 

d - c0times d - Cl times d - c~-i times 

Then W =  S & T is a set o f  

( d q -  4 k ) -  {6q + 1; k:6, d q -  5k:3;  d} 

supplementary difference sets. 
Summarizing 

L E M M A  8. Let p =6q + 1 be a prime power and let Q be a primitive root of 

GF(p), define 

n ,  = {02Ja+s:o ~<j ~< 2}, L, = {QJa+':0 ~<j ~< 5} O<~i<~q-1 

0 ~ < s ~ < 2 q - 1 .  
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Let S be a collection of k Li, where repetitions may occur but at least one of the q L i is 
not in S. Suppose the differences from the sets of  S are &~_-o 1 c~L~ and d=max(ci).  Then 
there exist 

( d q -  4 k ) -  {6q + 1; k:6, dq - 5k:3; d} 

supplementary difference sets. 

4. Supplementary Difference Sets as Used by Paley, Szekeres and Whiteman 

Paley [8], Szekeres [12], [13] and Whiteman [161 have been constructing two 
(1, - 1) matrices A and B of  order v satisfying 

AA r + BB r = 2 ( v  + 1 ) I -  2J .  

The results of these papers imply the existence of 2 - { v ;  k~, k2; ka +kz-~- (v  + 1)} 
supplementary difference sets where v is odd. 

L E M M A  9. l f v  is odd 2 - { v ;  kl, kz; kl + k 2 - ½ ( v + l ) }  supplementary difference 
sets can only exist i f  

(i) kt =k2 = ½ ( v -  1); 
(ii) kl = k 2 - 1  = ½ ( v -  1); or 

(iii) kt  =k2 =½ (v + 1). 
Proof. The equation (1) gives 

[ k ,  + k2 - ½(v + 1)]  (v - l )  = k~ + k~ - k~ - k2 
so 

(~ - 1) = k l  (~ - k l )  + k2 (~ - k~) .  (9) 

Elementary calculus tells us the expression x ( v - x )  is maximum for x=½v, which 
is of course not an integer. The maximum integer value of x (v - x) is ¼ (v 2 - l )  which is 
attained for x =½ ( v - 1 )  or ½ (v + 1). 

Hence the only times when (9) is satisfied is when 

k, =½(~+ 1). 

5. Williamson-Type Hadamard Matrices 

An Hadamard matrix of  Williamson-type is one of  the form 

c il A n - (10) 
H =  - D  A " 

C - B  A 
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These are discussed by Williamson [18], Marshall Hall Jr. [7], Baumert and Hall [3], 
Baumert [2], Whiteman [17] and Goethals and Seidel [6]. 

In [18] and [7] A, B, C, D are circulant symmetric (1, - 1) matrices of order v with 
first rows given by the (1 × v) vectors (a~), (a2,), (a3,) and (a4-,) respectively where 

a j l = + l  j = 1 , 2 , 3 , 4  

a j i  = aj ,  v + z _  ~ 2 <~ i <~ v. 

Let the sets Sj = {i : aji = + 1 }, j = 1, 2, 3, 4 be of order kj respectively. Then if these 
sets correspond to an Hadamard matrix they are 

4 

4 - (v; kl, k2, ka, k4-; ~ k i - -  V} (11) 
i = 1  

supplementary difference sets. 
Since the equation 

4 

1) = 2 k , (k , -  1) 
i = 1  

must be satisfied, we have 
4- 4- 

v~ .  k , - v ( v - 1 ) =  2 k2 (12) 
i = 1  i = l  

and so, as was also shown by Williamson [18, p. 71, equation 16], we have 

LEMMA 10. I f  4 - { v ;  kl, k2, k3, k , ;  ~ - i  k , - v }  supplementary difference sets 
which may be used to construct Williamson-type Hadamard matrices exist then 

4 

vl Y, k?. 
i = l  

Multiplying through (12) by 4 and rearranging we have 

4. 

Z (2k, - v) z = 4v. (13) 
i = l  

6. Williamson-Type Skew Hadamard Matrices 

Goethals and Seidel [6] have used a construction similar to that we now give, but 
our more restrictive equations have always given a solution. 

