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A Multiplicative Barrier Function Method for 
Linear Programming ~ 

M a s a o  Iri  2 and  Hi rosh i  Ima i  3 

Abstract. A simple Newton-like descent algorithm for linear programming is proposed together 
with results of preliminary computational experiments on small- and medium-size problems. The 
proposed algorithm gives local superlinear convergence to the optimum and, experimentally, shows 
global linear convergence. It is similar to Karmarkar's algorithm in that it is an interior feasible 
direction method and self-correcting, while it is quite different from Karmarkar's in that it gives 
superlinear convergence and that no artificial extra constraint is introduced nor is projective geometry 
needed, but only affine geometry suffices. 
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1. Introduct ion.  Since K h a c h i a n ' s  e p o c h - m a k i n g  work  [5], [6], 4 we have 
g r adua l l y  been  recogniz ing  that  the " t heo re t i c a l "  p r o p e r t y  o f  an i terat ive L P -  
a lgor i thm be ing  o f  p o l y n o m i a l  o rde r  is rea l ized  i f  there  is an a p p r o p r i a t e l y  def ined 
auxi l ia ry  funct ion ,  such as the  vo lume a n d / o r  the  th ickness  o f  the  e l l ipso id  in 
K h a c h i a n ' s  case [5], [6], and  the poten t ia l  func t ion  in K a r m a r k a r ' s  case [4], 
which  is r e d u c e d  at each  i te ra t ion  step (which  is to be  p e r f o r m e d  in p o l y n o m i a l  
t ime)  by  a cons tan t  factor ,  and  i f  the rat io  o f  the largest  poss ib le  va lue  o f  the  
func t ion  over  the  smal les t  poss ib le  value  (the la t ter  is a k ind  o f  t h r e sho ld  o f  

r e so lu t ion  p r o p e r  to the  p r o b l e m  in co r r e spondence  to the p rec i s ion  of  input  
d a t a )  is not  larger  than  a p o l y n o m i a l - o r d e r  p o w e r  o f  that  constant .  

However ,  at  the same t ime we have k n o w n  tha t  such a l inear  convergence  
a lone ,  espec ia l ly  if  the  r educ t ion  rate is smal l ,  is by  no means  o f  p rac t ica l  use. 
A "p rac t i ca l l y  efficient" (in the  na tura l  sense o f  the  words )  a lgor i thm,  i f  it is o f  
the  i terat ive type,  shou ld  have a large r educ t ion  rate,  and  might  p re fe rab ly  
show supe r l i nea r  convergence  at least  at the  final stages. We also know tha t  
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the theoretical complexity of an algorithm and its practical efficiency are not very 
well correlated with each other, especially when the complexity is large. (In 
contrast, when the time complexity is linear or quadratic in the problem size, it 
is more likely that they are better correlated.) Proof of the polynomiality of an 
algorithm is one thing, the design of a practically efficient one is another; both 
being of independent importance. 

The general idea of the algorithm proposed in this paper was conceived by 
the first author with the proof of the convexity of the objective function as well 
as of the superlinearity of convergence, whereas the second author refined the 
design and analysis of the algorithm, implemented the idea into a computer 
program for computational-experimental use, and carried out rather extensive 
systematic computational experiments. 

Part I (Sections 2-6) of this note was written mainly by the first author while 
Part II (Section 7-12) was written by the second. 

This paper is an improved version of the note which was presented by the first 
author at the 12th International Symposium on Mathematical Programming [2]. 
(It was, substantially, an extended English version of the hand-out [3], written 
in Japanese, which was distributed at the meeting of the Research Group on 
Mathematical Programming of the Operations Research Society of Japan held 
on February 16, 1985.) The authors owe much of the improvement to personal 
suggestions from many participants of that symposium, among whom they men- 
tion with gratitude Professor O. L. Mangasarian of the University of Wisconsin 
and Dr. R. J. Vanderbei of AT&T Bell Laboratories. They thank the anonymous 
referees whose comments were useful in improving not only the presentation but 
also the essential contents of the paper. 

Part I. Theory 

2. Problem. The problem we consider in the following is to minimize the 
objective function 

(2.1) 5 c(x)  =- ~ cKx K - Co 
K=I  

under the inequality constraints 

(2.2) ai(x)  =- ~ i ( i = l , . . . , m ) ,  
K=I 

i ~ (K = 1 , . . . ,  n; i=  1 , . . . ,  m) are given constants. where Co, c~, ao, and a~ 

5 Almost everywhere throughout  the paper, we shall adopt the tensor notation for indices (K, A, . . . )  
of  vectors and tensors in R" because we believe that invariant characters of  the relevant quantities 
and equations can best be visualized by doing so. At least the distinction between the superscripts 
standing for contravariance and the subscripts for covariance must  be noticed. However, we shall 
not  use Einstein's summat ion convention (if we did so, we would write, e.g., c~x ~ for ~ = 1  cKx~) for 
fear that, al though tensorial symbolism is one of the most fundamental  pieces of  knowledge in 
classical mathematics ,  many readers may not be very familiar with it. 
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Following Karmarkar [4] we assume without loss in generality that the interior 
Int X of the feasible region 

(2.3) X---{x~R"[a i (x)>0  ( i=  1 , . . . ,  m)} 

is nonempty and a strictly interior point x(~  Int X: 

(2.4) ai(x (~ > 0 (i = 1 , . . . ,  m) 

is given, and that an optimum solution exists and the optimum (i.e., the minimum) 
value of the objective function is a priori known to be equal to zero: 

(2.5) c( ~) = min{ c( x )lx ~ X }  : O. 

Note that (2.5) implies that c(x)>_ 0 at every point x in the feasible region X. 
Furthermore, we exclude some trivial cases from our consideration by adopting 

assumptions (i)-(iii), where we denote the set of optimum solutions by X: 

(2.6) = {x x l  c (x)  = 0}. 

(i) X # X, i.e., c(x) > 0 in Int X. 
( i i ) ) (  is bounded. 

(iii) At a basic optimum solution (the existence of which is assured by assumption 
(ii)) there is at least one inactive constraint. 

Condition (i) can be easily checked. 
Condition (ii) is assumed here so that the sequence produced by the proposed 

algorithm does not diverge to infinity. As long as the sequence converges to a A 
point of X, condition (ii) is not necessary. I f  a tendency for the sequence to 
diverge is detected, we may add an extra constraint so that the set of optimum 
solutions becomes bounded. In fact, as is well known [6], if there is an optimum 
solution at all, there is one such that the values of the components do not exceed 
a bound determined readily from the input data. 

Condition (iii) is satisfied, for example, if the feasible region is bounded. The 
case in which (iii) fails to be satisfied can be handled trivially (see Proposition 3.5). 

