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Summary. The accuracies and efficiencies of four differ- 
ent methods for constructing phylogenetic trees from 
molecular data were examined by using computer simu- 
lation. The methods examined are UPGMA, Fitch and 
Margoliash's (1967) (F/M) method, Farris' (1972) 
method, and the modified Farris method (Tateno, Nei, 
and Tajima, this paper). In the computer simulation, 
eight OTUs (32 OTUs in one case) were assumed to 
evolve according to a given model tree, and the evolu- 
tionary change of a sequence of 300 nucleotides was 
followed. The nucleotide substitution in this sequence 
was assumed to occur following the Poisson distribution, 
negative binomial distribution or a model of temporally 
varying rate. Estimates of nucleotide substitutions (ge- 
netic distances) were then computed for all pairs of the 
nucleotide sequences that were generated at the end of 
the evolution considered, and from these estimates a 
phylogenetic tree was reconstructed and compared with 
the true model tree. The results of this comparison 
indicate that when the coefficient of variation of branch 
length is large the Farris and modified Farris methods 
tend to be better than UPGMA and the F/M method 
for obtaining a good topology. For estimating the num- 
ber of nucleotide substitutions for each branch of the 
tree, however, the modified Farris method shows a 
better performance than the Farris method. When the 
coefficient of variation of branch length is small, how- 
ever, UPGMA shows the best performance among the 
four methods examined. Nevertheless, any tree-making 
method is likely to make errors in obtaining the correct 
topology with a high probability, unless all branch 
lengths of the true tree are sufficiently long. It is also 
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shown that the agreement between patristic and ob- 
served genetic distances is not a good indicator of the 
goodness of the tree obtained. 
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Introduction 

One of the important subjects in the study of molecular 
evolution is how to construct a phylogenetic tree from 
molecular data. This subject has been called molecular 
taxonomy (e.g., Nei 1978). Various methods have been 
proposed for constructing phylogenetic trees from 
amino acid sequences, nucleotide sequences, and elec- 
trophoretic data. These methods can be classified into 
two groups. In the first group, genetic distances for all 
pairs of species are computed, and a tree is constructed 
from these distance data. In the second the property and 
relationship of amino acid or nucleotide sequences from 
different species are used for the construction of a tree. 
The first group includes the unweighted pair-group 
method (UPGMA, Sneath and Sokal 1973), Edwards and 
Cavalli-Sforza's (1965) method, the least squares method 
(Cavalli-Sforza and Edwards 1967), the additive tree 
method (Cavalli-Sforza and Edwards 1967), Fitch and 
Margoliash's (F/M) (1967) method, Farris' (1972) 
method, Moore et al.'s (1973a) method, and others. 
UPGMA was originally proposed for phenetic classifi- 
cation by Sokal and Michener (1958), but Nei (1975) 
applied this method for making a phylogenetic tree 
under the assumption that the expected number of gene 
substitutions is proportional to the evolutionary time 
(constant rate of substitution). Chakraborty (1977) 
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showed that if the topology is known, this method 
gives least squares estimates of branch lengths. The 
second group includes Dayhoff's (1969) ancestral se- 
quence method, Moore et al.'s (1973b) maximum par- 
simony method, and others. 

We know, however, very little about the accuracies of 
these methods. Actual data are virtually useless for 
studying the accuracy of tree-making methods, since the 
true tree is not known. Fossil records are quite uninfor- 
mative for this type of study simply because there are 
not enough data in most cases. Thus, the only possible 
way to examine the accuracy is to conduct computer 
simulation using certain model trees. Peacock and 
Boulter (1975) studied this problem by using computer 
simulation, but they employed an amino acid substitu- 
tion model rather than a nucleotide substitution model. 
They examined only two methods, i.e., Dayhoff's ances- 
tral sequence method and Moore et al.'s (1973a) meth- 
od. On the other hand, Prager and Wilson (1978) studied 
the discrepancy between the observed and estimated 
(Farris' (1972) patristic) distances for the phylogenetic 
trees constructed by UPGMA, Fitch and Margoliash's 
method, and Farris' method using empirical data. Their 
criterion of a best tree was that the percent squared 
deviation of the patristic distances from the observed 
distances be minimal. However, since the exact phylo- 
genetic tree is unknown, this type of study does not 
necessarily give correct information. 

In this series of papers we shall investigate the accura- 
cies of  tree-making methods in the first group. Except in 
one case, we assume that the expected rate of gene sub- 
stitution is constant, though the actual number of sub- 
stitutions for a given period of time may vary because of 
stochastic errors. We make this assumption, since most 
molecular data satisfy this assumption approximately 
(Wilson et al. 1977). In this study we have chosen three 
methods, i.e., UPGMA, Fitch and Margoliash's method, 
and Farris' method, since these three methods are more 
often used than others in molecular taxonomy. In addi- 
tion to these methods we have modified Farris' method 
for the case where a distance measure proportional to 
evolutionary time is used, and included this modified 
Farris method in the present study. In this paper we 
shall study the phylogenetic trees constructed from 
nucleotide sequences, whereas in the second paper the 
phylogenetic trees obtained from gene frequency data 
will be examined. Since we are interested in tree-making 
methods based on genetic distances, we shall not use the 
second group of tree-making methods, though some of 
these may produce a better tree than the first group. We 
note that the first group of methods are much simpler 
than the second group and in some types of data such as 
immunological distance or the genetic distance estimated 
from restriction-site data, the second group of methods 
are not applicable. We shall first describe our modified 
Farris method, and then examine the accuracies of the 
four methods. 

Modified Farris Method 

Farris' method is intended to construct a parsimonious 
phylogenetic tree but requires a metric that complies 
with the triangle inequality. No consideration is made 
about the effect of  stochastic errors in the process of  
evolution, and in the presence of this effect his method 
tends to give overestimates of  branch lengths, as will be 
shown later. On the other hand, many measures of gene 
substitutions such as Jukes and Cantor's (1969) estimate 
of  the number of nucleotide substitutions, Sarich and 
Wilson's (1966) immunological distance, and Nei's 
(1972) genetic distance are not metrics and often 
violate the triangle inequality because of backward and 
parallel mutations. They are also subjected to a large 
extent of stochastic errors. Therefore, it is necessary to 
modify his method to make it applicable to these mea- 
sures. Just like Farris' method, our modified Farris 
method is a heuristic one and does not necessarily give 
the most parsimonious tree. However, it generally gives 
better estimates of  branch lengths compared with 
Farris' method. Before discussing or method, let us first 
describe Farris' method briefly. 

Consider the distance matrix given in Table 1. Sup- 
pose that distance D12 is the smallest in the matrix. 
OTUs 1 and 2 are then combined first. The distance 
between this combined OTU (1,2) and each of the three 
remaining OTUs is computed by taking the average of 
the distance between OTU 1 and a third OTU and that 
between OTU 2 and the third OTU. Suppose that the 
distance between OTU (1,2) and OTU 3 is the smallest 
among the distances thus obtained. Then, OTU 3 is 
combined with OTU (1,2) as shown in Fig. l a. This 
figure represents a network rather than a rooted tree, 
because this method cannot determine the most ances- 
tral point (the evolutionary origin of all OTUs con- 
cerned). In this figure X is a branching point. Each 
branch length of the network is computed by the follow- 
ing formulas: 

L(3,X) = (D13 + D23 - D12)/2, 

L(1,X) = D 13 - L(3,X), 

L(2,X) = D 23 - L(3,X), 

( la)  

(lb) 

(lc) 

where L(a,b) represents the length between points a and 
b. In practice, these values are computed for every pair 

Table 1. Distance matrix for five OTUs 

OTU 2 3 4 5 

1 D12 D13 D14 D15 
2 D23 D24 D25 
3 D34 D35 
4 D45 
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Fig. 1 a-d. Trees represented by networks; a Tree for three 
OTUs. Numbers 1 to 3 refer to three OTUs and X to a branch- 
ing point; b Three possible ways by which OTU A is connected 
to the tree in (a). A1, A2, and A 3 are the three possibilities, and 
Y1, Y2, and Y3 are the corresponding branching points; c Tree 
for four OTUs. Numbers 1 to 3 and A refer to four OTUs, and 
X and Y to branching points; d One possible way to add OTU 
B to the tree in (c). Z is a branching point 

of  OTU (1,2) and the remaining OTUs, and the OTU 
which shows the smallest length to X is chosen. 