LEMMA 11. S u p p o s e  a i j ,  i=1,  2, 3, 4 and j=  1, 2 ..... v, are each +_ 1 and satisfy 

l a~l =+ 1 j = 1, 2, 3, 4 

al j  - a1,~+2-~ i =2 ,  3,4~ 1 ~<j <~ v. (14) 
a|j -F at, v+2 ) 
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Let  A, B, C and D be square matrices with first rows (aly), (a2j), (aaj) and (a4j) respec- 
tively, A being circulant and B, C and D back-circulant; that is, 

A = a l l I  + a 1 2 T + ' " +  alvT ~-I 
B = (aalI + a 2 z T + . . . +  a2oT v- i )  R 
C = (aalI + a a 2 T + ' " +  a3vT o- i )  R 

D = (a41I+ a4zT+ ' ' ' +  a4vT ~-l)  R 

where T and R are 0 x v matrices defined by 

Then i f  

Do 0 0 0 0 1  
T =  , R =  . 

0 - - - 0  1 . . . .  O0  
0 - - - 0  0 . . . .  O0  

(15) 

AA r + BB T + CC T + DD T = 4rio (16) 

and H is as given by (10) above, H is a skew-Hadamard matrix of  order 4v. 
I f  kl, k2, ka, k4 are the numbers of positive elements in A, B, C, D respectively, 

then kl =½ (v + 1) and k2, ka, k4 are odd. Then equation (13) may be rewritten 
4- 

E (2k~ - v) 2 = 4v - 1 ; (17) 
i = 2  

this result was pointed out to us be Professor G. Szekeres. 
Now every odd number may be written as the sum of three squares and thus (17), 

together with k2, ka, k4 being odd, gives the ks exactly. I f  in addition we repeat the 
logic of Williamson's method as given in Marshall Hall, Jr. [7] we get 

THEOREM 12. Suppose v is odd. Let the a~ be given by (14), and define PI, P2, Pa 

and P4 by 
1"1= E r -l, 

at J= 1 

P~= ~. T J - I R ,  i = 2 , 3 , 4 .  
alj= 1 

(That is, each P is the sum of  those terms o f  the relevant line of  (15) with positive 

coe~cient.) 
/./'(16) is satisfied then we can write 

PI ÷ P~ = Zg~ Tl 

P] + + = T,g,T' 
for some integers f~ and gi, and 

g, = f~ (mod 2) when i ~ O. 
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Proof. Write the A of(15) as 
A = Pi - (18) 

where P is as we have defined above; then 

N I =  ~ T J - ' .  (19) 
a13= - 1  

In the same way write 

B = Pz - N2, C = Pa - Na, D = P4 - N,,. (20) 

By (14), a l l  = +1 and a l j =  - -a l ,v+2_ J when 2<~j<<.v, so there are 

k 1 = ½ (v + 1) (21) 

positive summands in A; so the number of summands in PI is odd if v -  l (rood 4) 
and even if v - 3 ( m o d  4). For  i=2,  3, 4, we know by (14) that a i l =  + l  and a l j=  
=ai,  v+2-j for 2 ~<j~< v, so the positive elements (after the first) appear in pairs and 
their number is odd, so the number ki of  positive summands in P~ is also odd for i>  1. 

Clearly 
J = I  + T + TZ + . . . +  T V - I = ( I  + T + T2 + . . . +  T v - t ) R ,  (22) 

S O  

P ~ + ~ = J ,  i = 1 , 2 , 3 , 4 .  (23) 

Since A is skew-type and B, C and D are symmetric, equation (16) is 

A ( 2 1 -  A) + B 2 + C 2 + D 2 =4r io ,  

and using (18), (19), (20), (22) and (23) this becomes 

(2Pt - J)  (2I - 2P1 + J )  + (2P2 - j )2 + (2Pa - j)2 + (2P4 - j)2 = 4vI .  

Therefore, since PzJ= k iJ  and j z  = v J, 

4 (P1 - p2 + pz2 + pa2 + p~) + 4 (kl - kz - k3 - k4) J + (2v - 2) J = 4vI .  (24) 

Now from (21) 
4kt + 2 v -  2 = 4 v  

so (24) becomes 

Pl - P'~ + p2 + p2 + p2 = (k2 + ks + k4 - v) J + vI .  (25) 

Since v, k 2, k 3 and k4 are all odd, the coefficient of  J is always even. 
Since Px is a polynomial in T with integer coefficients, so is P I - P ~ ;  from (22) 

the right hand side of (25) is also an integer polynomial in T. So from (25), 
p ]  + p ]  +/,2 is another polynomial in T. I f  we write 

P1 + V ?  = ~:fT '  
+ + P2 =  g,T' 

