
Algorithmica (1986) 1:455-482 Algorithmica
(~ 1986 Springer-Verlag New York Inc.

A Multiplicative Barrier Function Method for
Linear Programming ~

M a s a o Iri 2 and Hi rosh i Ima i 3

Abstract. A simple Newton-like descent algorithm for linear programming is proposed together
with results of preliminary computational experiments on small- and medium-size problems. The
proposed algorithm gives local superlinear convergence to the optimum and, experimentally, shows
global linear convergence. It is similar to Karmarkar's algorithm in that it is an interior feasible
direction method and self-correcting, while it is quite different from Karmarkar's in that it gives
superlinear convergence and that no artificial extra constraint is introduced nor is projective geometry
needed, but only affine geometry suffices.

Key Words. Linear programming, Interior method, Barrier function, Newton method.

1. Introduct ion. Since K h a c h i a n ' s e p o c h - m a k i n g work [5], [6], 4 we have
g r adua l l y been recogniz ing that the " t heo re t i c a l " p r o p e r t y o f an i terat ive L P -
a lgor i thm be ing o f p o l y n o m i a l o rde r is rea l ized i f there is an a p p r o p r i a t e l y def ined
auxi l ia ry funct ion , such as the vo lume a n d / o r the th ickness o f the e l l ipso id in
K h a c h i a n ' s case [5], [6], and the poten t ia l func t ion in K a r m a r k a r ' s case [4],
which is r e d u c e d at each i te ra t ion step (which is to be p e r f o r m e d in p o l y n o m i a l
t ime) by a cons tan t factor , and i f the rat io o f the largest poss ib le va lue o f the
func t ion over the smal les t poss ib le value (the la t ter is a k ind o f t h r e sho ld o f

r e so lu t ion p r o p e r to the p r o b l e m in co r r e spondence to the p rec i s ion of input
d a t a) is not larger than a p o l y n o m i a l - o r d e r p o w e r o f that constant .

However , at the same t ime we have k n o w n tha t such a l inear convergence
a lone , espec ia l ly if the r educ t ion rate is smal l , is by no means o f p rac t ica l use.
A "p rac t i ca l l y efficient" (in the na tura l sense o f the words) a lgor i thm, i f it is o f
the i terat ive type, shou ld have a large r educ t ion rate, and might p re fe rab ly
show supe r l i nea r convergence at least at the final stages. We also know tha t

The works of the first author and the second were supported in part by the Grant-in-Aid for Scientific
Research (B) 60460130 (1985) and by the Grant-in-Aid for Encouragement of Young Scientists (A)
60790046 (1985), respectively, of the Ministry of Education, Science and Culture of Japan.
z Department of Mathematical Engineering and Instrumentation Physics, Faculty of Engineering,
University of Tokyo, Bunkyo-ku, Tokyo, Japan 113.
a Department of Computer Science and Communication Engineering, Kyushu University, Hakozaki,
Fukuoka, Japan 812.
4 With regard to Khachian's papers [5], [6], the latter is a substantial improvement on the former so
that we should refer to the latter when we discuss Khachian's work although the former is still often
referred to in Western literature. Moreover, it is regretful that the effect of rounding errors due to
finite-precision computation as well as Khachian's ingenious device for circumventing it, is not always
emphasized.

Received September 20, 1985; revised July 16, 1986. Communicated by Nimrod Megiddo.

456 M. Iri and H. Imai

the theoretical complexity of an algorithm and its practical efficiency are not very
well correlated with each other, especially when the complexity is large. (In
contrast, when the time complexity is linear or quadratic in the problem size, it
is more likely that they are better correlated.) Proof of the polynomiality of an
algorithm is one thing, the design of a practically efficient one is another; both
being of independent importance.

The general idea of the algorithm proposed in this paper was conceived by
the first author with the proof of the convexity of the objective function as well
as of the superlinearity of convergence, whereas the second author refined the
design and analysis of the algorithm, implemented the idea into a computer
program for computational-experimental use, and carried out rather extensive
systematic computational experiments.