3. A Multiplicative Barrier Function and Its Derivatives. We define a new func- 
tion F(x)  made up of the objective function c(x) and the constraint functions 
ai(x), which will play the central role in our algorithm, as 

(3.1) F(x) " -~  C ( X )  m + l  ai(x), 
i 

which is defined only in the interior Int X of the feasible region X. 
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Under the assumptions we took in Section 2, it is readily seen that 

(3.2) F(x)  > 0 in Int X. 

Apparently, this is the affine analogue of Karmarkar's potential function [4], 
but it has a number of nice properties (the convexity property in particular) 
which can be easily observed as follows. 

PROPOSITION 3.1. I f  F(X ~>) ~ 0 for a sequence of interior.feasible points x ~ e 
Int X (v = 0, 1, 2 , . . . ) ,  then the distance between x (~) and X converges to 0 (and 
hence, if  there is a unique optimum, the sequence converges to it). 

PROOF. If  the set of points {x (~)} is bounded, so are the ag(x('4)'s. Therefore 
F(x  ('~) ~ 0 implies c(x ('~) ~ O, and, due to assumption (i), the distance between 
x (~ and J~ tends to 0. If  the set of points {x (~)} is not bounded, it might be 
possible that, because ag(x ('~) became large, c(x ~ did not converge to 0 even 
if F(x  ~ ~ O. However, even in such a case, there would be a constant b ~ (>0) 
for each i such that a~(x)/c(x) <- b ~, since there is no infinite feasible ray parallel 
to J~ due to assumption (ii), which would lead us to a contradiction that 

m F(x  ~ = Ct~[X(V) '~m+l l lTm)  / t l i = l  a i ( x ~  . -  c(x 0~ (where b = 1Ii=1 b ~) did not con- 
verge to O. [] 

We might have chosen, instead of m + 1, a number greater than the number 
of active constraints at the optimum point in order to have only Propositon 3.1, 
but it will be seen that the choice of ' " m + l "  or larger is also essential to the 
strict convexity of F(x)  as will be seen in (3.9) and the proof  to Propositon 3.3. 
(cf. also Section 6.3). 

The converse of Proposition 3.1 does not hold in general, but we have the 
following propositon instead. 

PROPOSITION 3.2. I f  the sequence {x<~2} converges to the optimum in a certain 
closed polyhedron P such that X c p c X u Int X (including as a special case the 
convergence along a straight line), then F(x  ~)) tends to 0 as v-~ oo. 

PROOF. Since P is a closed polyhedron and Int X is an open polyhedron, for 
any x e P with c(x) = e (>0),  there is a constant b i (>0)  such that at(x)> b i" c(x) 
for each i. Hence F(x)  < c(x) �9 I-[?=l bi" [] 

Thus, in order to find an optimum solution to our linear programming problem 
we may find a sequence of points x (~ x (1~, . . .  in Int X such that the sequence 
F(x(~ F(x(1)) , . . .  rapidly converges to zero. 

It is interesting to see that the derivatives of F(x)  have nice expressions, as 
follows. To begin with we differentiate the logarithm of F(x):  

(3.3) log F(x)  = (m + 1) log c(x) - ~ log ai(x) 
i=1 
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to get 

(3.4) 
CK i 

0 1 0 F ( x ) = ( m + l ) _ c _ ~  - ~ a~ r / ~ ( x ) -  8-~  log F ( x ) -  F ( x )  Ox ~ i=l a /~)"  

The vector -q -- ~ ,  which is actually the gradient of F ( x )  divided by F(x) ,  will 
simply be called the "gradient"  in the following. Denote 

~K(x)~ c. 
c(x) '  

i 
t lK 

(3.5) ~i - a,,(x) = ai(x) ,  

a ~ ( x ) ~ l ~  ~(x).  
m i = l  

Then we can write 

(3.6) �9 /,~(x) = (m + 1)~,~(x) - m~K(x). 

l~urther differentiation will yield 

0 2 1 0 2 
(3.7) B ~ ( x )  =- ox~ox~ log F(x )  - F(x~) ox~Ox ~ F ( x )  - n~(x)n~(x)  

= - ( m +  l ) g a ( x ) ~ ( x ) +  ~ "' -i ax(x)aK(x) .  
i : 1  

Thus, the Hessian matrix of  F(x )  divided by F(x) ,  which we shall simply call 
"the Hessian" of F ( x )  in the following, is 

(3.8) Hx,,(x) =- - -  - -  
1 0 2 

F ( x )  OxXOx ~ F ( x )  = BxK(x) + ~x (x)~I~(x). 

It is an amusing exercise to rewrite the expression for H~K using (3.6) and (3.7) 
by completing squares as follows: 

(3.9) H~(x) = m:[~ (x)-  a~ (x)][~ (x) - a~(x)] 

+ E [e~(/)-,~(x)][~(x)-,~'~(x)] 
i = 1  

= m ( m  + 1 ) [ ~ ( x )  - ~ ( x ) ] [ ~ ( x )  - t~ (x ) ]  

+ ~ -i - ~i - 
[ax(x) - ax(x)][aK(x) - aK (x)]. 

i = l  
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Expression (3.9) itself shows that Hx~ is nonnegative definite, so that F(x) is 
convex in Int X. Furthermore, under assumption (iii) of Section 2, the positive 
definiteness of Ha~ can be proved as follows, where we note the well-known fact 
that the nonnegative (resp. positive) definiteness of the Hessian over an open 
domain implies the convexity (resp. strict convexity) over the domain. 

PROPOSITION 3.3. Hx~ is positive definite so that F(x)  is strictly convex in Int X. 

PROOF. We have already seen that Ha~ is nonnegative definite. If Ha~ is not 
positive definite at a point x ~ Int X, there is a nonvanishing vector ~ such that 

H x ~ ' ~  a = m ( m + l )  [~(x)~:" - a, (x)~:'] 
A = I  K = I  1 

(3.10) 

[a~(x)~: - a~(x)~ ~ =0,  
i = 1  K = I  

which means 

(3.11) ~. c~(x)~ ~= ~ ai~(x)~ ~ g  ( i=l , . . . ,m) .  
K = I  K = I  

From the set I = {i[a~(J~)= 0} of active constraints at a basic optimum solution 
we can then choose I such that {a~[ic I} is a maximal independent subset 

(i.e., a basis) of {a~,li ~ I}. Then, since 

1 Y, a~ .~=O for i e I  (3.12) g = ~ a'~(x)~ ~ = ai(x ) 
K = I  K = I  

would imply ~ = 0, g cannot vanish. Furthermore, for any linear form 

(3.13) b(x) = ~ b~x K-bo,  
K = I  

there is a set of coefficients/3~ such that 

(3.14) bK = 2~ fl,a~ 
i~I  

and 

(3.15) b(x) - b(~) = ~^ fl,[a (x) - ai(~)] = ~. fl,ai(x). 
i c I  i~I  

If  there is an inactive constraint ai0(s 0, then, taking aio(x) for b(x), we have 

(3.16) ga~(x) # g[a'o(x) - a'o(~)] 

g ~ f l i a i ( X )  = E ~ i ,~ 
i~ l  i~ l  K = I  

= = g a ' o ( x ) ,  
K=I 

which is a contradiction. [] 
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PROPOSITION 3.4. The direction ~ determined by 

(3.17) ~ Ha~(x)r 
K=I 

is a strict descent direction ofF(x)  at x ~ Int X. 

n n n PROOF. We have Y~x=I r/a~ :x = -~,A=I ~-K=I Hx~(x)r162 a, so that we have from the 
strict convexity of H ~  

(3.18) ~ ~7~:~ < 0. [] 
K=I 

PROPOSITION 3.5. If  assumption (iii) does not hold, F(x) is linear along the 
rays emanating from a unique optimum solution 5. 