We now proceed to the next step where one more 
OTU is added to the network. There are three possibili- 
ties for one (A, say) of  the remaining OTUs (4 and 5) to 
be connected to the network. Namely, OTU A may be 
connected at point Y1, Y2, or Y3 in Fig. lb. The sub- 
scripts of  A in the figure correspond to the three possi- 
bilities. The branch lengths L(A1,Y1), L(A2,Y2), and 
L(A3,Y3) are then computed. This computat ion is done 
for all remaining OTUs (4 and 5), and the OTU which 
gives the smallest branch length is chosen to be con- 
nected to the network. In practice, L(Ai,Yi)'s are com- 
puted by the following formulas: 

L(A1 ,Y1) = [L(A1,1) + L(A 1 ,X) - I_(1 ,X)]/2 (2a) 

L(A2,Y2) = [L(A2,2 ) + L(A2,X ) - L(2,X)]/2 (2b) 

L(A3 ,Y3) = [L(A3,3) + L(A3 ,X) - L(3,X)]/2. (2c) 

In these formulas L(AI,1 ), L(A2,2 ), and L(A3,3 ) are 
directly obtained from the distance matrix, whereas 
L(1 ,X), L(2,X), and L(3,X) have already been computed 
by using (1). On the other hand, L(A 1 ,X), L(A 2 ,X), and 
L(A3,X ) are computed by the following formulas: 

L(A 1 ,X) = L(A 1,2) - L(2,X) = L1, or 

= L(A 1,3) - L(3,X) = L2, (3a) 

L(A2,X ) = L(A2,1 ) - L(1,X) = L3, or 

= L2, (3b) 
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L(A 3,X) = L 3 or L 1 . (3c) 

Among L1, L2, and L 3 Farris chooses the largest value 
and uses it for all of  L(Ai,X) in (3). Suppose that 
L(A3 ,Y3) was the smallest. Then OTU A is connected to 
the branch 3-X, as shown in Fig. lc. 

The last OTU (B which is either OTU 4 or 5) is then 
added to the network in Fig. lc. The connecting proce- 
dure is the same as the above, except that  there are five 
possible ways of  connection in this case. However, there 
is one problem. To see this, let us consider the case 
where OTU B is connected to the branch X-Y, as given 
in Fig. 1 d. According to Farris, L(B,Z) is given by 

L(B,Z) = [L(B,X) + L(B,Y) - L(X,Y)]/2. (4) 

The problem is that L(B,X) or L(B,Y) cannot be ob- 
tained from the distance matrix directly, because X and 
Y are not OTUs but branching points. Therefore, Farris 
does not use (4) for obtaining L(B,Z) but uses the result 
o f  the previous computat ion in which OTU A was added 
to the network. In this computat ion every member  of  
the remaining OTUs was tested to find the OTU to be 
added to the network in Fig. 1 a. The value of L(B,Z) 
was computed in this step of  testing. At any rate, the 
final network, which includes all OTUs concerned, is 
produced in this way. 

As mentioned above, we cannot decide the most  
ancestral point in this method.  One of  Farris' suggestions 
is that this point be determined by assuming that the 
evolutionary rates of  the two most  divergent branches 
in the network are equal. In this paper we follow this 
suggestion. 

There seem to be two problems in applying Farris' 
method to molecular data. The first is the estimation of  
branch lengths L(Ai,X)'s by the largest value of  L 1 , L 2 , 
and L 3 in (3). Since estimates of  genetic distances are 
generally subject to large sampling errors, this procedure 
is expected to lead to an overestimate of  L(Ai,X ), and 
subsequently an overestimate of  L(A i,Yi), which may be 
serious particularly when the number of  OTUs is large. 
In fact, our computer  simulation has shown that  the 
distance between two OTUs estimated by this method 
is often much larger than the actual value (see below). 
In practice, many measures of  molecular changes of  
genes tend to give an underestimate when the values of  
the measures are extremely large. Farris' method may 
correct this underestimation under certain circum- 
stances, but  this type of  correction often leads to an 
overcorrection because of  stochastic errors even if some 
caution is exercised (Tateno and Nei 1978; Nei and 
Tateno 1978). At any rate, in this paper we are primarily 
interested in the phylogenetic trees constructed by using 
distance measures of  which the expected value is pro- 
portional to evolutionary time. For these measures 
Farris' procedure does not seem to be appropriate. The 
second problem is the replacement of  L(B,Z) in (4) by  
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the value obtained in the previous computation. Since 
the network in the previous computation is different 
from the one in which L(B,Z) is computed, this replace- 
ment is not justified. 

To make Farris' method appropriate to molecular 
data, we introduce different ways of computing L(Ai,X ) 
and L(B,Z). We consider a general network given in 
Fig. 2. We propose that the branch lengths L(F,G) in this 
network be estimated by the following formula: 

L(F,G) = [L(F,S) + L(F,T) - L(S,T)]/2. (5) 

This formula corresponds to (2) or (4), but L(F,S) and 
L(F,T) are obtained in a different way. In Fig. 2 we note 
that L(F,S) can be computed by any of the following 
three formulas: 

L(F,S) = L(1,F) - L(1,S), 

= L(2,F) - L(2,S), 

= L(4,F) - L(4,S). 

Note that all six quantities on the right hand side of the 
equations are already known. We estimate L(F,S) by 
taking the average of the three values obtained by the 
above formulas. Similarly, L(F,T) may be estimated 
either by L(3,F) - L(3,T) or by L(5,F) - L(5,T). We 
again take the average of these values to estimate L(F,T). 
L(S,T) is already known from the previous computa- 
tion. 

Since we use an average of two or more estimates to 
compute a branch length which is not directly obtain- 
able, we can avoid the overestimation that may occur in 
Farris' method. This procedure also helps to reduce the 
effect of random errors. Furthermore, our estimation of 
a branch length is always based on the relevant network, 
so that the second deficiency in Farris' method is also 
eliminated. We call this method the modified Farris 
method, and include it in the following study. (A com- 
puter program for this modified Farris method may be 
obtained by writing to M. Nei.) 

Model and Method of Computer Simulation 

The computer simulation used is briefly as follows: 
A hypothetical gene of 300 ancestral nucleotide se- 
quences (100 codons) was duplicated at each branching 
point of the model tree used and subjected to nucleotide 
substitution, and all descendant nucleotide sequences 
were examined at the terminal points of the tree. From 
these sequences genetic distances (numbers of nucleotide 
substitutions) for all pairs of the sequences were esti- 
mated. These distances were then used as input data 
for making trees, and the tree reconstructed was com- 
pared with the model tree to see how accurately each of 
the four methods reconstructs the tree. 

Fig. 2. A network for six OTUs. 
Numbers 1 to 5 and F refer to six 
OTUs, and G, S, and T to branching 
points 

Nucleotide substitution was assumed to occur purely 
at random. Thus, each of the 300 nucleotides was 
replaced by any of the three other nucleotides with an 
equal probability (1/3). When a nonsense codon occurred 
as a new mutation, it was eliminated, and another muta- 
tion was generated to substitute the nonsense mutation. 
We used three different methods to determine the 
actual number of nucleotide substitutions for a given 
branch of the model tree. In the first method the num- 
ber was determined by using the Poisson distribution, 
whereas in the second a negative binomial distribution 
was used. In these two cases the expected rate of nucleo- 
tide substitution was constant over all branches. The 
actual number of substitutions for a given branch was 
generated by using pseudorandom numbers, and thus 
varied from branch to branch even though the expected 
number was the same. In the third method the expected 
rate of substitution varied with unit evolutionary time 
in each branch, following a gamma distribution. In all 
cases the actual number of nucleotide substitutions for 
each branch was recorded. 

To set up a model tree, we must determine the num- 
ber of OTUs and the topology. Since a large-scale com- 
puter simulation with many replications was needed, 
we could not use a large number of OTUs. We decided to 
use 8 0 T U s  except in the study of the effect of the 
number of OTUs. With respect to the topology, there are 
basically two different types as shown in Fig. 3. In these 
trees eight OTUs are represented by numbers 1 to 8, 
and M or L represents the expected number of nucleo- 
tide substitutions for the shortest branch. Both of these 
trees are topologically extreme, and the topologies of 
actual trees are generally somewhere between them. 
Preliminary studies have shown that when the entire 
evolutionary time (T in tree a and T' in tree b) is fLxed, 
tree a is subject to more errors than tree b. This is 
because tree a includes shorter branches than tree b, 
and the shorter the branch length the larger the coeffi- 
cient of variation of the number of substitutions. Since 
we are interested in the errors that occur in tree-making, 
we have decided to use tree a in our study. 

To obtain a distance matrix to be used as the input 
data for reconstructing a tree, we computed the number 
of nucleotide differences between every pair of the eight 
nucleotide sequences. However, this number does not 
represent the actual number of nucleotide substitutions, 
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Fig. 3. Two types of model trees considered in computer simula- 
tion. Numbers 1 to 8 refer to 8 OTUs. M or L represents the 
expected number of nucleotide substitutions in the shortest 
branch, whereas T or T' the evolutionary time considered 

since multiple substitutions might have occurred at the 
same nucleotide site. Therefore, we used Jukes and 
Cantor's (1969) method to estimate the number of 
nucleotide substitutions from the data on the number of 
nucleotide differences. (Note that this estimate does not 
necessarily satisfy triangle inequality). The matrix of  
the estimated numbers of nudeotide substitutions thus 
obtained was used for reconstructing a tree. Except in 
the F/M method, the phylogenetic tree is uniquely deter- 
mined for a given set of genetic distance data. In the 
case of the F/M method, several trees are constructed 
for each data set, and the best tree is chosen. In our 
study we constructed 15 trees for each replication and 
chose the best tree according to Fitch and Margoliash's 
(1967) criterion. 

Measure of Deviation of a Reconstructed Tree from the 
Model Tree 

Two criteria are important in measuring the deviation of 
a reconstructed tree from the model tree. One is the 
degree of distortion of the topology of the reconstructed 
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tree, and the other is the amount of deviation of the esti- 
mated branch lengths from the true lengths. 