Part I (Sections 2-6) of this note was written mainly by the first author while
Part II (Section 7-12) was written by the second.

This paper is an improved version of the note which was presented by the first
author at the 12th International Symposium on Mathematical Programming [2].
(It was, substantially, an extended English version of the hand-out [3], written
in Japanese, which was distributed at the meeting of the Research Group on
Mathematical Programming of the Operations Research Society of Japan held
on February 16, 1985.) The authors owe much of the improvement to personal
suggestions from many participants of that symposium, among whom they men-
tion with gratitude Professor O. L. Mangasarian of the University of Wisconsin
and Dr. R. J. Vanderbei of AT&T Bell Laboratories. They thank the anonymous
referees whose comments were useful in improving not only the presentation but
also the essential contents of the paper.

Part I. Theory

2. Problem. The problem we consider in the following is to minimize the
objective function

(2.1) 5 c(x) =- ~ cKx K - Co
K=I

under the inequality constraints

(2.2) ai(x) =- ~ i (i = l , . . . , m) ,
K=I

i ~ (K = 1 , . . . , n; i= 1 , . . . , m) are given constants. where Co, c~, ao, and a~

5 Almost everywhere throughout the paper, we shall adopt the tensor notation for indices (K, A, . . .)
of vectors and tensors in R" because we believe that invariant characters of the relevant quantities
and equations can best be visualized by doing so. At least the distinction between the superscripts
standing for contravariance and the subscripts for covariance must be noticed. However, we shall
not use Einstein's summat ion convention (if we did so, we would write, e.g., c~x ~ for ~ = 1 cKx~) for
fear that, al though tensorial symbolism is one of the most fundamental pieces of knowledge in
classical mathematics , many readers may not be very familiar with it.

A Multiplicative Barrier Function Method for Linear Programming 457

Following Karmarkar [4] we assume without loss in generality that the interior
Int X of the feasible region

(2.3) X---{x~R"[a i (x)>0 (i= 1 , . . . , m)}

is nonempty and a strictly interior point x(~ Int X:

(2.4) ai(x (~ > 0 (i = 1 , . . . , m)

is given, and that an optimum solution exists and the optimum (i.e., the minimum)
value of the objective function is a priori known to be equal to zero:

(2.5) c(~) = min{ c(x)lx ~ X } : O.

Note that (2.5) implies that c(x)>_ 0 at every point x in the feasible region X.
Furthermore, we exclude some trivial cases from our consideration by adopting

assumptions (i)-(iii), where we denote the set of optimum solutions by X:

(2.6) = {x x l c (x) = 0}.

(i) X # X, i.e., c(x) > 0 in Int X.
(i i)) (is bounded.

(iii) At a basic optimum solution (the existence of which is assured by assumption
(ii)) there is at least one inactive constraint.

Condition (i) can be easily checked.
Condition (ii) is assumed here so that the sequence produced by the proposed

algorithm does not diverge to infinity. As long as the sequence converges to a A
point of X, condition (ii) is not necessary. I f a tendency for the sequence to
diverge is detected, we may add an extra constraint so that the set of optimum
solutions becomes bounded. In fact, as is well known [6], if there is an optimum
solution at all, there is one such that the values of the components do not exceed
a bound determined readily from the input data.

Condition (iii) is satisfied, for example, if the feasible region is bounded. The
case in which (iii) fails to be satisfied can be handled trivially (see Proposition 3.5).

3. A Multiplicative Barrier Function and Its Derivatives. We define a new func-
tion F(x) made up of the objective function c(x) and the constraint functions
ai(x), which will play the central role in our algorithm, as

(3.1) F(x) " -~ C (X) m + l ai(x),
i

which is defined only in the interior Int X of the feasible region X.

458 M. Iri and H. Imai

Under the assumptions we took in Section 2, it is readily seen that

(3.2) F(x) > 0 in Int X.