PROOF. There is a unique optimum solution since, otherwise, assumption (ii) 
would imply assumption (iii). For any feasible x, we have 

(3.19) 

ai(x)=ai(x)-ai (5)  = ~ ai~ . ( x ~ - : ~ ) ,  

rl 
c(x)=c(x)-c(~)= S, c~. ( x ' - ~ ) .  

K=I 

Therefore, on the line x(t)= 5+ t~ with a constant vector ~, we have 

(3.20) ( ) F(x(t))=t" K=li CK~ K) /i~=l K=I ~ aiK~K' 

i.e., the function F(x) is linear along the rays emanating from 5. [] 

4. Algorithm. The algorithm we propose is straightforward on the basis of the 
observation we made in the previous section. 

1. Start from the given initial point x (~ ~ Int X. 
2. Iteration: 

At the vth approximation x (~, compute F (~)= F(x ~)) (from the viewpoint 
of numerical computation we should not compute F (v) itself but log F(V)), 
~7(~ ~)= ~K(x (~)) and Ha(~ )= HA,,(x ~ by (3.3), (3.4), (3.7), and (3.8) (or (3.9)), 
and then solve the system of linear equations 

(4.1) ~ Hi~,)~ (")K = -@x ~) (A = 1 , . . . ,  n) 
K=I 

to determine the vector ~:(")~. 
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Perform the line search in the direction of ~(~) to find the minimum of F(x) 
on that line, i.e., determine t* by 

(4.2) 

and set 

(4.3) X ( v + l )  = X(v)+ t*~(~). 

In the algorithm proposed above, it is theoretically assumed that we can obtain 
the exact value of t*. Computationally, the line search in each iteration step can 
be performed very quickly, and, from the point of view of the polynomiality of 
the algorithm, even the bisection search would be sufficient to determine t* to 
within the "threshold of resolution" [6]. Practically, we may adopt any reasonable 
method and a more hasty stopping rule therefore. Here, we have 

(4.4) 

f (  t) = F(x(~) + t~ (~)) - [c(x(")) + yt]m+' 

[I [ai(x(~))+ ctit] 
i:l  

y :  ~ c,~ (~)~, a i= ~ ai~ (~)~ ( i : l , . . . , m ) ,  
K = I  ~ = 1  

1 d y c~ i 

f (  t) -dt f (  t) = ( r e + l )  c(x(~)) + yt i = 1  ai(xCY)+ait ' 

[ , > , ] : , , , r  :' v f ( t )  ~ 5 / ( t ) =  f ( t )  - ( m + l )  c(x(.~+y t + X=l La,(x(~))+dt J . 

?l rl 
Note here that [df/dt],=o = - F ( x  (~)) ~x=, E,=l  H~,)~:(~)*~ :(")~ < 0. 

Since f ( t )  itself is strictly convex and tends to infinity near the boundary t = ? 
where 

(4.5) ?= min {-a'(x(~))/~il~'  < 0}, 
i 

we may first search for the smallest tl for which df /dt  > 0 among the sequence 
((1 - �89 ?, (1 - �88 ?, (1 - 1) ? , . . . )  and then, starting from tl, apply the Newton iteration 

(4.6) tj+l = tj 

to the equation 

[ df  / dt ],=t i 
[d2f/dt2],=,~ 

(4.7) d O, 
~tt f ( t ) = 
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to get the sequence (h ,  t2 , . . . )  rapidly converging to t*: 

(4.8) tj -~ t* ( j  = 1, 2 , . . . ) .  

463 

5. Convergence. In the following we shall show that the sequence (x (~ x (~), . . . )  
converges to an optimum ; quadratically in the nondegenerate case at the final 
stages of iteration. To show this, we first note that the direction ~(~) determined 
by (4.1) is a "nice" direction. Let us denote x(~) -~  by e(~): 

(5.1) e (~)~ = x (~)~ - ~ .  

Before all, we see that 

(5.2) 

c ( x ( ~ ) ) - c ( ~ )  
~(x(V))& )~ - c(x(~)) - 1, 

5,(x(~))e(~)~ a i ( x  ( ~ ) ) - a ' ( ~ )  ~=~ - a , ( x ( ~ ) )  - 1 

a ' (~ )  

a'(x(~)) 
- -  (~-1). 

Then we have 

(5.3) 
K = I  K = I  i = l  ~:=1 

= ( m + l ) - m + ~  a ' (2)  " a ' (2)  /=1 a'(x 0')) -1+~, a / ( ~  ) (~1), 

(5.4) 
K = I  

H~)~ ~~ = - ( m +  1)~,(x ~ )  ~ ~.(x(~))~ ~ 
K = I  

i = l  K = I  ~ = 1  

'=1 ai(x ( )) /J 
- ,  a ' ( ~ ) . ' ~  

+ Vt ") 1+ '----~1 ai(x(V))/ 

, = ,  , = ,  a'(x(~ n" 

=([ a'(*) 
, = ,  a ' (x (~b]  , : ,  a ' (x ~ )  a'~(x(~)). 

If we denote the set of active constraints at ~ by 

(5.5) I = {ilai(.~) = 0} 
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as in Section 3, we have f rom (5.4) 

(5.6) 

where 

(5.7) 

..~-~)-(~)~ : w(x(~) n(~'- y, ~'~(x ~)) , 
~:1 i~i w(x  (~)) 

wi(x)  = ai(.~)/ a ' (x ) ,  

w(x) : E w'(x). 
i ~ I  

(Note  that  w~(x) = 0 for  i ~ L) Compar ing  (4.1), (5.1), and (5.6), we might  expect  
that, if e ~) is small  enough,  

(5.8) y(V)- x~) + w(x~))g(~) 

would  be a bet ter  app rox ima t ion  to .~. More  r igorously,  we can prove  the quadrat ic  
convergence  in the nondegenera te  case. 