1. Topological Errors 

In this study we used Robinson and Foulds' (1981) 
method to measure the degree of topological errors. In 
this method the minimum number of operations (con- 
tractions and decontractions of branches) that transform 
one tree into another is used as a measure of topology 
distortion, and it can be obtained by counting the num- 
ber of unmatched branches (edges in graph theory) 
between the two trees to be compared. In this paper we 
call this the distortion index and denote it by d T. This 
is approximately twice the minimum number of nearest 
branch interchanges that are required for changing one 
tree to the other, when d T is small. Therefore, it has a 
high correlation with Waterman and Smith's (1978) 
nearest neighbor interchange metric or Tateno's (1978) 
DI value, but its computation is straightforward and 
simple. This method has been developed for unrooted 
trees, but it can be used for rooted trees as well if we 
regard the root as one OTU. 

In addition to d T we have also computed the propor- 
tion (P) of  replications in which the correct topology 
was obtained. This P can also be used for comparing the 
accuracies of different tree-making methods. 

2. Errors in the Estimates o f  Branch Lengths 

The best way to measure the deviation of estimated 
branch lengths from true lengths would be to compute 
the squared deviation of a branch length of the recon- 
structed tree from that of the model tree, and take the 
average over all branches. However, this is not practica- 
ble, because the topology of a reconstructed tree is 
often different from that of the model tree. The second 
choice is to use the matrices of expected and estimated 
(patristic) distances for pairs ofOTUs. In the present case 
the expected distances can be obtained by adding the 
expected numbers of nucleotide substitutions for all 
branches concerned, whereas the patristic distances are 
obtained from the estimated branch lengths of the re- 
constructed tree in the same way. Since the agreement 
between the sum of expected numbers and the patristic 
distance does not necessarily mean the agreement be- 
tween the expected and estimated distances for each 
branch, this comparison is less satisfactory than the first 
comparison. However, the matrix of patristic distances is 
obtainable for any type of topology, so that we can 
compute the average squared deviation of patristic dis- 
tances from expected distances irrespective of the topoi- 
ogy. We would expect that if a reconstructed tree is 
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close to the model tree, then the average squared devia- 
tion is small. In practice, it is more convenient to use 
the square root o f  the average squared deviation. Name- 
ly, 

S E = x / 2 ~  (Dij - Dij')2/(n(n _ 1)) (6) 
i>j 

where Dij and Di.' are the patristic and expected dis- 
tances between O~?Us i and j, respectively, and n is the 
number o f  OTUs. We call this the average deviation o f  
patristic distances from expected distances. 

In the present computer simulation we know the 
expected branch lengths, so that we can compute the 
S E value. In actual data, the true topology and branch 
lengths are unknown, and S E is not computable. In this 
case, however, the following quantity may be computed. 

S O = x/2Z (Dij - Dij")2/(n(n - 1)), (7) 
i>j 

where D i.' ' is the observed distance between OTUs i and 
j. We cal~ this the average deviation of  patristic distances 
from observed distances. This quantity is similar to 
Fitch and Margoliash's (1967) percent standard deviation 
and Ferris' (1972) homoplasy measure. It should be 
noted that D.." can deviate considerably from the true 1j 
expected distance by chance or by the varying rate 
of  nucleotide substitution and thus a small value of  S O 
does not necessarily mean the closeness of  the estimated 
branch lengths to the true branch lengths measured in 
evolutionary time. However, if many genes are used for 
estimating Dij", the error introduced in this way will be 
averaged out and Dij" is expected to become close to 
Dij'. S O would then be used as an indicator of  the close- 
ness of  branch lengths and true branch lengths. At any 
rate, it is very important to know the correlation be- 
tween S E and S 0. 

When an evolutionary tree is constructed from amino 
acid or nucleotide sequence data, the length of a tree 
branch is sometimes represented by an estimate of  the 
actual number of  nucleotide or amino acid substitutions 
that occurred in that branch. If this estimation of  actual 
numbers is a part of  the purpose of  tree construction, 
S O is a better measure of  the errors in the estimates of  
branch lengths than S E. It should be noted, however, 
that this type of  tree (both topology and branch lengths) 
varies considerably with the gene (or protein) used, as 
will be seen from the trees of  vertebrate species con- 
structed by Goodman et al. (1974) by using hemoglobin 
a and/3 chains. This is so despite the fact that the real 
evolutionary tree must be the same for all genes and 
there must be only one true tree. Actually, what is 
important is to estimate this true tree which represents 
the actual pathways o f  evolution of  a group of  species 
expressed in terms of  geological time (Nei 1977). We call 
this the species-tree in contrast to the protein-tree or 
gene-tree, in which the branch length is equated to an 

estimate of  the actual number of  amino acid or nucleo- 
tide substitutions. Among the four methods of  tree- 
making to be studied here, UPGMA is intended to 
construct a species-tree (or population tree), where the 
lengths of  two descendant branches from an ancestral 
stock are assumed to be the same, as they should be. All 
other methods are primarily concerned with a gene-tree. 
In the following we consider both types of  trees. S E 
measures the deviation from the true (species) tree, 
whereas S O measures the deviation from a gene-tree, 
which is specific to each gene (each replicate in our 
simulation). 

Results 

1. Topological Errors 

Nucleotide Substitutions 
Following the Poisson Distribution 

We shall first present the results of  our computer simula- 
tion in which the actual number of  nucleotide substitu- 
tions for each branch of  the model tree was assumed to 
follow the Poisson distribution. The mean of  this distri- 
bution (expected number of  nucleotide substitutions) 
is given by M or its multiple, as Shown in Fig. 3a. We 
used three different M values, 2, 4, and 8. For each of  
these M values 20 replicate computations were made and 
20 sets of  the distance matrices were produced. Each 
of  the four methods mentioned earlier was then used to 
reconstruct 20 trees using the 20 distance matrices. 
The reconstructed trees were compared with the model 
tree and the distortion indices (dT) were computed. 
In this paper we are primarily interested in rooted trees, 
but  we have also examined unrooted trees to see the 
extent o f  topological errors. The average d T values (d-T) 
over the 20 replications are presented in Table 2. In 
addition to d T, this table includes the proportion (P) 
of  replications in which the tree topology was correctly 
reconstructed. 

It is clear from Table 2 that in the case of  M = 2 the 
d- T values for rooted trees are considerably smaller in the 
Farris and modified Farris methods than in UPGMA and 
Fitch and Margoliash's (F/M) method. It is also noted 
that the d- T values are more or less the same for the 
former two methods and also for the latter two meth- 
ods. P is generally high when d- T is low. These results 
suggest that the Farris and modified Farris methods 
are somewhat better than the other two methods for the 
case of  M = 2. In the case o f  M = 4, however, all the 
four methods give virtually the same values d- T and P. 
In UPGMA and the F/M method the increase in M im- 
proves the topology of  a reconstructed tree consider- 
ably, and in the case of  M = 8 the topology is correct 
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Table 2. Mean distortion indices (a-T) and proportions of correct trees (P) when the 
actual number of nucleotide substitutions followed the Poisson distribution. These 
results are based on 20 replications. The number of OTUs is 8 

UPGMA F/M Farris Modified 
method method Farris method 

(i) Rooted Tree 

M = 2 d-T 3.60 _+ 0.52 3.65 -+ 0.54 2.20 -+ 0.54 2.60 _+ 0.46 
P 0.15 0.10 0.45 0.20 

M = 4 fiT 1.40 _+ 0.36 1.40 -+ 0.33 1.40 -+ 0.34 1.40 -+ 0.33 
P 0.50 0.45 0.45 0.45 

M = 8 d-T 0.40 -+ 0.18 0.40 -+ 0.18 1.40 -+ 0.29 1.20 -+ 0.27 
P 0.80 0.80 0.40 0.45 

(ii) Unrooted Tree 

M = 2 fiT 2.90 -+ 0.39 2.95 +- 0.42 1.20 -+ 0.39 1.60 +- 0.34 
P 0.15 0.10 0.60 0.40 

M = 4 d-T 1.20 _+ 0.34 1.10 +- 0.31 0.70 -+ 0.26 0.90 -+ 0.27 
P 0.55 0.55 0.70 0.60 

M = 8 d-T 0.30 _+ 0.16 0.10 -+ 0.10 0.30 -+ 0.22 0.50 -+ 0.25 
P 0.85 0.95 0.90 0.80 

with a probability of 80%. This is, of course, expected, 
since the coefficient of variation of the number of 
nucleotide substitutions becomes smaller as M increases 
under the Poisson law. Unlike our expectation, however, 
the topologies obtained by the Farris and modified 
Farris methods do not improve when M increases from 

4 to 8, the d- T and P values being virtually the same. 
Consequently, they are less accurate than those obtained 
by UPGMA and the F/M method in the case of M = 8. 