Apparently, this is the affine analogue of Karmarkar's potential function [4],
but it has a number of nice properties (the convexity property in particular)
which can be easily observed as follows.

PROPOSITION 3.1. I f F(X ~>) ~ 0 for a sequence of interior.feasible points x ~ e
Int X (v = 0, 1, 2 , . . .) , then the distance between x (~) and X converges to 0 (and
hence, if there is a unique optimum, the sequence converges to it).

PROOF. If the set of points {x (~)} is bounded, so are the ag(x('4)'s. Therefore
F(x ('~) ~ 0 implies c(x ('~) ~ O, and, due to assumption (i), the distance between
x (~ and J~ tends to 0. If the set of points {x (~)} is not bounded, it might be
possible that, because ag(x ('~) became large, c(x ~ did not converge to 0 even
if F(x ~ ~ O. However, even in such a case, there would be a constant b ~ (>0)
for each i such that a~(x)/c(x) <- b ~, since there is no infinite feasible ray parallel
to J~ due to assumption (ii), which would lead us to a contradiction that

m F(x ~ = Ct~[X(V) '~m+l l lTm) / t l i = l a i (x ~ . - c(x 0~ (where b = 1Ii=1 b ~) did not con-
verge to O. []

We might have chosen, instead of m + 1, a number greater than the number
of active constraints at the optimum point in order to have only Propositon 3.1,
but it will be seen that the choice of ' " m + l " or larger is also essential to the
strict convexity of F(x) as will be seen in (3.9) and the proof to Propositon 3.3.
(cf. also Section 6.3).

The converse of Proposition 3.1 does not hold in general, but we have the
following propositon instead.

PROPOSITION 3.2. I f the sequence {x<~2} converges to the optimum in a certain
closed polyhedron P such that X c p c X u Int X (including as a special case the
convergence along a straight line), then F(x ~)) tends to 0 as v-~ oo.

PROOF. Since P is a closed polyhedron and Int X is an open polyhedron, for
any x e P with c(x) = e (>0), there is a constant b i (>0) such that at(x)> b i" c(x)
for each i. Hence F(x) < c(x) �9 I-[?=l bi" []

Thus, in order to find an optimum solution to our linear programming problem
we may find a sequence of points x (~ x (1~, . . . in Int X such that the sequence
F(x(~ F(x(1)) , . . . rapidly converges to zero.

It is interesting to see that the derivatives of F(x) have nice expressions, as
follows. To begin with we differentiate the logarithm of F(x):

(3.3) log F(x) = (m + 1) log c(x) - ~ log ai(x)
i=1

A Multiplicative Barrier Function Method for Linear Programming 459

to get

(3.4)
CK i

0 1 0 F (x) = (m + l) _ c _ ~ - ~ a~ r / ~ (x) - 8-~ log F (x) - F (x) Ox ~ i=l a /~)"

The vector -q -- ~ , which is actually the gradient of F (x) divided by F(x) , will
simply be called the "gradient" in the following. Denote

~K(x)~ c.
c(x) '

i
t lK

(3.5) ~i - a,,(x) = ai(x) ,

a ~ (x) ~ l ~ ~(x).
m i = l

Then we can write

(3.6) �9 /,~(x) = (m + 1)~,~(x) - m~K(x).

l~urther differentiation will yield

0 2 1 0 2
(3.7) B ~ (x) =- ox~ox~ log F(x) - F(x~) ox~Ox ~ F (x) - n~(x)n~(x)

= - (m + l) g a (x) ~ (x) + ~ "' -i ax(x)aK(x) .
i : 1

Thus, the Hessian matrix of F(x) divided by F(x) , which we shall simply call
"the Hessian" of F (x) in the following, is

(3.8) Hx,,(x) =- - - - -
1 0 2

F (x) OxXOx ~ F (x) = BxK(x) + ~x (x)~I~(x).