PROPOSITION 5.1. Suppose that there is a unique optimum basis (i.e., neither 
primal nor dual degenerate) with the corresponding solution ~, to which x ~) conver- 
ges. Then, i f  IIx<~)-:~[I is sufficiently small, IIx(~§ = o(llx<'-~ll=), implying 
the quadratic convergence. 

PROOF. By means  of  an affine t rans format ion  which moves  ~ to 0 and makes  
i ~" the matr ix  a~ into the basis  form with respect  to x, the p rob lem is expressed in 

the form 

(5.9) - K - a ; - - _ 0 ( i =  1,  , m  min c~x ~ -i 
K 1 K = I  a K X  " " "  ' 

where g~ > 0  (K = 1 , . . . ,  n) and ai~ = t~iK, a ~ = 0  (K = 1 , . . . ,  n; i =  1 . . . .  , n; t~K = 1 
if K = i and 6i~ = 0  otherwise),  and t i~<0  ( i =  n + l , . . . ,  m)  and 0 is the unique 
o p t i m u m  basic  solution. We have only to prove  that,  in p rob l em (5.9), for  the 
vth app rox ima te  solut ion x (~), if I I x<" II is sufficiently small,  [[ x(v§ = o( l l  x ~ ~) II 2). 

Setting e = x (~), consider  another  p rob lem scaled by ~: 

- K i - -  - i  K i - i  where cK = cKe , a ~ -  aKe , and ao = ao. In order  to prove  the proposi t ion ,  it 
suffices to p rove  that, in p rob lem (5.10), for  x (~)= e(e  K --- 1 for  K = 1, . . . ,  n), we 

have [Ix(~§ = o(11~11). 
Let us first note  that  y---y(") defined by  (5.8) satisfies the equat ion 

i 

K = I  i = n + l  
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The right-hand side of this equation is O(11 e 11). As we shall show in the following 
claim, the eigenvalues of  HA~ (e) are all o f magnitude O(1 ), so that IIY [[ = O([I e II). 
Claim. When Ilell is sufficiently small, all the eigenvalues o h > - ' " - - - ~ r , > 0  of 
HA,,(e) is of order 0(1).  

Proof of Claim. From (3.9) we have 

nA,~(e)=(--mc--~-e)q-1)(--m-~-e)bl)q-i~=l (-c~e)q-Six)(--~e)b~i,~) 

CA C,< 

+(m-n) c(e) c(e) + o(11~11) 

n + 2  

= D A D K + O ( I I e l I ) ,  
i = 1  

C K Di,, = 8i~ ( i=  1 , . . . ,  n) 
c(e) 

C K 
= l - m - -  (i=n+l) c(e) 

el< = ~ / m - n - -  ( i=  n+2) .  c(~) 

When lie I[ is sufficiently small, we may apply the Binet-Cauchy formula to the 
principal term of the above expression for HA~(e) to get 

leI o-K = [det Hx~(e) / 
K = I  

= (m-n ) (m -n + l )  ~=,~ \ - ~ ]  +A<K y~ (m-n)  ~ - ~  [ l+O(ll~ll)]  

(m-~n)(m-n+ l) 
-'--- r l +  o(11~11)], 

n 

where we made use of the fact that E~=I c,,/c(e)= 1. 
Furthermore, we have 

K = I  
~K = IID'~II~U + O(INII)3 

n + 2  

= Z Z ID'~I~U+O(II~II)] 
i = 1  K = I  

={m(m+l)~=l~.  ( c~\~j~2_2(m_n+l)}[l+O(H~[])] 

<- [m(m + 1) - 2 ( m  - n + 1)][1 + O(11~ II)] 
= [m(m - 1) +2(n - 1)]tl + o(llel[)]. 



466 M. Iri and H. Imai 

Since 

O"K~O'l~O'2~' ' '~O'n  -'~" O" K o'~-> ( n -  1) "-1 o-~ o-~ 
K=I K=I 1 K=I 1 

and 

/ ( K ~  = )n-1 (n_l) , - l (m_n)(m_n+l)[l+O(l l~.H)] ' 
( n - - 1 ) n - - I  K=I[I O'K 1 o-~ z n[m(m_l)+2(n_l)] , ,_ 1 

the claim follows. (End of Proof  of  the Claim.) 
Let z be the first point on a constraint hyperplane a~(x) = 0  (i = 1 . . . .  , n) that 

is met by a ray emanating from e toward y in the direction of ~ ) .  Since 
Ilyll--o(ll~ll) ,  we have Ilzll--o(ll~ll).  The line search over the line segment 
connecting e and z is to find the minimum point r* of  

f (r)  = c ( x )  m+l ai(x), 
i= 

where x = r e + ( 1 - r ) z  (0 -< t -< l ) .  Setting y = ~ = l c ~ ( e ~ - z  ~) and a ~= 
a~(e -z~), we have 

1 df (m+l)'y ~ _~/ 

f(.c) dr c(z)+yr i=lai(z)+air 

> ( m + l ) y  m 

c(z) + 3'r r" 

We note that (m + 1)~//[c(z) + ~/r] - rn/.r = 0 when r = r'=- mc(z)/3'. Thus, if II e II 
is sufficiently small, we have r '  = O([] ell) and (d f~ dr)lT=~,- 0. From the convexity 
of  f(~'), r*--- r'. Thus, we have r* = O(llell), and hence IIx "+'ll-- o(11~11) for 
x ~+1) = r*e  + (1 - r*)z. [] 

t4(~) In the degenerate case ~ is opt imum but may not be basic. In that case , ,  x~ 
multiplied by c(x(~)) 2 may have small eigenvalues. However, the corresponding 
eigenvectors are seen to be nearly parallel to X, so that, as far as the component  
orthogonal to .~ are concerned, we can obtain a conclusion similar to the above. 

It is also seen from (5.7) and (5.8) that, if x (~) is close enough to ~, the t* 
determined by the line search in the algorithm is expected to be nearly equal to 

(5.11) 
a'(~) 

w(x~)) = i~• wi(x~)) = ,r a ~ ) = m - I I I  -~ t. 

(See (5.5) for the definition o f / .  Note that 1I] = n in the nondegenerate case.) 
When x ~) is not sufficiently close to ~, we cannot expect a superlinear conver- 

gence, but, at best, only a linear one. The following is not a rigorous proof  of  
the linear convergence, but suggests a theoretical explanation for the empirical 
behavior of  the algorithm, i.e., the linear convergence, observed in the computa- 
tional experiments, and gives an intuitive sketch on which a more formal proof  
may be constructed. 
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PROPOSITION 5.2. Suppose that, in an arbitrary direction ~ starting from x (~), the 
value of the function F(x (~) + t~) can be sufficiently well approximated as 

,, O 0") t2 ~ ~ ~,'~ x 02 
F(x(")+tg)=F(x(")) +t i ~ ~x~F( x )+~  OxXOx ~F(x(~)) 

K=I K=I A=I 

for t satisfying the inequality 

(5.12) 
,2ii 
__ T-/(~)t:~r x < K 2 
2 , ~ = l X = l * " x K s  b - 

with an appropriate value of K. 6 Then, 

F(x(~+')) 
F(x% < I - K ( 1 - K ) .  