The poor performance of the Farris and modified 
Farris methods when M is large is caused mainly by the 
error that occurs at the time of putting the root to the 
tree. As mentioned earlier, we put the root at the mid- 
point of the line connecting the two most divergent 
OTUs in these two methods. Because of the stochastic 
errors involved, however, this midpoint did not  always 
occur on the longest branch. We have therefore com- 
puted d- T and P for unrooted trees (Table 2). It is clear 
that the topology of unrooted trees is much better than 
that for rooted trees in terms of both d- T and P. How- 
ever, compared with the other two methods, the Farris 
and modified Farris methods do not necessarily produce 
a better topology when M = 8. It is noted that in the 

case of unrooted trees the Farris method tends to give a 
slightly better topology than the modified Farris meth- 
od, but  the difference is not statistically significant. 

In practice, almost every phylogenetic tree obtained 
from amino acid or nucleotide sequence data is based on 
a single protein or gene, and includes many branches 
whose estimated numbers of nucleotide substitutions are 
small. Our results suggest that a reconstructed tree in- 
cluding branches with a small number of substitutions 
(say less than 4) is quite erroneous. However, the error 
can be reduced by increasing the number of genes if 
the expected rates of nucleotide substitution in evolu- 
t ion are constant. If we note that the sum of two or 
more Poisson variables is also a Poisson variable, it is 

clear that the result for M = 8, for instance, is the same 
as that for the case where two or more genes are in- 
volved but  the total number of nucleotide substitutions 
for all genes is equal to 8. Therefore, if a number of 
different genes are used and the estimated number of 
nucleotide substitutions for each branch is 8 or more, 
we can expect that the topology of an unrooted tree is 
correct with a high probability, P being equal to or 
higher than 0.8 (see Table 2). When a rooted tree is to 
be constructed, however, the accuracy of the topology 

does not necessarily increase with increasing M if the 
Farris or modified Farris method is used. In this case 
UPGMA or the F/M method is preferable. 

Another important factor that affects the topology of 
a reconstructed tree is the number of OTUs. To get some 
idea about the effect of this factor, we conducted a 
small-scale computer simulation, increasing the number 
of OTUs from 8 to 32 but  keeping the topology of the 
model tree similar to that shown in Fig. 3a. The M value 
used was 4. In this study we did not include Fitch and 

Table 3. Mean distortion indices (d-T) and proportions of correct 
trees (P). The number of nucleotide substitutions followed the 
Poisson distribution. These results are based on 10 replications. 
The number of OTUs used is 32 and the unit branch length (M) 
is 4 

UPGMA Farris Modified 
method Farris method 

(i) Rooted Tree 

d-T 28.4 +- 1.5 29.0 -+ 1.6 29.4 -+ 1.3 
P 0 0 0 

(ii) Unrooted Tree 

d-T 27.0 -+ 1.4 23.6 -+ 1.6 24.8 -+ 1.0 
P 0 0 0 
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Table 4. Means of the actual number of nucleotide substitutions (na), the estimated number (n F) by 
the Farris method, and the estimated number (n M) by the modified Farris method, n e is the expected 
number. Comparisons are made between OTU 1 and eight other OTUs 

OTUs compared n e n a n F n M 

OTUs 1 and 4 24 23.8 ± 1.5 24.3 ± 1.6 
OTUs 1 and 8 56 55.5 -+ 2.0 59.6 -+ 2.4 
OTUs 1 and 12 88 87.1 ± 3.6 99.3 ± 4.6 
OTUs 1 and 16 120 116.2 ± 3.3 137.7 ± 4.1 
OTUs 1 and 20 152 151.2 ± 3.3 190.2 ± 6.7 
OTUs 1 and 24 184 185.1 ± 3.0 238.3 -+ 4.2 
OTUs 1 and 28 216 221.0 ± 3.9 294.9 ± 14.5 
OTUs 1 and 32 248 252.2 ± 5.2 361.0 ± 10.6 

24.1 -+ 1.5 
54.4 ± 2.1 
88.1 ± 4.5 

114.6 ± 3.7 
154.6 +- 3.1 
186.8 -+ 4.8 
220.8 -+ 5.3 
262.4 ± 4.8 

Margoliash's method,  since this method requires a large 
amount  of  computer  t ime when the number of  OTUs is 
large. The number of  replications was 10 to save com- 
puter  time. The results obtained are shown in Table 3. 
It is seen that  d T is large in all tree-making methods,  and 
there are no significant differences among them, though 
UPGMA tends to show a larger value than the others 
when unrooted trees are made. The d-T'S for unrooted 
trees are slightly smaller than those for rooted trees, 
but  they are still large. In no cases was a correct topolgy 
obtained.  When the number of  OTUs is large, the ef- 
fect of  stochastic errors in nucleotide substitution is 

so large, that  all tree-making methods seem to commit  
errors in topology construction with a high probabili ty.  

Earlier w e  pointed out  that  when the number of  
OTUs is large, Farris '  method is expected to give an 
overestimate of  the number of  nucleotide substitutions. 

To confirm this, we compared the estimated (patristic) 
distances obtained by the Farris and modified Farris 
methods with the actual number of  nucleotide substitu- 
tions in the case of  32 OTUs. The comparison was made 
between OTU 1 and each of  eight other OTUs. The 
results obtained are given in Table 4 together with the 
expected number (ne) of  nucleotide substitutions. The 
table shows that  when the expected number is small, 
the two estimates are close to the actual number (na), 
but  as the expected number increases the estimate (nF) 
by  Farris '  method becomes larger than the actual num- 
ber, whereas the estimate (nM) obtained by the modified 
Farris method is still close to the actual number. The 
standard deviation of  n F is also much larger than that  of  
n M when n e is large. These findings clearly indicate that  
Farris '  method gives gross overestimates when the num- 
ber o f  OTUs is large. 

One might think that  this conclusion is valid only for 
nonmetric distance measures such as the one we used. 
However, as will be published elesewhere, our study on 
tree-making from gene frequency data has shown that  
overestimation o f  branch lengths in the Farris method 
occurs even with metric distances. 

Nucleotide Substitutions Following the 
Negative Binomial Distribution 

In the above studies the Poisson process of  nucleotide 
substitution was assumed. In this case the variance of  
nucleotide substitutions is equal to the mean. There is, 
however, evidence that the variance of  the number of  
nucleotide substitutions is roughly twice as large as the 
mean (Ohta and Kimura 1971; Langley and Fitch 1974). 
We have therefore conducted another simulation in 
which nucleotide substitution followed a negative bi- 
nomial distribution. In this distribution we can easily 
adjust the ratio of  the variance to the mean by changing 
the parameters. We have chosen the parameters so that 
the variance is twice as large as the mean. Note that  in 
this case a sum of  negative binomial variables is also a 
negative binomial variable. All other aspects of  the 
simulation were the same as those for the previous 
study, and M = 2, 4, and 8 were used. 

The results obtained are given in Table 5. It is clear 
that the Farris and modified Farris methods produce 
slightly more accurate trees than Fi tch and Margoliash's 
or UPGMA on the average. However, each method 
produces less accurate trees than in the case of  the 
Poisson distribution, whether the trees are rooted or 
unrooted.  This occurs apparently because the coefficient 
of  variation of  the number of  nucleotide substitutions is 
larger under the negative binomial distribution than 
under the Poisson distribution. This is confirmed by 
examining the relationship between the coefficient of  
variation (c.v.) and the mean distortion index. Note 
that  the c.v. for the Poisson distribution with M = 2 
is equal to that  of  the negative binomial distribution 
with M = 4, and the c.v. for the Poisson distribution with 
M = 4 is the same as that  for the negative binomial dis- 
tr ibution with M = 8. We can therefore compare the 
d- T values for the two types o f  distributions with the 
same c.v. values, using the data in Tables 2 and 5. This 
comparison shows that  in both cases o f  rooted and 
unrooted trees the d- T values for the two distributions 



Table 5. Mean distortion indices (fiT) and proportions of correct trees (P) when the actual number of 
nucleotide substitutions followed the negative binomial distribution. These results are based on 20 
replications. The number of OTUs is 8 
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UPGMA F/M Farris Modified 
method method Farris method 

(i) Rooted Trees 

M = 2 d- T 4.20 _+ 0.50 3.90 ,+ 0.57 3.90 ,+ 0.40 3.50 ,+ 0.38 
P 0.10 0.20 0.0 0.0 

M = 4 fiT 4.20 ,+ 0.56 3.80 ,+ 0.58 2.65 ,+ 0.55 2.35 + 0.41 
P 0.10 0.10 0.25 0.15 

M = 8 fiT 2.00 ,+ 0.32 2.10 +_ 0.31 1.60 ,+ 0.31 1.70 +- 0.26 
P 0.25 0.20 0.35 0.25 

(ii) Unrooted Trees 

M = 2 fiT 3.30 ,+ 0.51 2.90 _+ 0.51 2.30 -+ 0.44 2.30 -+ 0.42 
P 0.15 0.25 0.25 0.20 

M = 4 fiT 3.10 ,+ 0.55 3.00 ,+ 0.53 0.80 -+ 0.37 0.90 -+ 0.27 
P 0.25 0.25 0.75 0.60 

M = 8 fiT 1.10 ,+ 0.34 1.20 ,+ 0.30 0.40 ,+ 0.18 0.60 -+ 0.21 
P 0.60 0.50 0.80 0.70 