It is an amusing exercise to rewrite the expression for H~K using (3.6) and (3.7)
by completing squares as follows:

(3.9) H~(x) = m:[~ (x)- a~ (x)][~ (x) - a~(x)]

+ E [e~(/)-,~(x)][~(x)-,~'~(x)]
i = 1

= m (m + 1) [~ (x) - ~ (x)] [~ (x) - t~ (x)]

+ ~ -i - ~i -
[ax(x) - ax(x)][aK(x) - aK (x)].

i = l

460 M. Iri and H. Imai

Expression (3.9) itself shows that Hx~ is nonnegative definite, so that F(x) is
convex in Int X. Furthermore, under assumption (iii) of Section 2, the positive
definiteness of Ha~ can be proved as follows, where we note the well-known fact
that the nonnegative (resp. positive) definiteness of the Hessian over an open
domain implies the convexity (resp. strict convexity) over the domain.

PROPOSITION 3.3. Hx~ is positive definite so that F(x) is strictly convex in Int X.

PROOF. We have already seen that Ha~ is nonnegative definite. If Ha~ is not
positive definite at a point x ~ Int X, there is a nonvanishing vector ~ such that

H x ~ ' ~ a = m (m + l) [~(x)~:" - a, (x)~:']
A = I K = I 1

(3.10)

[a~(x)~: - a~(x)~ ~ =0,
i = 1 K = I

which means

(3.11) ~. c~(x)~ ~= ~ ai~(x)~ ~ g (i=l , . . . ,m) .
K = I K = I

From the set I = {i[a~(J~)= 0} of active constraints at a basic optimum solution
we can then choose I such that {a~[ic I} is a maximal independent subset

(i.e., a basis) of {a~,li ~ I}. Then, since

1 Y, a~ .~=O for i e I (3.12) g = ~ a'~(x)~ ~ = ai(x)
K = I K = I

would imply ~ = 0, g cannot vanish. Furthermore, for any linear form

(3.13) b(x) = ~ b~x K-bo,
K = I

there is a set of coefficients/3~ such that

(3.14) bK = 2~ fl,a~
i~I

and

(3.15) b(x) - b(~) = ~^ fl,[a (x) - ai(~)] = ~. fl,ai(x).
i c I i~I

If there is an inactive constraint ai0(s 0, then, taking aio(x) for b(x), we have

(3.16) ga~(x) # g[a'o(x) - a'o(~)]

g ~ f l i a i (X) = E ~ i ,~
i~ l i~ l K = I

= = g a ' o (x) ,
K=I

which is a contradiction. []

A Multiplicative Barrier Function Method for Linear Programming 461

PROPOSITION 3.4. The direction ~ determined by

(3.17) ~ Ha~(x)r
K=I

is a strict descent direction ofF(x) at x ~ Int X.

n n n PROOF. We have Y~x=I r/a~ :x = -~,A=I ~-K=I Hx~(x)r162 a, so that we have from the
strict convexity of H ~

(3.18) ~ ~7~:~ < 0. []
K=I

PROPOSITION 3.5. If assumption (iii) does not hold, F(x) is linear along the
rays emanating from a unique optimum solution 5.

PROOF. There is a unique optimum solution since, otherwise, assumption (ii)
would imply assumption (iii). For any feasible x, we have

(3.19)

ai(x)=ai(x)-ai (5) = ~ ai~ . (x ~ - : ~) ,

rl
c(x)=c(x)-c(~)= S, c~. (x ' - ~) .

K=I

Therefore, on the line x(t)= 5+ t~ with a constant vector ~, we have

(3.20) () F(x(t))=t" K=li CK~ K) /i~=l K=I ~ aiK~K'

i.e., the function F(x) is linear along the rays emanating from 5. []

4. Algorithm. The algorithm we propose is straightforward on the basis of the
observation we made in the previous section.