PROOF. Under the assumption, we have 

t 2 

f (O)-  F(x (~)) ~- 121- t K = I  K = I  A = a  ax AK ~ b 

as long as t satisfies (5.12). This means that f(t)/f(O) can be approximated by 
the linear function in t 

(5.13) l+t  ~ ~?)s r 
~=1 

up to an error less than K 2. We consider the problem of minimizing (5.13) under 
condition (5.12), for which the solution is obvious: 

(5.14) /i t =  2K 2 V t-t(~)r162 a 
/ K = I  AZ~=I ~ l  AK ~ 

i f ~ =  1 ~7(~")~ K <0.  The minimum value of (5.13) depends on ~, and, as is readily 
seen, the minimum o f  that minimum value with ~ varied is attained if ~ is chosen 
equal to ~(~) determined by (4.1). 

By determining ~(~) and t in that manner, we shall get 

(5.15) ? = f ( t ) ~ l + t  i rl(~)r (~)~+Kz 
f(0) ~=l 

: 1 - K ~/2  ~ i H(~7, )6(~)'6 (~)a + K2. 
K : I  A=I 

6 This  a s s u m p t i o n  may  seem too  strict  in the genera l  s i tua t ion ,  and  is, indeed ,  somet imes  ha rd  to 

ho ld  va l id  in al l  d i rect ions .  However ,  as is seen f rom the proof,  it suffices for the a s s u m p t i o n  to ho ld  

only  for the d i rec t ions  ~(~) and  ; - x (~), which ,  in exper iments ,  is obse rved  a lmos t  a lways  to be  the case. 
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If  we chose ~ = ~ - x  (~) ( = - e  ~)) and determined t by (5.14) accordingly, we 
should have 

K=I A=I 

rl(~)~ ~ = - 1  - w(x(~)), 
K = I  

..x~sr-r<~)c~xs = w(x<~)) 1 + w(x ~ )  + i~, y" w(x  ~)) 

= w(x ~)) + w(x~)) ~ - w(x ~)) + 2 w'(x~))  2 

: w ( x ~ )  ~+ E w'(x~)) ~ 
i~1 

(cf. (5.2), (5.3), (5.6), and (5.7)), or 

(5.16) f ( t )  r : f ( 0 ) =  1 - t ( l +  w(x(~)) )+K 2 

= 1 ~/2K(I + w(xr ~- K2" 

X/w(xr 2 + E w'(xr 2 
i~I 

Since wi(x (~)) > 0 and w(x (~)) = ~irx wi(x(~)), we have 

y, wi(x(~))2 <_ w(x(~)) 2, 
i~1 

so that we have 

(5.17) V W(X(V))2 nt-i~1 Wi(X(V))2 <- ~/~W(X(~))'  

o r  

K ( I  + w(xr 
(5.18) r <  1 w(x(,,)) 

K q - K 2 = I - K  - - q - K  2. 
w(x ~)) 

Since the F in (5.15) is by definition not greater than the r in (5.18), we finally have 

(5.19) ~< 1 - K ( 1 - K ) .  [] 

Thus, if the assumption of Proposition 5.2 is satisfied, at each iteration step, 
we have the value of the function F ( x  (~)) reduced at least by a constant factor 
1 - K(1 - K)  approximately: 

F(x~+l)) 
(5.20) F(xr ) < 1 - K ( 1  - K ) ,  
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the factor being equal, for example', to 3, 13 57 1 ~, and ~ with K = I ,  z, and ~, 
respectively. 

6. Some Remarks 

6.1. Practical Efficiency of the Algorithm. The proposed algorithm seems to 
require a small number of iterations in practice. However, it obviously has the 
disadvantage that, at each iteration step, we have to solve a large, rather dense 
system of linear equations (4.1). In order for this algorithm to become "practical" 
in the true sense of the word, that disadvantage should be overcome. The prospect 
is not very gloomy but rather bright, because the gradient ~ as well as the 
Hessian Hx~ has a seemingly very nice structure (see (3.4), (3.9), etc.). In fact, 
Professor Kunio Tanabe of the Institute of Statistical Mathematics suggested the 
possibility of applying a conjugate-gradient-type algorithm for the solution of 
the system of  linear equations. Evidently there will also be many other devices 
to make this stage of computation more and more effective, e.g., using an 
approximate Hessian instead of the complete one, devising an effective way of 
updating the inverse (or, more practically, the LU- or the QR-decomposition) of 
the Hessian, etc., by making use of the special structures of the gradient and the 
Hessian. 7 

6.2. A Linear Subiteration Scheme. It may be possible to make use of some 
factorization (e.g., LU-decomposition) of a Hessian ~ : ~  �9 ~x~ more than once to 
improve an approximate solution x t''~. In fact, from (5.6), we might expect the 
x (~§ determined by the line search along ~(~,1~: 

X (v+l ' l )  = X 0") -t- t~  (v'l), 

where ~(~':> is determined by 

(6.1) ~ H(x~)~(~'I)K=--( : ai(x(~+l))~ ai(x(~§ " 
K=I i=l ai(x(V)-~] nA(X(v))'~- :i=I ai(x(~)) :i(x(V))' 

would be a better approximation than x (~). We may repeat this process by 
regarding x ("+1':) as x (~+:). Computational experiments have shown that it is 
sometimes, though not very often, the case. Since, once we have the LU-decompo- 
sition of ..x~u(~, iteration (6.1) is not very costly, we may iterate (6.1) as long as 
the value of F(x  (~'tl) is being improved substantially. 

7 A referee has kindly informed the authors that the following recent report contains such devices: 
P. E. Gill, W. Murray, M. A. Saunders, J. A. Tomlin, and M. H. Wright, "On projected Newton 
barrier methods for linear programming and an equivalence to Karmarkar's projective method", 
Technical Report SOL 85-11, Department of Operations Research, Stanford University, 1985. 
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6.3. An Extension. Dr. Kazuo Murota of  the University of Tsukuba reported, 
in a personal communication to the authors, his observation that the function 
F(x) defined in (3.1) remains convex if we take any "convex" function for c(x) 
and any "concave" functions for the a~(x)'s. In fact, we then have the same 
expression (3.6) for ~7~(x)= [1/F(x)](OF(x)/Ox ~) if we replace the definitions 
of ~ ( x )  and the cT~(x)'s by 

1 0 
~(x)  c(x) ox ~ c(x), 

1 0 
= ai(x), (6.2) diK(x) ai,x,[ ) Ox ~ 

fi~(x) 1 ~. : -  a ~ ( ~ ) .  
m i = l  

BaK = 02 log F(x)/OxaOx ~ is expressed as 

/ " m + l  0 2 " 1 0 2 } 
(6.3) Bx~(x) = [ - ~ i  Ox,OxK c(x)-i~=l a~(x ) OxaOx~ ai(x) 

+{-(m+l)~a(x)~.(x)+ i=1~ I]~(X)d/(X)} ' 
and (3.8) remains unchanged. Since e(x) is convex and the a~(x)'s are concave, 
the matrix in the first pair of braces on the right-hand side of (6.3) is nonnegative 
definite. Furthermore, as is easily seen~ the manipulation of completing the squares 
for the sum of the second pair of braces on the right-hand side of (6.3) and 
rl~(x)~7~(x) can be carried out in entirely the same manner as in (3.9). Therefore 
H~K (x) is still positive definite in this generalized case. 