Table 6. Mean distortion indices (d~T) and proportion of correct trees (P) when the expected number of 
nucleotide substitutions for each unit evolutionary time varied following the gamma distribution. These 
results are based on 20 replications. The number of OTUs is 8 

UPGMA F/M Farris Modified 
method method Farris method 

(i) Rooted Tree 

M = 2 fiT 5.65 ,+ 0.43 5.30 ,+ 0.51 6.40 ,+ 0.61 6.50 -+ 0.58 
P 0 0 0 0 

M = 4 fiT 4.80 ,+ 0.57 4.60 ,+ 0.54 4.20 ,+ 0.46 4.10 +- 0.49 
P 0.05 0 0.05 0.10 

(ii) Unrooted Tree 

M = 2 d-T 4.15 ,+ 0.46 3.90 ,+ 0.51 3.80 ,+ 0.54 4.50 +_ 0.50 
P 0.05 0.05 0.05 0.05 

M = 4 fiT 3.80 ,+ 0.48 3.50 ,+ 0.43 2.10 -+ 0.42 2.20 ,+ 0.41 
P 0.05 0 0.35 0.30 

are more  Or less the  same as long  as the  c.v. r emains  the  

same.  This  indica tes  t h a t  the  coef f ic ien t  o f  va r ia t ion  

r a t h e r  t h a n  the  m e a n  o f  the  n u m b e r  o f  nuc leo t ide  sub- 

s t i t u t ions  is the  i m p o r t a n t  fac to r  de t e rmin ing  the  accu- 

racy o f  the  t opo logy  o f  a r e c o n s t r u c t e d  tree.  It shou ld  

also be n o t e d  t h a t  as the  n u m b e r  o f  genes used  increases,  

t he  accuracy  o f  a r e c o n s t r u c t e d  t ree  increases  as in the  

case o f  the  Poisson d i s t r ibu t ion .  However ,  in the  p resen t  

case Farr i s '  m e t h o d  and  the  mod i f i ed  Farr is  m e t h o d  

show a sl ightly b e t t e r  pe r f o r m ance  t h a n  the  o t h e r  two  

m e t h o d s  even w h e n  M = 8. 

Nuc leo t ide  S u b s t i t u t i o n  w i th  Vary ing  Rates  

In t he  two  s tudies  m e n t i o n e d  above we assumed  t h a t  the  

ra te  o f  nuc leo t ide  subs t i t u t i on  was cons t an t .  A l t h o u g h  

t he  c o n s t a n t  rate is a p p r o x i m a t e l y  co r rec t  (e.g. Zucker -  

kand l  and  Paul ing  1962,  1965 ,  Dool i t t l e  and  Blomb~ick 

1964,  Margol iash  and  Smi th  1965,  K i m u r a  1969 ,  King  

and  Jukes  1969) ,  t he  rate is n o t  s t r ic t ly  c o n s t a n t  ( O h t a  

and  K i m u r a  1971;  Langley  and  F i t c h  1974) .  We there-  

fore  inves t iga ted  the  ef fec t  o f  vary ing  rate  o f  subs t i tu -  

t i on  on  r e c o n s t r u c t e d  trees.  

In  this  s tudy  we used a m e t h o d  similar to  O h t a ' s  

(1976) .  We assumed  t h a t  the  e x p e c t e d  rate  o f  s u b s t i t u t i o n  

varies w i th  u n i t  evo lu t iona ry  t ime  in each b r anch .  The  

un i t  evo lu t iona ry  t ime  is the  t ime  c o r r e s p o n d i n g  to  one  

M in the  m o d e l  t ree.  F o r  each  un i t  evo lu t i ona ry  t ime  the  

n u m b e r  o f  nuc leo t ide  subs t i t u t i ons  was d e t e r m i n e d  b y  

a Poisson d i s t r i bu t i on  w i t h  p a r a m e t e r  X, and  th is  Po i s son  

p a r a m e t e r  var ied at  r a n d o m  fo l lowing  a g a m m a  dis- 

t r i b u t i o n .  We assumed  t h a t  the  var iance  o f  X is twice  

the  mean .  O t h e r  aspects  o f  the  s imula t ion  were  the  

same as those  o f  the  previous  s tudy.  We s tud ied  t w o  

cases, i.e. M = 2 and  M = 4, where  M is the  m e a n  n u m b e r  
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of nucleotide substitutions over all unit evolutionary 
times in all branches. In each case 20 replicate computa- 
tions were made. 

The results obtained are given in Table 6. It is seen 
that in the case of M = 4 the Farris and modified Farris 
methods are again slightly better than UPGMA and the 

/ 

F/M method. In the case of unrooted trees the former 
methods produced the correct topology in 30 or 35% 
of the 20 replications, whereas the latter methods in 
none or only one of the 20 replications. However, the 
differences in dT and P among the four tree-making 
methods for rooted trees are rather small. When M = 2, 
all methods make errors in the construction of topology 
with a high probability in both rooted and unrooted 
trees. If we compare the ~ T  and P values in this table 
with the corresponding values in Table 2, it is clear that 
the varying rate of nucleotide substitution reduces the 
accuracy of the reconstructed tree substantially in all 
methods used. Comparison of Tables 5 and 6 is inter- 
esting, because the negative binomial distribution stud- 
ied above corresponds to the case where the Poisson 
parameter varies spacially (among nucleotide sites) 
rather than temporally following the gamma distribu- 
tion (e.g., Ohta 1976). This comparison shows that the 
temporal variation of substitution rate generally disturbs 
the topology of reconstructed trees more often than the 
spacial variation. 

2. Errors in the Estimates of Branch Lengths 

Nucleotide Substitution Following the 
Poisson Distribution 

Figure 4 shows one example (replication) of computer 
simulation of nucleotide substitution and reconstructed 
trees for the case of M = 2. It is seen that although the 
model of constant rate of substitution was used the 
actual number of  nucleotide substitutions for a branch is 
considerably different from the expected number (Fig. 
3a). This is of course due to the stochastic nature of 
nucleotide substitution, and this clearly shows that the 
different numbers of nucleotide substitutions for a given 
evolutionary period do not necessarily mean the non- 
constant rate of substitution, as is often claimed by 
some authors. The genetic distances used for recon- 
structing trees are given in Table 7. These distances were 
estimated by Jukes and Cantor's (1969) formula, i.e., 

D = -300  x (3/4)1og e {1 - (4/3)7r} 

where 7r is the proportion of different nucleotides per 
site between the two sequences compared. These esti- 
mates are very close to the actual number of substitu- 
tions (Table 7). 

Figure 4 shows that the topologies of the trees (d and 
e) reconstructed by the Farris and modified Farris meth- 
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Fig. 4 a-e. One example (replication) of  computer  simulation. 
a True tree with the actual number of  nucleotide subst i tut ions 
for each branch. The nucleot ide subst i tut ion followed the Pois- 

son distr ibut ion with M = 2. b Tree reconstructed by UPGMA. 

d T = 3; S O = 1.91; S E = 3.82. c Tree reconstructed by the F/M 
method,  d T = 2; S O = 1.09; S E = 4.24. d Tree reconstructed by 

the Farris method,  d T = 0; S O = 1.03; S E = 4.03. e Tree re- 
constructed by the modified Farris method,  d T = 0; S O = 0.87; 

S E = 4.33 

ods are correct, but those (b and c) obtained by UPGMA 
and the F/M method are incorrect. The estimates of 
branch lengths obtained by the first two methods are 
generally close to the actual numbers of nucleotide sub- 
stitutions, but those from the modified Farris method 
are slightly better than those from the Farris method, S O 
being 0.87 for the former compared with 1.03 for the 
latter. The S E value, however, suggests that the esti-- 
mated branch lengths from the former are slightly less 
close to the expected branch lengths than those from 
the latter. Since UPGMA and the F/M method produced 
an incorrect topology, it is difficult to compare the 
estimated branch lengths with the actual or expected 
lengths. However, if we use S O as a criterion, UPGMA 
is inferior to the other three methods. On the other 
hand, if we use S E as a criterion, it is better than the 

2.0 ~ 2.0 



Table 7. Estimated numbers (below diagonal) and observed numbers (above diagonal) of 
nucleotide substitutions (genetic distances) for each pair of OTUs. This represents the 
results of one replication in our computer simulation. The estimated genetic distances 
were obtained by Jukes and Cantor's formula. The reconstructed trees presented in 
Fig. 4 were obtained by using the estimated genetic distances in this table 

OTU 1 2 3 4 5 6 7 8 

1 4.0 4.0 11.0 16.0 16.0 17.0 28.0 
2 4.0 4.0 11.0 16.0 16.0 17.0 28.0 
3 4.0 4.0 9.0 14.0 14.0 15.0 26.0 
4 11.3 11.3 9.2 19.0 19.0 20.0 31.0 
5 15.5 16.6 14.5 19.9 16.0 17.0 28.0 
6 16.6 14.5 14.5 19.9 16.6 15.0 26.0 
7 17.7 15.5 15.5 20.9 17.7 15.5 23.0 
8 28.8 26.5 26.5 31.0 29.9 27.6 23.2 
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Table 8. Means of the average deviation (So) of patristic distances from observed distances and the average 
deviation (SE) of patristic distances from expected distances. The actual number of nueleotide substitu- 
tions followed the Poisson distribution. The number of replications is 20 

UPGMA F/M method Farris method Modified 
Farris method 

S o 
M = 2 2.01 ,+ 0.13 1.04 +_ 0.08 1.12 -+ 0.13 0.71 ,+ 0.06 
M = 4 3.54 ,+ 0.18 2.09 -+ 0.16 2.87 ,+ 0.24 1.67 +- 0.15 
M = 8 5.60 ,+ 0.32 3.70 -+ 0.21 6.44 ,+ 0.55 3.16 -+ 0.19 

S E 
M = 2 4.44 -+ 0.32 4.92 -+ 0.29 5.07 -+ 0.32 4.81 -+ 0.30 
M = 4 5.76 -+ 0.44 6.80 +- 0.38 7.53 -+ 0.58 6.61 +- 0.38 
M = 8 8.27 -+ 0.84 10.42 -+ 0.85 12.01 -+ 1.02 9.83 -+ 0.71 

others (see Fig. 4). The small value of S E for UPGMA 
is of course due to the fact that this method is designed 
to give the same evolutionary distance for a pair of 
OTUs after they diverged. The S O and S E for the F/M 
method are similar to those for the Farris method. 