1. Start from the given initial point x (~ ~ Int X.
2. Iteration:

At the vth approximation x (~, compute F (~)= F(x ~)) (from the viewpoint
of numerical computation we should not compute F (v) itself but log F(V)),
~7(~ ~)= ~K(x (~)) and Ha(~)= HA,,(x ~ by (3.3), (3.4), (3.7), and (3.8) (or (3.9)),
and then solve the system of linear equations

(4.1) ~ Hi~,)~ (")K = -@x ~) (A = 1 , . . . , n)
K=I

to determine the vector ~:(")~.

462 M. Iri and H. Imai

Perform the line search in the direction of ~(~) to find the minimum of F(x)
on that line, i.e., determine t* by

(4.2)

and set

(4.3) X (v + l) = X(v)+ t*~(~).

In the algorithm proposed above, it is theoretically assumed that we can obtain
the exact value of t*. Computationally, the line search in each iteration step can
be performed very quickly, and, from the point of view of the polynomiality of
the algorithm, even the bisection search would be sufficient to determine t* to
within the "threshold of resolution" [6]. Practically, we may adopt any reasonable
method and a more hasty stopping rule therefore. Here, we have

(4.4)

f (t) = F(x(~) + t~ (~)) - [c(x(")) + yt]m+'

[I [ai(x(~))+ ctit]
i:l

y : ~ c,~ (~)~, a i= ~ ai~ (~)~ (i : l , . . . , m) ,
K = I ~ = 1

1 d y c~ i

f (t) -dt f (t) = (r e + l) c(x(~)) + yt i = 1 ai(xCY)+ait '

[, > ,] : , , , r :' v f (t) ~ 5 / (t) = f (t) - (m + l) c(x(.~+y t + X=l La,(x(~))+dt J .

?l rl
Note here that [df/dt],=o = - F (x (~)) ~x=, E,=l H~,)~:(~)*~ :(")~ < 0.

Since f (t) itself is strictly convex and tends to infinity near the boundary t = ?
where

(4.5) ?= min {-a'(x(~))/~il~' < 0},
i

we may first search for the smallest tl for which df /dt > 0 among the sequence
((1 - �89 ?, (1 - �88 ?, (1 - 1) ? , . . .) and then, starting from tl, apply the Newton iteration

(4.6) tj+l = tj

to the equation

[df / dt],=t i
[d2f/dt2],=,~

(4.7) d O,
~tt f (t) =

A Multiplicative Barrier Function Method for Linear Programming

to get the sequence (h , t2 , . . .) rapidly converging to t*:

(4.8) tj -~ t* (j = 1, 2 , . . .) .

463

5. Convergence. In the following we shall show that the sequence (x (~ x (~), . . .)
converges to an optimum ; quadratically in the nondegenerate case at the final
stages of iteration. To show this, we first note that the direction ~(~) determined
by (4.1) is a "nice" direction. Let us denote x(~) -~ by e(~):

(5.1) e (~)~ = x (~)~ - ~ .

Before all, we see that

(5.2)

c (x (~)) - c (~)
~(x(V))&)~ - c(x(~)) - 1,

5,(x(~))e(~)~ a i (x (~)) - a ' (~) ~=~ - a , (x (~)) - 1

a ' (~)

a'(x(~))
- - (~-1).

Then we have

(5.3)
K = I K = I i = l ~:=1

= (m + l) - m + ~ a ' (2) " a ' (2) /=1 a'(x 0')) -1+~, a / (~) (~1),

(5.4)
K = I

H~)~ ~~ = - (m + 1)~,(x ~) ~ ~.(x(~))~ ~
K = I

i = l K = I ~ = 1

'=1 ai(x ()) /J
- , a ' (~) . ' ~

+ Vt ") 1+ '----~1 ai(x(V))/

, = , , = , a'(x(~ n"

=([a'(*)
, = , a ' (x (~b] , : , a ' (x ~) a'~(x(~)).