It is not quite obvious whether this observation of  Murota's is of some direct 
significance for a nonlinear programming problem or not, but, in the context of 
this paper, it shows us the interesting fact that F(x) = m' m C(X) /IJi=l a i(x) with any 
m' greater than or equal to m + 1 is always convex in the case of linear program- 
ming. To prove this fact, we may simply replace e(x) by e'(x) = e(x) m'/(m+l), the 
latter being convex if c(x) is linear. 

6.4. Observations on Invariance. It is one of the principal characteristics and 
advantages of our algorithm that, except for the arbitrariness of the choice of an 
initial feasible point, everything is invariant under (i) the group of affine transfor- 
mations of R" and (ii) the group of rescalings of the functions ai(x) and c(x) 
(where "rescaling" means multiplication of  each ai(x) (or c(x)) by an arbitrary 
constant). This makes a clear contrast with Karmarkar's algorithm which requires 
the introduction of an artificial constraint Y,x ~ = M which is not affine-invariant. 
Of course, Karmarkar's algorithm enjoys another type of invariance, i.e., the 
invariance under the projective transformations in another space, as is well known 
[4]. 
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Part II. Preliminary Experiments 

7. Design of Computational Experiments. We show the results of preliminary 
computational experiments of the algorithm proposed in Part I. The algorithm 
was coded into a FORTRAN program for the purpose of investigating the behavior 
of the algorithm only; therefore the advanced techniques discussed in Section 6 
were not made use of. All the experiments were executed with double-precision 
(14 hexadecimal digits) arithmetic on the HITAC M-280H of the Computer 
Centre of the University of Tokyo. 

It is now widely known that the timing data are considerably dependent on 
the implementation technique as well as on the particular architecture of the 
machine. However, the results we show in the following, i.e., how fast the function 
value F ( x  (')) decreases as the iteration proceeds, how the number of necessary 
iterations depends on the problem size, etc., will be almost independent of the 
implementation and of the machine arthitecture. Here, it is important to note 
that for an algorithm which produces a "linearly convergent" sequence (as 
Khachian's and also Karmarkar'sS), the number of necessary iterations is highly 
dependent on the required accuracy, whereas for an algorithm producing a 
"superlinearly convergent" sequence (as ours), it is insensitive to the required 
accuracy. 

The computational experiments were performed first on small-size sample 
problems and then on three classes of small- and medium-size structured problems 
with parameters. Most of the small-size problems were of two variables (n = 2) 
(Examples (C1)-(C6)), for which the feasible regions as well as the histories of 
iterative processes of the algorithm are here illustrated together with the contour 
lines of the barrier functions F(x) .  A "diet problem" (Example (D)) was also 
taken as a small-size sample problem. The three classes of the structured problems 
are the Klee-Minty problems [7] (Example (KM)), the random problems 
(Example (R)), and the assignment problems (Example (A)). The sizes of these 
problems can be varied by adjusting the parameters, which enables us to know 
what effect the size of the problem has on the performance of the algorithm. We 
also show by computational experiments how effectively the linear subiteration 
scheme given in Section 6.2 works. 

In order to make the value of the objective function for the optimum solution 
equal to zero and to produce an initial interior feasible solution we adopted the 
following primal-dual pair approach. Consider the linear programming problem: 

(7.1) 

min c Tx, 

A x  >- b, 

x_>O. 

s In many computational experiments, it has been observed that Karmarkar's algorithm also produces 
a linearly convergent sequence. It seems that no theoretical proof has been done for the superlinear 
convergence of Karmarkar's algorithm. 
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From the duality theorem, this problem is equivalent to finding a feasible solution 
of the following linear inequalities: 

Ax >- b, 

(7.2) --A Ty >- --C, 
-cTx + b Xy >_ O, 

x,y>-O. 

Rewrite (7.2) by Pal_> Cio and ~-> 0 with ~ = (x a', yT)X. In order to find a feasible 
solution of (7.2), let us consider the following linear programming problem in 
the canonical form (2.1) and (2.2) of Part I" 

rain A, 

(7.3) A~+ dA - ~io--- 0, 

~,,~---0, 

where ~ is defined as follows: let e =  ( 1 , . . . ,  1) ~r and a'=.4e-do; then set 
di = 1 - ai' if a~ -< 0 and di= 0 if al > 0. Then, ~(o) = e, A (~ = 1 is an initial interior 
feasible solution for (7.3), and (7.1) has the optimum solution iff the value of 
the objective function for the optimum solution of (7.3) is zero; furthermore, the 
optimum solution of (7.3) with the value of the objective function equal to zero 
affords the optimal pair of primal and dual solutions for (7.1). 

Throughout the following computational experiments, we did not adopt any 
theoretical stopping criteria for the iteration, but we continued the iteration until 
the finite-precision computation would proceed no further. As for the validity of 
the assumptions in Section 2, we were "optimistic," i.e., without checking their 
validity for each problem we entered into the computation to see what would 
happen. 

8. Small-Size Problems. Examples (C1)-(C6): We first consider six problems 
with two variables x = (x, y) (n =2) for which the values of objective functions 
for the optimum solutions are a priori known to be zero. The computational 
experiments were executed with three starting points chosen rather arbitrarily 
for each problem. The problems are as follows, where c = c(x) and a i=  ai(x): 

(C1): c=x+y;  a l = x ;  a2=y ;  a 3 = 2 - 2 x - y ;  a4=3+2x-4y. 

(C2): c=x+y;  al=x; a 2 = y ;  a 3 = 2 - 2 x - y ;  a4=3+2x-4y; 

aS=x+2y. 
(C3): c=3+2x-4y;  a l = x ;  a2=y; a 3 = 2 - 2 x - y ;  a4=3+2x-4y. 

(C4): c = l - x ;  al = x; a2= y; a3 = l - x -  y. 
(C5): c = x - y / 4 + ~ ;  a~=x; a2=y; a3=x+y-�89 a4=2x-y+~; 

a 5= - 3 x  + y  + 2; a 6= - x / 4 - y + l .  