Pl -- V~ = Z'h, T~ 

then ,Sf~T~=r, h iT  i +2P 2, sof~-h~(mod2)  for each i. 
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Substituting in (25) and comparing coefficients, 

g i + h i = k 2 + k 3 + k , - v  w h e n i > 0 ,  

so gi and hi are congruent (mod2) when i>0.  This establishes the Theorem. 
We have proved more than was stated in Theorem 12, but the form in the enuncia- 

tion is that which proves most useful in calculation. Using the techniques outlined in 
this section we have found for the following orders that the four supplementary differ- 
ence sets given yield a skew-Hadamard matrix of Williamson-type: 

v = 3 : { 1 , 3 } ,  {1,2,3}, {1}, {1} 

v = 5 : { 1 , 4 , 5 } ,  {1,3,4}, {1}, {1} 
v = 7 : { 1 , 5 , 6 , 7 } ,  {1,4,5}, {1,3,6}, {1} 
v = 9 : { 1 , 5 , 7 , 8 , 9 } ,  { 1 , 2 , 3 , 5 , 6 , 8 , 9 } ,  {1,5,6}, {1 ,2 ,4 ,7 ,9}  

v = 1 1 : { 1 , 6 , 8 , 9 , 1 0 , 1 1 } ,  { 1 , 2 , 4 , 6 , 7 , 9 ,  11}, {1 ,2 ,4 ,5 ,8 ,9 ,11} ,  {1,6,7} 

v = 13: {1, 6, 8, 10, 11, 12, 13}, {1, 2, 3, 4, 7, 8, 11, 12, 13}, 
{1, 3, 4, 5, 7, 8, 10, 11, 12}, {1, 2, 5, 7, 8, 10, 13} 

v = 15: {1, 7, 9, 11, 12, 13, 14, 15}, {1, 2, 4, 5, 6, 7, 10, 11, 12, 13, 15}, 
{1, 2, 3, 6, 8, 9, 11, 14, 15}, {1, 3, 6, 7, 10, 11, 14} 

v = 17: {1, 7, 10, 11, 13, 14, 15, 16, 17}, {1, 2, 6, 9, 10, 13, 17}, 

{1, 2, 6, 8, 11, 13, 17}, {1, 4, 6, 13, 15} 
v = 19: {1, 2, 5, 6, 7, 8, 10, 17, 18}, {1, 2, 8, 9, 12, 13, 19}, 

{1, 3, 4, 6, 15, 17, 18}, {1, 5, 7, 10, 11, 14, 16}. 

7. Using Supplementary Difference Sets to form BIBD's 

Suppose the incidence matrices Al, . . . ,  A, of n - { v : k l , . . . ,  k,,; 2~} supplementary 
difference sets are placed together thus: 

B = [AIA2. . .  An]. 

Then B is of order o x vn, each row has constant number of  non-zero elements ~ =  1 kt 
and the inner product of any two rows is 2. In fact, the only hindrance to B being a 
BIBD is that B does not have constant column sum. 

Readers of Bose [4] and Sprott [9], [10] will see the similarity between the construc- 
tions described there and this construction. In fact, Bose's Module Theorems for pure 
differences may be stated as: 

FIRST M O D U L E  T H E O R E M  OF BOSE (FOR PURE DIFFERENCES).  / f  
there are m -  {v; k;  2} supplementary difference sets then there is a BIBD with parameters 

(v, b = my, r = ink, k, 2) .  
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SECOND MODULE THEOREM OF BOSE (FOR PURE DIFFERENCES). I f  
there are (t + s) - {v; t:k, s: ( k -  1); 2} supplementary difference sets, where kt = v s -  2 
and ( k -  1) s =2, then there is a BIBD with parameters 

(v + 1, b = v (s + t), r = vs, k, 2). 

Using the examples after Lemma 7 we now have that there exist a (37, 148, 72, 18, 
34) and a (61,244, 120, 30, 58) configuration. 

COROLLARY 13. I f  there exist ( n + l ) - ( v ;  n : ( k + l ) ,  k; k} supplementary dif- 
ference sets and v = (n + 1) k +n, then there exists a BIBD with parameters 

(v + 1, (n + 1)v ,v ,  k +  1, k).  

Bose's First Module Theorem and Lemma 5 ensure 

THEOREM 14. I f  there is a (v, k, 2) difference set and r <k  then there is a BIBD 
with parameters 

In particular for r = 1 
(v, kv, k ( k  - 1), k - 1, 2(k - 2)). 