If we denote the set of active constraints at ~ by

(5.5) I = {ilai(.~) = 0}

464 M. Iri and H. Imai

as in Section 3, we have f rom (5.4)

(5.6)

where

(5.7)

..~-~)-(~)~ : w(x(~) n(~'- y, ~'~(x ~)) ,
~:1 i~i w(x (~))

wi(x) = ai(.~)/ a ' (x) ,

w(x) : E w'(x).
i ~ I

(Note that w~(x) = 0 for i ~ L) Compar ing (4.1), (5.1), and (5.6), we might expect
that, if e ~) is small enough,

(5.8) y(V)- x~) + w(x~))g(~)

would be a bet ter app rox ima t ion to .~. More r igorously, we can prove the quadrat ic
convergence in the nondegenera te case.

PROPOSITION 5.1. Suppose that there is a unique optimum basis (i.e., neither
primal nor dual degenerate) with the corresponding solution ~, to which x ~) conver-
ges. Then, i f IIx<~)-:~[I is sufficiently small, IIx(~§ = o(llx<'-~ll=), implying
the quadratic convergence.

PROOF. By means of an affine t rans format ion which moves ~ to 0 and makes
i ~" the matr ix a~ into the basis form with respect to x, the p rob lem is expressed in

the form

(5.9) - K - a ; - - _ 0 (i = 1, , m min c~x ~ -i
K 1 K = I a K X " " " '

where g~ > 0 (K = 1 , . . . , n) and ai~ = t~iK, a ~ = 0 (K = 1 , . . . , n; i = 1 , n; t~K = 1
if K = i and 6i~ = 0 otherwise), and t i~<0 (i = n + l , . . . , m) and 0 is the unique
o p t i m u m basic solution. We have only to prove that, in p rob l em (5.9), for the
vth app rox ima te solut ion x (~), if I I x<" II is sufficiently small, [[x(v§ = o(l l x ~ ~) II 2).

Setting e = x (~), consider another p rob lem scaled by ~:

- K i - - - i K i - i where cK = cKe , a ~ - aKe , and ao = ao. In order to prove the proposi t ion , it
suffices to p rove that, in p rob lem (5.10), for x (~)= e(e K --- 1 for K = 1, . . . , n), we

have [Ix(~§ = o(11~11).
Let us first note that y---y(") defined by (5.8) satisfies the equat ion

i

K = I i = n + l

A Multiplicative Barrier Function Method for Linear Programming 465

The right-hand side of this equation is O(11 e 11). As we shall show in the following
claim, the eigenvalues of HA~ (e) are all o f magnitude O(1), so that IIY [[= O([I e II).
Claim. When Ilell is sufficiently small, all the eigenvalues o h > - ' " - - - ~ r , > 0 of
HA,,(e) is of order 0(1).

Proof of Claim. From (3.9) we have

nA,~(e)=(--mc--~-e)q-1)(--m-~-e)bl)q-i~=l (-c~e)q-Six)(--~e)b~i,~)

CA C,<

+(m-n) c(e) c(e) + o(11~11)

n + 2

= D A D K + O (I I e l I) ,
i = 1

C K Di,, = 8i~ (i= 1 , . . . , n)
c(e)

C K
= l - m - - (i=n+l) c(e)

el< = ~ / m - n - - (i= n+2) . c(~)

When lie I[is sufficiently small, we may apply the Binet-Cauchy formula to the
principal term of the above expression for HA~(e) to get

leI o-K = [det Hx~(e) /
K = I

= (m-n) (m -n + l) ~=,~ \ - ~] +A<K y~ (m-n) ~ - ~ [l+O(ll~ll)]

(m-~n)(m-n+ l)
-'--- r l + o(11~11)],

n

where we made use of the fact that E~=I c,,/c(e)= 1.
Furthermore, we have

K = I
~K = IID'~II~U + O(INII)3

n + 2

= Z Z ID'~I~U+O(II~II)]
i = 1 K = I

={m(m+l)~=l~. (c~\~j~2_2(m_n+l)}[l+O(H~[])]

<- [m(m + 1) - 2 (m - n + 1)][1 + O(11~ II)]
= [m(m - 1) +2(n - 1)]tl + o(llel[)].

