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Why do so many prognostic factors fail to pan out? 
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Summary 

Although there can be many reasons that one study fails to confirm the results of another, the 
consequences of data exploration and the potential for spuriously significant results are often overlooked. 
A series of simulation experiments were designed to mimic the characteristics of relapse-free survival data 
that might be encountered in a prognostic factor study of node-negative breast cancer patients. Each 
simulated dataset of 500 or 250 cases was divided into a training set, used to select the "best" prognostic 
factor cutpoint, and a validation set, used to confirm the cutpoint. Testing multiple cutpoints markedly 
increased the risk of making a Type I error. The power to detect even small true differences was 
substantial, and increased as the number of cutpoints increased. Regardless of the number of cutpoints 
tested on the training sets, the Type I error rate on an independent validation data set was quite stable and 
the power of the validation set to detect true differences was not related to the number of cutpoints. 
Validation power closely approximated that predicted for a simple two group comparison. It is therefore 
recommended that exploratory analyses of prognostic factors formally employ some method of adjusting 
for increased Type I errors, such as independent validation sets, ad hoc adjustment factors, or other 
statistical methods of estimating the true risk. 

Introduction 

The literature is filled with newly identified 
prognostic factors. Many of these appear 
promising in the initial reports and then in 
follow-up studies fail to retain the same utility. 
Two examples from the breast cancer literature 
will illustrate the problem. First, there has been 
considerable interest and controversy regarding 

the relationship between the timing of surgery 
during the menstrual cycle of pre-menopausal 
breast cancer patients and their post-surgical 
prognosis. In about a dozen published reports, 
only about 25% found a significant relationship 
between cycle time and outcome [1]. Interesting- 
ly, some of the significant findings disagreed 
markedly on the optimal window for surgery. 
And second, in a recent review of the literature 
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on the prognostic value of HER-2/neu [2], studies 
involving mixed stages of breast cancer were 
about equally divided between negative (p>0.05) 
and positive (p<0.05) findings. Seven of eight 
studies of node-positive patients reported a sig- 
nificant effect for both relapse-free survival (RFS) 
and overall survival (OS), while in node-negative 
patients 1 of 11 studies found a highly significant 
effect for RFS and 4 of 11 for OS, respectively. 

There are many possible explanations for why 
one study may fail to reproduce the results of 
another, among them technical differences in 
methodology (i.e. differences in antibodies used, 
or measurement of protein expression versus gene 
amplification); sampling heterogeneity or selection 
bias; or over-estimation of the true effect of the 
marker by the first study. This last explanation 
has not received much attention, and we will 
focus on it in this report. 

Background 

Prognostic factors are clinical or laboratory 
measurements that help predict clinical outcome. 
Typically, when a new factor is introduced, the 
utility of the factor is evaluated by retrospective 
analysis of survival or disease-free survival data 
from a group of patients on whom the factor has 
been measured. The investigators hypothesize 
that patients belong to two (or more) prognos- 
tically distinct groups, and that group membership 
is unknown, but related to the value of the prog- 
nostic factor of interest. Prognostic factor 
measurements usually take on a range of 2 or 
more possible values. The number of possible 
values can be small, as in the case of ploidy 
(diploid versus aneuploid), or very large, as with 
the measurement of estrogen receptor in fmol/mg 
protein. Factors measured by immunohistochem- 
istry are often scored on an integer scale, e.g. 
ranging from 0 to 8. For simplicity, the invest- 
igators may hypothesize a dichotomous threshold 
effect for the prognostic factor, in which values 

below some cutpoint are associated with one 
prognosis and values above the cutpoint indicate 
a different prognosis. Statistical analysis is used 
to describe the underlying relationship between 
the numerical value(s) of the factor and outcome. 
Although some analysts have used the median 
value of the prognostic factor as the cutpoint, 
there is no a priori  reason to expect that exactly 
half of the sample belongs to the good prognosis 
group and half belongs to the poor prognosis 
group. Instead, cutpoint analysis is used to obtain 
a maximum likelihood estimate of the cutpoint 
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Figure 1. Cutpoint analysis curves for typical simulated 
datasets (n=250) with A) a true 10% difference in 5 year 
RFS, or B) no difference in 5 year RFS. 