With r = l  in Theorem 14 we get from the difference sets (21, 5, 1) and (11, 5, 2) 
the BIBD's with parameters (21,105, 20, 4, 2), (11, 55, 20, 4, 6) which are listed as 
unknown by Sprott [11] but were found by Das and Kulshreshtha [5]. 

COROLLARY 15. I f  there exist 12-{v; k; 2} supplementary difference sets then 
there exist a 

(i) (v, 2kv, 2k ( k - 1 ) ,  k - 1 ,  2 (k-2))-configuration; 
(ii) (v + 1, 2v ( k -  1), kv, k, 2 ( k -  2))-configuration, when 2 ( k -  2) =k  ( k -  1) and 

v = 2 k - 3  are also satisfied. 
Proof. This follows using Bose's Module Theorems for Pure Differences and 

numbers 3 and 4 from table 1. 

COROLLARY 16. I f  there exist ( n + m ) - { v ; n : k , m : k + r ;  2} supplementary 
difference sets then there exists a 

(v, sv, sk, k, ( k  + ~ - 2 )  2)-configuration 

where 

6'~-~n - [ - m  . 
r 
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Proof. Use number 20 from table 1, Lemma 5 and Bose's First Module Theorem 
for Pure Differences. 

Then using the 2-{61;30, 15; 18} supplementary difference sets described before 
we have a (61, 61 (s + t), 15 (s + t), 15, 18t) configuration where 

(30)  and t = ( 2 8 )  
s =  15 1 5 "  

8. Using Sprott's Series 

If v = 2m ( 2 2 - 1 )  + 1 in Sprott [9] series B and C then we have m -  { v; 2 2 - 1  ; 2 - 1  } 
and rn -{v ;  22; 2} supplementary difference sets respectively. Then applying Bose's 
Second Module Theorem with the r n - ( v ;  2 2 -  1; 2 - 1 }  sets repeated ~ times and the 
r e - { v ;  22; 2} sets repeated fl times we have 

LEMMA 17. l f  v = 2 m ( 2 2 - 1 ) + l  is a prime power and 

(22 - 1) 
then there exists a 

(v + 1, v(~ + fl) m, r = =vm, 22, (22 - 1)am)-configuration. 

If  v = rnk + 1 is a prime power and the supplementary difference sets m - { v; k; k -  1 } 
from Series A of  [9] are repeated ~ times and the m -  {v; k + 1 ; k + 1 } sets from Series 
1 of [10] are repeated fl times then 

LEMMA 18. I f  v=mk  + l is a prime power and 

+ B) k + - 
m = 

~k 
then there exists a 

(v + 1, v (ce + fl) m, cwm, k + 1, ~km)-configuration. 

~=f l= l ,  k = 2  gives a (6, 20, 10, 3, 4)-configuration. (A configuration of  these 
parameters can be found by duplicating a (6, 10, 5, 3, 2)-configuration; however, that 
is not isomorphic to the one we find here.) 

Now we examine Sprott's Series A, B, C of  [9] and Series 1 of  [10] to find when 
they may be useful in constructing Hadamard matrices. 

We use m =2 and Sprott's Series of  [9] and [10] in the block matrix H of Goethals 
and Seidel [6], and find 
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T H E O R E M  19. Suppose there exist 

(i) 2 - { 2 k + 1 ;  t, u; t + u - k }  supplementary difference sets; or 

(ii) 2 - ( 2 k  + 1; t; 2 t - k )  supplementary difference sets where k = t +_-1; or 
(iii) 2 - { 2 2 - 1 ;  t, u; t + u  + 1 -  2} supplementary difference sets; or 

(iv) 2 -  ( 2 2 -  I ; t; 2t + 1 - 2 }  supplementary difference sets where 2 = 1 + t ++_ x / ~ ;  or 

(v) 2 - { 8 t + t ;  t, u; t + u - 5 2 - 3 }  supplementary difference sets, where the first 
parameter, v say, is always a prime. Associate with these the two (2) supplementary 

difference sets o f  Sprott 's  Series o f  size v as follows: Series A o f  [9] in cases (i) and (ii), 
Series 1 o f  [10] in cases (iii) and (iv), Series B o f  [9] in the case (v). I f  the four  incidence 
matrices in the particular case are circulant then there is an Hadamard matrix o f  order 

4v. I f  one o f  the matrices is circulant and skew-type and the other three are circulant 

then there is a skew-Hadamard matrix o f  order 4v. 
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