Figure 5 shows another example of simulated nucleo- 
tide substitution and reconstructed trees. In this case 
UPGMA and the F/M methods produced the correct 
topology, whereas the Farris and modified Farris meth- 
ods gave an incorrect one. However, the modified Farris 

and Farris methods give smaller values of S O than those 
of the other two methods, as in the previous example. 
The S E value is also smaller in UPGMA than in the other 
methods. In other words the relative performance of 

the four tree-making methods as judged by S O and S E 
remains nearly the same as those in the previous exam- 

ple, even if the accuracies of the topologies made have 
changed. This casts some doubt about the utility of S O 
and S E for judging the accuracy of branch lengths. 
Indeed, as will be shown later, the small values of these 
quantities do not necessarily mean that the estimates 
of branch lengths are close to the true values, though 
they are still a rough indicator of the accuracy of a tree. 
Before going into the detail of this problem, however, 

let us examine the general pattern of S O and S E in our 
simulation studies. 

Since the values of S O and S E varied considerably 
with replication, we computed the means of these 
quantities over all replications. The results obtained are 
given in Table 8. It is clear that the modified Farris 
method gives the smallest value of S O for all three 
different values of M. Indeed, the S O value for the modi- 
fied Farris method was significantly smaller in all cases 
except in the comparison of this method and the F/M 
method for M = 8. (The statistical test was conducted 
by taking the difference for each replication rather than 
by using the standard errors given in Table 8.) According 
to this criterion, the second best method is the F/M 
method, whereas the third is the Farris method for the 
cases of M = 2 and M = 4 but  UPGMA for the case of 

M = 8. The poor performance of the Farris method when 
M = 8 is apparently caused by the overestimation of 
branch length discussed earlier. If  we use S E, however, 
UPGMA shows a significantly better performance com- 
pared with the other methods. With this criterion the 
second best result is obta ined by the modified Farris 

method, whereas the Farris method shows the worst 

performance. 
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Fig. 5 a-e. Another example of  computer  simulation. The nu- 
cleotide substitution followed the Poisson distribution with M 
= 2. a True tree with the actual number of  nucleotide substi- 
tutions for each branch, b Tree reconstructed by UPGMA. 
d T = 0; S O = 2.38; S E = 1.70. c Tree reconstructed by the F/M 
method, d T = 0; S O = 1.51; S E = 4.02. d Tree reconstructed by 
the Farris method, d T = 6; S O = 0.92; S E = 2.75. e Tree re- 
constructed by the modified Farris method, d T = 4; S O = 0.69; 
S E = 2.69 
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S O and S E as a Measure of the Accuracy of 
Branch Lengths 

Let us now study the reliability of our quantities S O and 
S g as a measure of the accuracy of branch lengths esti- 
mated. This reliability can be studied by examining the 
agreement of estimated branch lengths with observed or 
expected branch lengths for the cases where the correct 
topology is obtained. In Example 1 the Farris and modi- 
fied Farris methods give the correct topology, so that we 
can compute the average deviation (SoB) of estimated 
branch lengths from observed branch lengths similar to 
S O and the average deviation (SEB)  of  estimated branch 
lengths from expected branch lengths similar to S E. The 
SOB values obtained for the Farris and modified Farris 
methods are 1.830 and 1.784, respectively, whereas the 
SEB values are 2.574 and 2.570. Therefore, with these 
criteria the former is slightly less accurate than the 
latter. To compare the accuracies of  the four tree-making 
methods we must use only those replications in which 
the correct (unrooted) topology was obtained for all the 
methods. Unfortunately, there are only such replications 
in the case of  M = 2, so that no reasonable comparison 

can be made (Table 9). In the case of  M = 4 there were 
seven such replications, and the values of SOB and SE1 a 
are given in Table 9. 

It is clear that UPGMA tends to give somewhat larger 
values of SOB compared with the other methods, but 
there are no significant differences in the values of SOB 
among the four different methods. With respect to  SEB , 

UPGMA gives the smallest value in all the replications 
examined, whereas the differences among the remaining 
three methods do not appear to be significant. A similar 
computation of SOB and SEB was  made for the case of 
M = 8, where there were 13 replications in which the 
correct (unrooted) topology was obtained by all the four 
methods. The means of SOB for these 13 replications in 
the UPGMA, F/M, Farris, and modified Farris methods 
were 3.48 + 0.24, 3.25 + 0.19, 4.19 _+ 0.31, and 3.45 -+ 
0.26, respectively, whereas the means of SEB were  3.30 
_+ 0.34, 4.52 _+ 0.37, 5.11 _+ 0.39, and 4.67 _+ 0.32. It is 
clear that the Farris method shows a rather poor perfor- 
mance in both SOB and SEB values ,  apparently because 
of the overestimation of branch lengths that occurs 
when M is large. When SOB is used as a criterion, the 
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Fig. 6. Correlations between S O and SOB and between S E and SEB in the trees where the topology was correctly reconstructed; M = 8 

Table 9. Average deviations of estimated branch lengths from observed distances (SOB) and average deviations of estimated branch 
lengths from expected branch lengths (SEB) for the reconstructed trees of which the topology is correct 

Replication 
SOB SEB 

UPGMA F/M Farris Modified UPGMA F/M Farris Modified 
Farris Farris 

M=2 

7 0.80 0.78 0.74 0.64 1.76 1.72 1.56 1.56 
20 0.93 0.86 1.28 0.85 1.15 1.27 1.80 1.66 

Average 0.87 0.82 1.01 0.75 1.46 1.50 1.68 1.61 

M=4 

1 1.71 1.05 0.95 1.11 1.49 2.42 2.27 2.30 
5 1.67 1.80 1.80 1.73 2.48 3.23 3.49 3.23 
7 2.58 2.35 2.72 2.32 3.08 3.20 3.80 3.28 

12 1.75 1.07 0.79 1.10 1.78 2.78 2.74 2.50 
15 2.67 2.99 2.57 2.87 1.63 1.91 2.02 1.86 
19 2.24 1.25 1.73 1.32 1.67 2.36 2.25 2.11 
20 3.17 2.40 3.40 3.17 2.29 3.30 4.00 3.50 

Average 2.25 1.85 1.99 1.94 2.06 2.74 2.94 2.68 

remaining three methods show nearly the same perfor- 
mance. However, UPGMA again shows a significantly 
smaller value of SEB compared with the other methods. 

Comparison of the means of SOB and SEB with those 
of S O and S E indicates that they are roughly correlated, 
but the correlation does not seem to be high. To see 
this point in more detail, we examined the correlations 

of S O with SOB and of S E with SEB for M = 4 and M = 8. 
In the case of M = 4 there are only seven replications in 

which SOB and SEB can be compared with S O and S E. 
The correlation between S O and SOB is not significant 

in any of the four methods, whereas the correlation 
between S E and SEB is quite high. For example, the 
latter correlations for UPGMA and the modified Farris 
method are 0.90 and 0.74, respectively. A more mean- 
ingful study can be done for the case of M = 8, in which 
13 replications are available. Figure 6 shows the correla- 

tions between S O and SOB and between S E and SEB for 
UPGMA and the modified Farris method. It is clear that 

there is virtually no correlation between S O and SOB, 
whereas the correlation between S E and SEB is signifi- 
cantly high, the correlation coefficients for UPGMA and 
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the modif ied Farris me thod  being 0.95 and 0.83,  respec- 
tively. Essentially the same results were obta ined for the 
other  tree-making methods.  