that best separates the groups. In this type of 
analysis, each prognostic value represented in the 
study sample is tried, in turn, as a cutpoint and 
the one that best separates the survival curves of 
the corresponding groups is selected. In recursive 
partitioning (see Albain et al. in this issue), the 
same approach is used to select successive splits. 
Several related algorithms have been used to 
perform the cutpoint selection. Log rank 
statistics, or equivalently the associated p-values, 
are often used as a measure of the separation of 
survival curves (Figure 1). A somewhat more 
efficient algorithm for cutpoint selection is based 
on the use of Martingale residuals from the null 
Cox Proportional Hazards regression model [3]. 
A modification to the "all possible Log rank tests" 
algorithm (above) was proposed by Abel, Berger, 
and Wiebelt [4], and is supposed to avoid bias 
that might be caused by uneven sample sizes. 
Cox regression has also been used to select 
optimal cutpoints, adjusted for other potentially 
important prognostic factors [5]. 

All of these methods are based on multiple 
looks at the data, and p-values associated with the 
Log rank statistics for the final selected cutpoint 
could be misleading. Consider the following 
scenario. A new prognostic factor takes on 
values from 0 to 9, and can therefore be dichot- 
omized in 9 different ways (i.e. 0 vs 1-9; 0-1 vs 
2-9; etc.). A group of 250 fictitious breast cancer 
patients is constructed such that patients with low 
values of the factor have about a 70% five-year 
relapse-free survival (RFS), while patients with 
high values have an 80% five year RFS. Based 
on a cutpoint analysis (Figure l a), the best 
cutpoint is 3, with cases with low values having 
the better prognosis, and survival curves (Figure 
2a) for the two groups (0-3 vs 4-9) exhibit a 
highly significant difference (p=0.001). Now 
consider a similar group of fictitious patients 
constructed so that the new factor is unrelated to 
RFS. Cutpoint analysis (Figure lb) of this group 
selects 4 as the best cutpoint, and survival 
analysis (Figure 2b) finds a modest but apparently 
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significant relationship. By random chance, high 
values are associated with good prognosis. How- 
ever, using the selected cutpoint on an indepen- 
dent validation set of patients reveals the truth 
(Figure 2c) - -  there is no relationship between 
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Figure 2. Relapse-free survival curves for simulated 
datasets (n=250). A) Training dataset with a true 10% 
difference in 5 year RFS; B) training dataset with no 
difference in 5 year RFS; and C) validation dataset 
associated with B. 
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the factor and RFS. Apparently we were misled 
by examining the data in too many different 
ways. 

In concluding that there was a difference in 
prognosis when there was none, we have made a 
Type I error. Normally, we can control the risk 
of making such a mistake by setting the level of 
significance at which we make the test. We can 
report the p-value of the test (probability of 
obtaining a sample as unlikely or more unlikely 
than ours by chance alone), and conclude that the 
new factor is prognostically useful when the p- 
value falls below some pre-specified level (i.e. 
0.05). When examining the same set of data in 
several different ways, the true overall p-value 
may be quite different from the p-value reported 
from single tests. This is sometimes called the 
"multiple comparisons problem". 

Of course, we can also make a Type II error 
by failing to detect true differences in prognosis. 
The risk of Type II errors is normally controlled 
in clinical trials by determining the magnitude of 
a clinically useful difference and selecting a 
sample size that will detect that difference, if it 
exists, with reasonable certainty (i.e. power=0.80). 
Similar computations can be made for prognostic 
factor studies. Recently, we have recommended 
that prognostic factor studies be classified as 
pilot, definitive, or confirmatory, and that 
information from pilot studies be used to plan the 
size of definitive and confirmatory studies [6]. 
From a practical point of view, a study, par- 
ticularly a pilot study, can be too powerful. 
Although not an error, detecting very small true 
differences with high sensitivity may not be 
desirable. Ideally, we would like to detect 
"important" differences perfectly and not detect 
"unimportant" differences at all. 

The purpose of this paper is to investigate the 
problem of false-positive prognostic factor studies 
by examining' the impact of several parameters, 
including number of cutpoints, sample size, and 
magnitude of true difference, on the outcome of 
cutpoint analyses. 