(C6): c = - x + y + ~ ;  a~=x; a2=y; a3 =x+y-~;  a4=2x-y+~; 

aS=-3x+y+2; a 6 = - x / 4 - y + l .  
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A 

Function values= Function values= 

256. 256. 

64.16. ~ ~ ~ ~ i  i i , i i ~ i , l ~ ~  k i . : : :~-~, . .  <",:: ...... 64.16. 
1. 1. 
.25 .25 
.0625 .0625 
.015625 .015625 

(CONTOUR1) 
c=x +y; a(1)=x; a(2}=y; a(3)=2.0-2.0*x-Y; 

a(4} = 3 .0  + 2 , 0 * x  - 4.0*y 
(a) 

{CONTOUR2) 
c=x+y; a(1)=x; a(2)=y; a(3)=2.0-2.0*x-y; 

a(4) =3,0 +2.O*x-4.0y; a(5}=x +2,0*y 
(b) 

Function values = 
65536. 
16384. 
4096. 
1024. 
256. 
64. 
16. 
4. 
1. 
.25 
.0625 
.015625 

Y 

~ _ / "  

(CONTOUR3) 
c=3.0+2.0,x-4.0u a(l/=x; a(2)=y; aI3)=2.0-2,0*x-y; 

a(4)=3.0 +2.0*x-4.0*y 
(e) 

Function values = 
1024. 
256. 
64. 
16. 
4. 
1. 
.25 
.0626 

(CONTQUR4) 
c=l .0-x;  a(1)=x; a(2)=y; a(3)=l .0-x-y 

(d) 

Function values= 
50. 
5. 
.5 
.05 
.005 
.0005 
.00005 

V, 

X 

{CONTOUR5) 
c=x-y/4+1/12; a(1)~x; a(2)=y; a(3)=x+y- 1/3; 

a(4}=2*x-y+1/3; a(5}=-3*x+y+2; a(6)=-x/4-y+l  
(e} 

Function values = 
10000. 
1000. 
lOO. 
lO. 
1, 
.1 
.01 
.001 

i / 

I P /r' j /  

{CONTOUR6) 
e=-x+y+2/3; a(1)=x; a(2)=y; a{3)=x+y-1/3; 

a(4}=2*x-y+1/3; a(5)=-3*x+y+2; a(6)=-x/4-y ~ 1 
(fl 

Fig. 1. Computational results for the small sample problems with two variables. (a) Example (C1). 
(b) Example (C2). (c) Example (C3). (d) Example (C4). (f) Example (C5). (e) Example (C6). 
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We illustrate the process of iteration together with the contour lines of the barrier 
functions F(x)  in Figure 1 (from the contour lines, the good properties of the 
barrier functions would be observed visually). 

Example (D): Next, we consider the following problem, which is a so-called 
diet problem, taken from the HITAC MPSII manual: 

min cTx, 

Ax >- b, 

x>--O, 

A= 

where 

J 41t 351 270 260 451 156 59 721 58 130 118 77 51 40 24 28 311 

0.8 6.2 8 17.5 12 12.7 2.9 0.6 6 17.5 20 1.9 1.3 1.2 1.6 3 34.2 

0.8 1.5 20.5 44.3 11.2 3.3 81.6 3.5 6 3.5 0.1 0.2 0.2 0.2 0.4 0.7 0.3 

6 11 6 9 65 100 10 120 80 12 5 35 40 45 98 470 1 

2 480 90 90 90 36 780 5 100 90 12 57 10 15 25 600 

0.4 1 1.3 1.2 2.6 0.1 0.1 1.4 3 0.7 0.5 0.5 0.5 0.4 3.3 23 0 . 2 |  

) 0 0 25 0 800 120 2400 0 60 40 0 1300 6 33 2600 10000 40 

0 . 0 9 0 . 1 0 . 0 4 0 . 4 0 . 1 0 . 0 4 0 . 0 1 0 . 0 2 0 . 0 2 0 . 1 5 0 . 1 0 . 0 6 0 . 0 3 0 . 0 8 0 . 1 2 0 . 2 1 0 . 0 9  

0 . 0 3 0 . 0 3 0 . 1 1 0 . 1 0 . 4 0 . 1 5 0 . 0 3 0 . 0 2 0 . 1 5 0 . 2 0 . 0 3 0 . 0 4 0 . 0 2 0 . 0 5 0 . 3  1 0 . 0 2 /  

o o o o o o o 1 , 1,  lO , o  lOO 

o/  0 0 0 0 10 0 0 0 530 0 0 0 0 0 0 0 

b = (2300, 75, 38, 660, 1300, 10, 1900, 1.2, 1.2, 63, 400) T, 

c = (25, 30, 350, 150, 40, 20, 100, 40, 60, 100, 17, 20, 20, 12, 75, 900, 20) T. 

The optimum value of this problem is 354.03042. We solved this problem in 
two ways: first, solving it directly with Co = 354.03042 and an initial interior feasible 
solution (100, 100 , . . . ,  100) T, and second, solving the extended problem as 
described in (7.2) and (7.3). The results are shown in Figure 2. 

2 Primal (optimal value and 
17 x+x an interior point 

-1- 
-2 .  

- 3 i  
- 4  c Primal-dual pair 

-i:': ~ 7  2) and (7 3) 

- 8  

10 20 

Iterations 

Fig. 2. Computational results for Example (D) (diet problem). 
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9. Klee--Minty Problems. Example (KM): The class of problems initially pro- 
posed by Klee and Minty [7] (the present form (9.1) is due to Avis and Chv~ital 
[1]) is well known as linear programming problems with N variables for which 
the simplex method with various pivot rules (e.g., Bland's rule) requires an 
exponential, in N, number of pivot steps to reach the optimum: 

N 

m a x  ~ EN-Jxj, 
j = l  

i - - 1  

(9.1) 2 ~ e'-Jxj+x,<-I ( i = l , 2 , . . . , N ) ,  
j = l  

xj_>0 ( j =  1 ,2 , . . . ,  N), 

where 0 < e <1. The optimum solution of this problem is xj = 0 (j = 1 , . . . ,  N - 1 )  
and xN = 1. Concerning the size m, n of the problem obtained by combining this 
problem with its dual, m = 2(2N + 1) and n = 2N + 1. Computational experiments 
were performed for the cases with e = 0.4 and N = 2, 4, 8, 16. The results are 
shown in Figure 3. 

Among the problems tested, the growth of the number of iterations required 
by the Klee-Minty problems as the number of variables increased was the most 
remarkable, but it seems still O(N). 

10. Random Problems. Example (R): Random linear programming problems 
were used by several computational experiments for the simplex algorithm (e.g., 

0 

-7- N=16 

- 8 -  
. . . . . . . . .  i . . . . . . . . .  i . . . . . . . . .  I . . . . . . . . .  i . . . .  