The low correlat ion be tween  S O and SOB creates a 
problem in using S O as a cri terion of  the accuracy of  
branch  lengths. This is part icularly unfor tuna te ,  because 

S O is the only quant i ty  that  can be computed  from 
actual data. Sneath and Sokal (1973) and Farris (1979)  
suggested that  the correlation coefficient be tween 
patristic and observed distances be used as a criterion. 
However, our  s tudy has shown that  the proper ty  of this 
quan t i ty  is virtually the same as that  of  our  S O . In our  
s imulat ions the correlat ion coefficient (r) be tween  the 
patristic and observed distances (Dij and Dij " i n  (7)) was 
generally very high, the mean  for a given M value varying 
from 0.96 to 0.98 in different cases, bu t  there was little 
correlation be tween  the values of  r and SOB. Therefore,  
we canno t  use the agreement of  patristic and observed 
distances as a reliable measure of the accuracy of  a 
reconstructed tree. Nevertheless, we note  that  the mean  

of  S O for each value of  M is correlated with that  of  SOB 
(see Tables 8 and 9 and the mean  values of  SOB). There- 
fore, S O can still be used as a rough 'measure of  the 
accuracy of  branch lengths. In  the following we shall use 
S O with this unders tanding.  

The relatively high correlat ion be tween S E and SEB 
indicates that  S E can be used as a measure of the de- 
viat ion of  est imated branch lengths from expected 
branch  lengths. Al though S E cannot  be computed  from 
actual data, it can be used at least for a theoretical s tudy 
like ours. The computa t ion  of  S E is much  simpler than  
that  of  SEB , so that  it facilities theoretical investiga- 
t ion .  

In  the above computa t ion  of  SOB and SEB we ig- 
nored  the trees with erroneous topologies. However, we 
would  expect that  even in these trees the same conclu- 
sion is obta ined if we el iminate all OTUs which are in- 
volved in the erroneous part  of  the topology. 

Nucleotide Subst i tu t ion Following the 
Negative Binomial Dis t r ibut ion 

The values of  S O and S E for this case are presented in 
Table 10. It  is no ted  that  these values are somewhat  
larger than those for the case of  Poisson distr ibution.  
This is of  course expected,  since the number  of  nucleo- 
tide subst i tut ions  for a given period of  evolut ionary t ime 
has a larger variance in this case than  in the case of  
Poisson distr ibution.  Except  this difference, the general 

Table 10. Means of the average deviation (So) of patristic distances from observed distances and the 
average deviation (SE) of patristic distances from expected distances. The actual number of nucleotide 
substitutions followed the negative binomial distribution. The number of replications is 20 

UPGMA F/M method Farris Modified 
method Farris method 

S O 
M = 2 2.91 +- 0.19 1.45 +- 0.19 0.94 +- 0.07 1.01 ± 0.15 
M = 4 4.89 +- 0.28 2.91 -+ 0.34 2.55 ± 0.26 1.78 ± 0.20 
M = 8 6.84 -+ 0.43 4.24 -+ 0.26 7.00 +- 0.50 3.94 -+ 0.38 

S E 
M = 2 5.25 +- 0.28 5.90 -+ 0.29 5.94 -+ 0.31 5.57 ± 0.28 
M = 4 8.96 -+ 0.81 9.99 +- 0.76 10.76 ± 0.90 9.86 +- 0.77 
M = 8 11.76 +- 0.73 13.28 -+ 0.63 15.60 -+ 1.15 13.04 -+ 0.67 

Table 11. Means of the average deviation (S 0) of patristic distances from observed distances and the 
average deviation (S E) of patristic distances from expected distances for the case of varying rates of 
nucleotide substitution. The number of replications is 20 

UPGMA F/M method Farris Modified 
method Farris method 

S O 
M = 2 3.38 ± 0.30 1.94 ± 0.23 1.15 +- 0.13 0.70 +- 0.08 
M = 4 6.24 +- 0.45 3.74 ± 0.41 2.42 +- 0.24 1.40 -+ 0.10 

S E 
M = 2 7.11 ± 0.61 7.65 ± 0.61 7.99 -+ 0.69 7.67 ± 0.61 
M = 4 12.39 -+ 1.17 13.38 ± 1.10 14.35 -+ 1.17 13.37 -+ 1.08 



property of S O and S E is the same as that for the case of 
Poisson distribution. 

Nucleotide Substitution with Varying Rates 

Table 11 shows the values of S O and S E for the case of 
varying rates of nucleotide substitution. As expected, 

both S O and S E are generally greater than those for the 
cases of Poisson distribution and negative binomial 
distribution. However, the relative values of these quan- 
tities among the four different tree-making methods 
remain the same as those for the latter cases. 

Effect of the Number of OTUs 

As mentioned earlier, we conducted a small-scale study 
of the effect of the number of OTUs on the accuracy of 
reconstructed trees, using 32 OTUs and M = 4. In this 
study the F/M method was not included. The mean 
values of S O and S E obtained are given in Table 12. 
UPGMA again shows the smallest value of S E among the 
three methods examined. Unexpectedly, however, it 
also shows the smallest value of S O . Thus, in terms of 

Table 12. Means of the average deviation (So) of patristic dis- 
tances from observed distances and the average deviation (SE) 
of patristic distances from expected distances for the case of 
32 OTUs and M = 4. The actual number of nucleotide substi- 
tutions followed the Poisson distribution. The number of replica- 
tions is 10 

UPGMA Farris Modified 
method Farrismethod 

S O 14.0±0.6 52.7±3.0 16.3±1.1 
S E 13.7±1.0 57.3±4.0 20.1±0.7 
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both S O and S E UPGMA is better than the Farris and 
modified Farris method. The poorest performance is 
shown by the Farris method. This is of course expected, 
because this method gives overestimates of branch 
lengths in the present case (Table 4). The reason for 
the good performance of UPGMA seems to be that the 
procedure of distance-averaging used in this method 
reduces the effect of stochastic errors substantially when 
the number of OTUs is large (Nei 1975). 

Correlation of d T with S O and S E 

As noted earlier, S O is the only quantity that can be 
computed from actual data. Thus, it is interesting to 
see whether this is correlated with any other unobserv- 
able quantity or not. We have already seen that the 
correlation of this quantity with the accuracy of branch 
lengths is quite low, though it can be used as a rough 
measure. Table 13 shows the correlations of S O with d T 
among 20 replications for each value of M for the case 
of Poisson distribution. It is seen that the correlation is 
generally low in both rooted and unrooted trees, and 
particularly in the Farris and modified Farris method 
there seems to be no real correlation. In UPGMA and 
the F/M method the correlation tends to be larger, and 
in two cases it is significant at the one percent level. 
However, the correlation coefficient is not very high, 
so that S O would not be useful as an indicator of the 
accuracy of the topology constructed. Table 13 also 

includes the correlation between S E and d T, but the 
magnitude of the correlation is similar to that of the 
correlation between S O and d T. The results for the 
cases of negative binomial distribution and varying 
substitution rates were nearly the same as those for the 
case of Poisson distribution. 

Table 13. Correlations of d T with S O and S E for each value of M. The actual number of nucleotide substitutions followed the Poisson 
distribution. The least significant correlations for the 5% and 1% significant levels are 0.44 and 0.56, respectively 

UPGMA F/M method Farris Modified 
method Farris method 

RT URT RT URT RT URT RT URT 

d T and S O 

M = 2 0.61 0.68 0.36 0.35 -0.07 -0.15 -0.20 -0.16 
M = 4 0.36 0.20 0.47 0.14 0.26 0.30 0.40 0.48 
M = 8 0.44 0.22 0.10 0.10 -0.12 -0.18 0.24 0.20 

d T and S E 

M = 2 0.38 0.37 0.17 0.15 0.05 -0.22 0.21 0.02 
M -- 4 0.36 0.36 0.38 0.30 0.24 0.29 0.21 0.37 
M = 8 0.32 0.12 0.19 0.20 0.07 0.05 -0.01 0.02 

RT: Rooted tree URT: Unrooted tree 
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Table 14. Correlations between S o and S E for each value of M. PS and BIB stand for the cases of Poisson and negative binomial dis- 
tributions. The least significant correlations for the 5% and 1% significant levels are 0.44 and 0.56, respectively 

UPGMA F/M method Farris method Modified 
Farris method 

PS NB PS NB PS NB PS NB 

M = 2 0,19 0.12 0.07 0.13 0.13 0.22 0.30 0.30 
M = 4 -0,08 0.51 0.44 0.81 0.54 0.52 0.33 0.36 
M = 8 0.32 -0.03 0.23 -0.08 0,20 0.36 -0.04 -0,04 

Correlation between S E and S O 

As mentioned earlier, S E cannot be computed from 
actual data, though it is certainly a good measure of  the 
deviation of  estimated branch lengths from true lengths 
for a species-tree. We have therefore examined the corre- 
lation between S O and S E. The results obtained are 
presented in Table 14. It is clear that the correlation is 
generally low for both cases of  Poisson and negative 
binomial distributions, so that there is no way to esti- 
mate the value of  S E from actual data. A similar result 
was obtained for the case of  varying substitution rates. 

Discussion 

A number of  authors (e.g., Fitch and Margoliash 1967; 
Prager and Wilson 1978; Farris 1972, 1979) have used 
quantities similar to our S O for knowing the accuracy of  
the tree reconstructed. Particularly, Prager and Wilson 
compared the accuracies of  the UPGMA, F/M and Farris 
methods by using the percent standard deviation (PSD) 
similar to our S 0, and concluded that in general the F/M 
method is superior to the other two methods. This con- 
clusion is similar to ours for S O in the case of  Poisson 
distribution (Table 8). However, this does not mean 
that the F/M method gives a good tree. Furthermore, 
our study shows that the modified Farris method is 
much better than the F/M method even in obtaining 
a small value of  S 0. 