Methods 

A series of simulation experiments were under- 
taken to examine the effect of two factors, the 
number of cutpoints tested and the magnitude of 
the true difference in prognosis, on the outcome 
of cutpoint analysis. The number of cutpoints 
ranged from 1 to 50 (1,2,5,10,15,20,30,50), 
chosen to simulate the full range seen with real 
factors (i.e. ploidy, immunohistochemistry scores, 
S phase fraction, receptor levels, etc). The 
simulation of recurrence times was designed to 
approximate the real experience of node-negative 
breast cancer patients, with about a 70% five year 
RFS. Differences in prognosis were injected into 
the simulation by improving the five year RFS of 
the good prognosis group, up to 85% (70% [null], 
71%, 73%, 76%, 80%, 85%). The examples de- 
scribed above represent single runs with 10 cut- 
points and either 80% (10% difference) or 70% 
(no difference) five year RFS in the good prog- 
nosis group. For each individual experimental 
scenario, a set of fictitious patients was generated 
(500 or 250, to explore the effect of sample size) 
and then equally but randomly divided between a 
training set, which was used to select an optimum 
cutpoint using cutpoint analysis, and a validation 
set, which was used once to test the selected cut- 
point. Each experimental scenario was run be- 
tween 200 and 300 times. The overall experiment 
was evaluated to find the percentage of the runs 
for each combination of experimental factors that 
yielded significant (5% level) training and valid- 
ation cutpoints, respectively. 

Generation of recurrence time and prognostic 
factor data warrant further discussion. In most 
real investigations of prognostic factors it is not 
possible to follow all patients until failure. At the 
time of analysis, some patients have relapsed (or 
died, in the case of overall survival) and some 
patients are still disease free. The observed RFS 
times (and the associated disease status) can be 
thought of as resulting from two independent ran- 
dom processes, one governing time to recurrence 



and the other governing time under observation 
(censoring time). When the time under observa- 
tion is longer than the time to recurrence, the 
patient is counted as a recurrence at the recur- 
rence time. When the time under observation is 
shorter than the recurrence time, the patient is 
censored. Normally, these two competing random 
processes are only hypothetical constructs that 
cannot be observed directly, but they are useful in 
generating simulated data. Of course, it is 
entirely possible to investigate the null (no 
difference in prognosis) case using real recur- 
rence/censoring time data and randomly generated 
factor values. In fact, this approach was used in 
our investigation of menstrual cycle effects [1]. 
However, here we also wished to investigate the 
impact of cutpoint analysis on cases with varying 
magnitudes of true differences in prognosis. In 
order to do this it was necessary to generate time 
data that follow known distributions. 

In our experiments, we used the Weibull dis- 
tribution to generate recurrence times: 

= C ( b l C - l e x p [  ( h i  c ] -  f (x;b,c) 

In this case, the Weibull distribution has two 
parameters, a shape parameter c and a location 
parameter b. For c=l, the distribution is actually 
an exponential with a constant hazard rate of b. 
In this study, c was fixed at 1.1, which causes the 
hazard rate to increase slowly over time. Ex- 
pected 5 year survival rates were adjusted by 
varying b from 12.75 (equivalent to a five year 
RFS of 70%) to 26.0 (equivalent to an 85% five 
year RFS). Values of the prognostic factor were 
generated first, so as to take on integer values 
ranging from 0 to the desired number of cut- 
points. For a dichotomous factor like ploidy with 
a single cutpoint, the factor would take on values 
of 0 or 1. Fictitious patients with factor values 
below the midpoint were assigned b = 12.75, and 
patients with values above the midpoint were 
assigned a value for b corresponding to the 
required experimental scenario. The b's were 
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then used to generate recurrence times for each 
patient. In this set of experiments, we did not 
study the effect of varying the location of the true 
cutpoint, nor did we examine the effect of several 
thresholds. 