0 10 20 30 40 
Iterations 

Fig. 3. Computational results for Example (KM) (the Klee-Minty problem). 

- 2  

§ 
- 3  

- 4 -  

o 

~" -5- 
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see Avis and Chv~ital [1]). The problem is described as follows: 

(10.1) 

m a x  eTx ,  

Axe< 10 4, 

x>=O, 

where e = ( 1 , . . . ,  1) T and A is an M x N matrix with M < - N ,  the elements of 
which are random integers from 1 to 1000. The problems have many redundant 
constraints. Furthermore, it seems that problems of this class are not as practical 
since their A's are dense while the A's in the ordinary linear programming 
problems being solved in practice are sparse. However, the random problems 
give us some insight into the performance of the algorithm for dense problems, 
especially into the effect of problem size on the number of iterations required by 
the algorithm for structured dense problems. 

/ 

100 Simplex method (the largest coefficient rule) 

0 

z 

Simplex method (the largest decrease rule) 

4050 f ~ / / / ~ T ~ / w ' ~  ~ 
o Slope ~ (oc~/g) 

o 8o 
30 ! ^ ~ .  

20 

10 

go 
? 

o Algorithm proposed in Part I 

I I 
& 

I [ I 1 I J ) 

10 20 30 40 50 100 N = M  

Problem size 

Fig. 4. Computational results for Example (R) (random problems): the number of iterations (O) and 
pivotings (A, 0) required [1]. 
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Computational experiments were executed for the cases with M = N and 
N = 10, 20, 30, 40, 50, where the size parameters m, n of the problem constructed 
as in (7.2) and (7.3) are m = 2 ( 2 N +  1) and n = 2 N +  1, where, in these computa- 
tional experiments, each row of the original problem (10.1) is scaled, i.e., multi- 
plied by a factor 10 -4. The results are shown in Figures 4 and 5. 

In Figure 4 we also depict the results, taken from Avis and Chv~ital [1], on 
the number of pivotings of the simplex methods for the original problems (not 
the primal-dual problems). It is seen that the simplex method requires about 
O ( N  15) pivotings, while the algorithm proposed in Part I requires about O(n ~ 
iterations. (Note that one pivoting in the simplex method is cheaper than one 
iteration of the proposed algorithm with a naive implementation, and so it is not 
fair to compare the two algorithms based on these results alone.) If  one iteration 
of our algorithm is to be compared to M pivotings of the simplex algorithm, 
then the two algorithms may have the same performance, at least in the order of 
magnitude. 

11. Assignment Problems. Example (A): Assignment problems were taken up 
as a typical class of test problems which are sparse and structured, although they 
might be too special in structure, being highly degenerate. The problems are of 
the following form: 

k k 

max }2 }2 cOxi j, 
i=1 j = l  

k 

}2 x/j-< 1, 
(11.1) i=1 

k 

xo-<l,  
j = l  

X 0 >-- O, 

where co(i,j= 1, . . . ,  k) are random real numbers in the interval (0, 1). The 
number N of variables of the original problems is k 2, and the size parameters 
m, n of the extended problem (7.2), (7.3) are m = 2 ( k + l )  2 and n = ( k + l )  2. 
Computational experiments were performed for the cases with k = 2, 4, 6, 8. The 
results are shown in Figures 6 and 7. 

As is seen from Figure 6, the number of iterations required by the algorithm 
for the assignment problems is remarkably few. 

12. Computational Results on the Linear Subiteration Scheme. This section pre- 
sents computational results on the linear subiteration scheme given in Section 6.2. 
We repeat here the subiteration process as long as log10 F(x) decreases at least 
0.1. The subiteration scheme was tested for the three classes of the above- 
mentioned structured problems, (KM), (R), and (A). The computational results 



478 M, Iri and H. Imai 

§ 

-2 
et0 
@ 

0 

-3  

- 4  

-5  

- 6  

- 7  

- 8 -  
. . . . . . . . .  i . . . . . . . . .  I . . . . . . . .  - '  i . . . . . . . . .  i D 

10 20 30 40 

Iterations 
(a) 

1 -  

0 

-1  

- 2  

+ 
- 3  �84 

- 4  
-2 

o 
v - - 5  _ 

i . . . . . . . .  ' " ' 1  . . . . . . . . .  j . . . . . . . . .  i . . . .  " ' ' ' ' i �9 

0 10 20 30 40 

Iterations 

(b) 

Fig. 5. Computational results for Example (R): the decrease of the barrier function. Three random 
problems with (a) M = N = 20 and (b) M = N = 50. 
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Fig. 6. Computational results for Example (A) (assignment problems): the number of iterations 
required. 

are shown in Figures 8-10. In these figures, the "number of iterations" denotes 
the number of LU-decompositions of the Hessian matrices and not the number 
of subiterations in total (note that a subiteration is less costly compared with an 
LU-decomposition). The average number of successful subiterations per iteration 
was 1.4, 1.2, and 1.1 for (KM), (R), and (A), respectively. 

From these results, it is observed that the linear subiteration scheme ettiectively 
reduces the total number of iterations (the number of LU-decompositions) in 
general. For the assignment problems (A), the subiteration scheme reduces the 
total number of iterations to 70% on average. For the random problems (R) 
especially, even the speed of increase of the number of iterations with the problem 
size seems substantially reduced. 

13. Conclusions to Part II. From the preliminary computational experiments of 
the preceding sections the following two points may be concluded: 

(i) The global linear convergence and the local superlinear convergence at the 
final stages of the algorithm proposed in Part I are experimentally confirmed. 

(ii) The number of iterations required by the algorithm is O(n ~) with t~ a little 
less than 1, and, for structured problems, it happens to be O(n ~) with a 
small e < 1. 

This suggests that the algorithm becomes comparable and even faster than the 
simplex method if an efficient way of computing ~ = -H- l -q  is devised. 
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Fig. 7. Computational results for Example (A): the decrease of the barrier function. Three random 
problems with (a) k = 4 and (b) k = 8. 
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Fig. 8. Computational results of the subiteration scheme for Example (KM). 

o" 
p 

o 

ca 
E 
Z 

5o! 
40 

30 

20 

10 

. . /  Slope �89 (oc~NN) 

g o ~ 

. o~ * I ~ ,~  S l o p e  0 . 3  (ccN ~ 

I I I I I , ,  I~ 

10 20 30 40 50 100 N = M  

Problem size 

Fig. 9. Computational results concerning the subiteration scheme for Example (R): the number of 
iterations required with (O) and without (&) the subiteration scheme. 
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Fig. 10. Computational results concerning the subiteration scheme for Example (A): the number of 
iterations required with (A) and without (O) the subiteration scheme. 
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