It is unfortunate that S O is not highly correlated to 
any of  dT, SOB, and SE; it can be used only as a very 
rough criterion of  a good tree. In the past a number of  
authors (e.g., Farris 1979) have argued as though even 
a small difference in a quantity equivalent to this is very 
important for evaluating the efficiencies of  different 
tree-making methods. The present study shows that such 
an argument is trifling. However, this puts us into a diffi- 
cult situation in judging the goodness of  a reconstructed 
tree, since there are no other observable quantities for 
real data. How can we judge the superiority of  a tree- 
making method compared with others? One way to cir- 
cumvent this difficulty is to conduct a simulation study 
and decide the advantages and disadvantages of  each 
tree-making method statistically, as we did in this paper. 
Once a method proves to be superior to others, we can 

use it for all data sets. Of course, this type of  study can 
be done only when we know the evolutionary changes 
of  the characters used. Fortunately, in the case of  genet- 
ic data we know the approximate pattern of evolution- 
ary changes of  genes, so that this can be done. Our com- 
puter simulation is certainly dependent on a number of  
assumptions about the pattern of  evolutionary changes 
of  genes, but it is encouraging to see that the three 
different patterns of  evolutionary changes of  genes 
examined gave essentially the same result about the 
relative merits of  tree-making methods. 

We have seen that for constructing a topology the 
Farris and modified Farris methods show on the average 
a slightly better performance than the other two meth- 
ods when the coefficient of  variation of  branch length 
is large, whereas for estimating the branch lengths of  
gene-trees, the modified Farris method gives the best 
result when S O is used as the criterion. When SOB is 
used, the performance of  the modified Farris method 
is as good as that of  the F/M and better than that of  
Farris' method. This suggests that when the coefficient 
of  variation is large the modified Farris method is the 
best for obtaining a gene-tree. When the coefficient of  
variation is small, however, this is no longer true and 
UPGMA seems to be better than the modified Farris 
method for making a rooted tree (Table 12). 

The primary objective of  molecular taxonomy or 
phylogenetics is to construct a species-tree rather than a 
gene-tree. For this purpose UPGMA shows a good per- 
formance in estimating branch lengths. When the coeffi- 
cient of  variation is large, however, this method is not as 
good as the Farris or modified Farris method for ob- 
taining the correct topology, though the difference in 
efficiency is not very large except in special cases. If one 
wants to avoid this problem, he can use the Farris or 
modified Farris method to construct a topology and 
then use the distance-averaging method similar to that 
for UPGMA for the given topology to estimate the 
branch lengths. The species-tree thus obtained will be 
useful for estimating the times at which various species 
or species groups split in the evolutionary process. When 
the coefficient of  variation of  branch length is small, 
however, UPGMA seems to be as good as the Farris and 
modified Farris methods even in obtaining a good topol- 
ogy. Furthermore, in this case UPGMA gives smaller 
values of  both S o and S E than the Farris and modified 
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Farris methods. It is interesting to see that this simple 
method, which was originally proposed for phenetic 
classification, shows the best performance when the 
coefficient of variation is small. 

Recently, Li (1981) modified UPGMA to take into 
account the effects of stochastic errors or unequal rates 
of gene substitution. His method is intended to con- 
struct a gene-tree rather than a species-tree. He claimed 
that when nucleotide substitution data are used his 
method is substantially better than UPGMA. However, 
his conclusion is based solely on Tateno's (1978) distor- 
tion index (DI), neglecting S O and S E, and the DI value 
for the trees obtained by Li's method is nearly the same 
as that of our modified Farris method (Tateno 1978). 
Therefore, a more careful study should be made about 
the efficiency of his method. 

Our study has shown that the topology of a recon- 
structed tree is often wrong, whatever the tree-making 
method is used, unless all branch lengths (number of 
nucleotide substitutions) of a true tree are sufficiently 
long. Furthermore, even if the topology obtained is 
correct, the estimates of branch lengths are not neces- 
sarily close to the true values. This result is disturbing, 
but we must accept it, since it is due to the stochastic 
nature of gene substitution as well as to the backward 
and parallel mutations that cannot generally be detected. 
Probably the only way to reduce the errors involved in 
an estimated tree is to increase the number of genes 
used. At any rate, this study gives the warning that one 
cannot be overconfident about the tree reconstructed, 
whichever the method is used. 

This result might prompt some numerical taxono- 
mists to believe that morphological characters are better 
than molecular data for constructing phylogenetic trees. 
We disagree. The evolutionary change of morphological 
characters is generally much more complex than DNA or 
proteins. Even such a simple character as fingerprint 
pattern in man and apes seems to be subject to a com- 
plicated genetic change at the phenotypic level (Chakra- 
borty and Nei, unpublished). It seems that at the pheno- 
typic level "backward" and "parallel" mutations are 
much more common than those at the nucleotide or 
amino acid level. If this is true, it would be very difficult 
to reconstruct a correct phylogenetic tree from morpho- 
logical characters except in special cases. 

A number of authors (e.g., Farris 1972; Prager and 
Wilson 1978) have expressed concern about negative 
values of the estimates of branch lengths that often 
occur in a reconstructed tree. In some tree-making 
methods (e.g., UPGMA) no negative branches are ob- 
tained. However, this does not mean that the tree 
reconstructed is close to the true form, as is clear from 
Fig. 4b. Actually, branch lengths are statistically esti- 
mated in such methods as the modified Farris method, 
so that the estimates obtained can be negative with a 
certain probability particularly when the true distances 
are small. Therefore, we do not have to worry very much 

about the negative estimates unless they are significantly 
different from 0. In our simulation study we have seen a 
number of cases in which the topology was correctly 
obtained but some of the estimated branch lengths were 
negative. Of course, when the absolute value of a nega- 
tive branch was extremely large, the topology was gener- 
ally incorrect. 

In theoretical studies of tree-making methods a dis- 
tance matrix is often computed by summing up the 
relevant branch lengths of a hypothetical tree like Fig. 
4a, and the estimates of branch lengths of  a recon- 
structed tree are compared with the true branch lengths. 
If this procedure is used, the Farris method (and modi- 
fied Farris method) often gives a better result than 
others (Swofford 1981). Indeed, if we apply this pro- 
cedure to the trees in Figs. 4a and 5a, we obtain the 
same result. Unfortunately, however, molecular data 
do not really represent the exact number of gene (nu- 
cleotide) substitutions for most pairs of OTUs, so that 
the conclusion obtained from this type of study is not 
reliable. This is obvious from the examples in Figs. 4 
and 5. 

One important factor in the comparison of the 
efficiency of different methods of tree-making is the 
time required for constructing a tree. Prager and Wilson 
(1978) considered this problem and stated that the time 
required for constructing a tree for a sizable number of 
OTUs is much longer for the Farris method than for 
UPGMA and the F/M method. They apparently studied 
the time required for manual computation. In our study 
we used a computer for all the four methods. The 
computer program for the F/M method was kindly 
provided by Walter Fitch, whereas the programs for the 
other methods were developed by the senior author. Our 
experience indicates that the F/M method is most 
time-consuming, whereas the remaining three methods 
require nearly the same amount of computer time, 
which is far less than that for the F/M method. 

In this paper we used nucleotide sequence data for 
studying the accuracies and efficiencies of different tree- 
making methods. In practice, other types of data such as 
amino acid sequences and immunological distances are 
often used for molecular taxonomy. The genetic dis- 
tances based on these data are known to be roughly 
proportional to the evolutionary time. Therefore, our 
conclusion obtained from the study of nucleotide sub- 
stitution will directly apply to the trees constructed 
from these data, though the errors associated with the 
distance estimates are possibly larger in this case than 
those for nucleotide substitution. 

Farris et al. (1979) recently criticized the use of 
immunological distances for the reason that it is not a 
metric and violates the principle of  triangle inequality. 
They even denied Prager and Wilson's (1971) experi- 
mental result that their immunological distance is 
approximately proportional to the number of amino 
acid differences. They stated: "Amino acid sequence 
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differences must  be metr ic .  I f  immunologica l  distances 

are strongly nonmet r ic ,  then  their  corre la t ion with 

sequence differences cannot  be very close."  This state- 

men t  cannot  be true.  As men t ioned  earlier, our  est imate 

o f  nucleot ide  subst i tut ions,  8, is not  a metr ic ,  but ,  as 

will be seen f rom Table 7, it is highly correla ted to  the 

actual number  o f  nuc leo t ide  substi tutions.  The impor-  

tan t  p roper ty  required for  a distance measure in tree- 

making  is its l ineari ty wi th  evolut ionary  t ime.  Immunol -  

ogcial distance has been shown to  increase approximate-  

ly linearly wi th  evolut ionary  t ime,  and this p roper ty  

is very valuable. I f  we start to  blame data because they  

are no t  manageable for  a certain statistical me thod ,  

there  will be no progress in statistics. Statistics has been 

invented  to  ext rac t  a m a x i m u m  informat ion  f rom a 
given set o f  data, and no t  vice versa. 
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