Finally, censoring times were generated in- 
dependently for each fictitious patient as the 
maximum of two uniformly distributed random 
variables that could each range from 0 to 10 
years. This generated a censoring distribution 
with relatively few early censorings, and more 
and more censoring at later times. This approx- 
imated our empirical experience and seemed to fit 
what might be expected in the clinic, where 
follow-up is most intense near the time of diag- 
nosis and primary treatment and may tend to taper 
off as time goes by. Fictitious patients with 
recurrence times later than their censoring times 
were deemed censored at that point and all 
patients with recurrence times later than 10 years 
were censored at ten years. As might be expected 
in a comparable study of real node-negative breast 
cancer patients, about 70% of simulated cases 
were censored with a median follow-up of about 
6 years. S Plus [7] was used to generate the 
simulated data and to compute the necessary stat- 
istics (i.e. Log rank tests, Kaplan-Meier curves). 

Results 

The results of the subset of runs for which the 
prognostic factor truly had no effect are sum- 
marized in Figure 3. As the number of tested 
cutpoints increased, so did the likelihood of 
obtaining a statistically significant result. For 10 
cutpoints, the chances of making a Type I error 
and rejecting the null hypothesis at the nominal 
level of 5% was actually about 25%. That is, the 
true risk of a Type I error was about 5 times 
the nominal level. Doubling the sample size in- 
creased the risk slightly. With 50 cutpoints, the 
risk was about 38%, and in fact, based on another 
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series of simulations not reported here, as the 
number of cutpoints increases toward the sample 
size (the upper limit, in the case of finite samples) 
the risk increases asymptotically to 50%. Note, 
however, that no matter how many cutpoints were 
tested in the training set, the proportion of cut- 
points declared significant at the 5% level in the 
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independent validation set was as steady as a rock 
at 5%. This is as expected. 

As the prognostic factor took on true prognos- 
tic value, and the corresponding survival curves 
became increasingly separated, the results of the 
simulations produced a response or power surface 
(Figures 4-7). Figures 4 and 5 present the results 
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of cutpoint analyses on training datasets with 250 
and 125 cases, respectively, while Figures 6 and 
7 present the corresponding results for validation 
datasets. The rightmost edge of Figure 4 repro- 
duces the dotted curve from Figure 5. Similarly, 
the rightmost edge of Figure 6 (and Figure 7) re- 
produces the validation line in Figure 3. Note 
that, in the training set, in addition to sample size, 
power was a function of both the magnitude of 
the true difference and the number of cutpoints 
tested. For a fixed improvement in 5 yr RFS, 
power increased with more cutpoints. When there 
was only a 6% difference in 5 year RFS (70% vs. 
76%), but the factor had 50 possible cutpoints, we 
detected a statistically significant cutpoint 60% of 
the time. In contrast, power was less than 20% in 
the validation set. As expected, in the validation 
sets only sample size and the magnitude of the 
true difference had an effect on power. Indeed, 
the power to detect differences in the validation 
datasets was very close to that predicted using the 
method of George and Desu [8], an approxima- 
tion that is often used to plan the size of clinical 
trials (Figure 8). The training power surfaces 
were always above (sometimes substantially 
above) the corresponding validation power sur- 
faces, suggesting that with multiple cutpoints to 
choose from, the power to detect clinically insig- 
nificant differences may be substantial. It would 
not be surprising, therefore, if an exploratory 
study, testing several cutpoints, reported a very 
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encouraging p-value while an independent study 
of similar size failed to obtain a significant 
p-value. 

Discussion 

It is clear from the numerical results that trying 
out even a small number of possible cutpoints, 
such as the median and quartiles of the putative 
prognostic factor, can significantly increase the 
true risk of a Type I error above the selected p- 
value. How can we protect ourselves? Several 
strategies seem reasonable. 

First, and most obvious from this study, the 
use of an independent validation set provides 
almost certain protection. On testing the single 
selected cutpoint in a validation set, the risk of a 
Type I error was exactly what it should have 
been. Unfortunately, this is a potentially ex- 
pensive, and in some cases an infeasible, form of 
insurance. It may be possible to improve things 
slightly by adjusting the relative sample sizes of 
the training and validation sets. A 50:50 alloca- 
tion is probably not optimum. In fact, it may be 
preferable to use fewer cases in the training set 
and more cases in the validation set, in order to 
increase the power of the final validation test of 
the hypothesis. The precision of the estimate of 
the cutpoint, which is a function of training set 
size, may be less important than the power to 
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detect useful factors after a reasonable cutpoint 
has been chosen. 

Second, perhaps the level of significance at 
which each cutpoint is tested can be adjusted to 
account for the increase in risk due to testing 
multiple cutpoints, thus producing a more realistic 
description of the strength of the relationship 
between the new factor and prognosis. The 5% 
level of significance was chosen here for conven- 
ience. It is reasonable to expect that the magni- 
fication of the Type I error rate and the increase 
in power with increasing numbers of cutpoints 
would have been similar, proportionately, regard- 
less of the selected level of significance. When 
using the 5% level as the critical value with 50 
cutpoints, the true Type I error rate was about 
40%. If the level were set at 1%, then we might 
expect to see apparently significant results (at that 
level) about 8% of the time. In fact, for sample 
sizes near those tested here, a good adjustment for 
the multiple cutpoint effect would be to use the 
fitted curves in Figure 3 to select a reduced "per 
cutpoint" level of significance, so that the true 
overall error rate would not exceed some desired 
level. For example, suppose a new factor was to 
be evaluated on 250 patients using an immuno- 
histochemistry scoring system with 8 possible 
values, and therefore 7 possible cutpoints. The 

observed Type I error rate for this situation (from 
Figure 3) is about 21%. If we want the overall 
risk to be at most 5%, we could accomplish this 
by testing each of the 7 possible cutpoints at the 
1.2% level (simulation adjusted level of signifi- 
cance -- desired overall level * adjustment factor 
= 5%[5%/21%]). Here, the adjustment factor is 
the significance level used to produce Figure 3 
(5%) divided by the associated observed error rate 

(O~ob s = 21%). In general, using the simulation 
data, the p-value required to declare any single 

cutpoint to be significant ((~Simutation) will be: 

0.05 
O~Simulation = 0 ~ ' _ _  

~obs 

where c~ is the desired overall level of signifi- 
cance. 

Other methods of adjustment could also be 
used. The Bonferroni adjustment is computed by 
dividing the desired level of significance (0.05) 
by the number of comparisons that will be made: 

O~ 
O~Borlferroni='~ 

where OCBonferroni is the p-value required to declare 
any single cutpoint to be significant, c~ is the 
desired overall level of significance, and k is the 
nmnber of cutpoints to be tested. For example, if 
there are 10 possible cutpoints, testing each one 
at the 0.05/10 = 0.005 level will guarantee that 
the risk of erroneously declaring any cutpoint use- 
ful does not exceed 0.05. On the other hand, if it 
is reasonable to think of each cutpoint as an in- 
dependent Bernoulli trial (which it is clearly not, 
since the same dataset is being reused and the re- 
sults are therefore correlated), then the risk of a 
Type I error can be controlled by computing an 
independence adjusted level of significance: 

1 

f~independent = 1 (1 -o0 -~ 

where O~independen t is the p-value required to de- 
clare any single cutpoint to be significant, c~ is the 
desired overall level of significance, and k is the 
number of cutpoints to be tested. 
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Figure 9. P values required to assure that the overall Type I error rate does not exceed 0.05. using three 
different methods. Simulation curve shows both the observed values (<5) and the fitted curve (--). 

Although adjustment is often used to compen- 
sate for increased Type I error rates due to 
multiple testing, in cutpoint analyses the two 
traditionally used methods of  adjustment both 
yield overly conservative values. Figure 9 illus- 
trates the levels of significance that would be 
required by each method of adjustment in order to 
insure that the risk of  making a Type I error will 
not exceed 5% for the entire analysis. All three 
methods produce similar critical values for 5 or 
fewer comparisons, but diverge markedly for 
higher numbers of cutpoints. Interestingly, the 
observed rate of Type I errors in a cutpoint anal- 
ysis is much less than would be expected if in- 
dependent samples were used. Apparently, the 
correlation between outcomes, from repeatedly 
testing the same data, works in our favor. 

Finally, there are several more complex statis- 
tical approaches that may be useful in providing 
a more reliable picture of the true utility of a 
prognostic factor cutpoint, These include jack- 
knife, bootstrap, and permutation test procedures. 
Although computationally intensive, permutation 

and resampling methods could provide a more 
data efficient method of screening prognostic 
factors. As suggested previously, definitive 
studies and confirmatory studies will no doubt 
still be required. 
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