466 M. Iri and H. Imai

Since

O"K~O'l~O'2~' ' '~O'n -'~" O" K o'~-> (n - 1) "-1 o-~ o-~
K=I K=I 1 K=I 1

and

/ (K ~ =)n-1 (n_l) , - l (m_n)(m_n+l)[l+O(l l~.H)] '
(n - - 1) n - - I K=I[I O'K 1 o-~ z n[m(m_l)+2(n_l)] , ,_ 1

the claim follows. (End of Proof of the Claim.)
Let z be the first point on a constraint hyperplane a~(x) = 0 (i = 1 , n) that

is met by a ray emanating from e toward y in the direction of ~) . Since
Ilyll--o(ll~ll) , we have Ilzll--o(ll~ll). The line search over the line segment
connecting e and z is to find the minimum point r* of

f (r) = c (x) m+l ai(x),
i=

where x = r e + (1 - r) z (0 -< t -< l) . Setting y = ~ = l c ~ (e ~ - z ~) and a ~=
a~(e -z~), we have

1 df (m+l)'y ~ _~/

f(.c) dr c(z)+yr i=lai(z)+air

> (m + l) y m

c(z) + 3'r r"

We note that (m + 1)~//[c(z) + ~/r] - rn/.r = 0 when r = r'=- mc(z)/3'. Thus, if II e II
is sufficiently small, we have r ' = O([] ell) and (d f~ dr)lT=~,- 0. From the convexity
of f(~'), r*--- r'. Thus, we have r* = O(llell), and hence IIx "+'ll-- o(11~11) for
x ~+1) = r*e + (1 - r*)z. []

t4(~) In the degenerate case ~ is opt imum but may not be basic. In that case , , x~
multiplied by c(x(~)) 2 may have small eigenvalues. However, the corresponding
eigenvectors are seen to be nearly parallel to X, so that, as far as the component
orthogonal to .~ are concerned, we can obtain a conclusion similar to the above.

It is also seen from (5.7) and (5.8) that, if x (~) is close enough to ~, the t*
determined by the line search in the algorithm is expected to be nearly equal to

(5.11)
a'(~)

w(x~)) = i~• wi(x~)) = ,r a ~) = m - I I I -~ t.

(See (5.5) for the definition o f / . Note that 1I] = n in the nondegenerate case.)
When x ~) is not sufficiently close to ~, we cannot expect a superlinear conver-

gence, but, at best, only a linear one. The following is not a rigorous proof of
the linear convergence, but suggests a theoretical explanation for the empirical
behavior of the algorithm, i.e., the linear convergence, observed in the computa-
tional experiments, and gives an intuitive sketch on which a more formal proof
may be constructed.

A Mul t ip l i ca t ive Barr ier Func t ion M e t h o d for L inea r P r o g r a m m i n g 467

PROPOSITION 5.2. Suppose that, in an arbitrary direction ~ starting from x (~), the
value of the function F(x (~) + t~) can be sufficiently well approximated as

,, O 0") t2 ~ ~ ~,'~ x 02
F(x(")+tg)=F(x(")) +t i ~ ~x~F(x)+~ OxXOx ~F(x(~))

K=I K=I A=I

for t satisfying the inequality

(5.12)
,2ii
__ T-/(~)t:~r x < K 2
2 , ~ = l X = l * " x K s b -

with an appropriate value of K. 6 Then,

F(x(~+'))
F(x% < I - K (1 - K) .

PROOF. Under the assumption, we have

t 2

f (O)- F(x (~)) ~- 121- t K = I K = I A = a ax AK ~ b

as long as t satisfies (5.12). This means that f(t)/f(O) can be approximated by
the linear function in t

(5.13) l+t ~ ~?)s r
~=1

up to an error less than K 2. We consider the problem of minimizing (5.13) under
condition (5.12), for which the solution is obvious:

(5.14) /i t = 2K 2 V t-t(~)r162 a
/ K = I AZ~=I ~ l AK ~

i f ~ = 1 ~7(~")~ K <0. The minimum value of (5.13) depends on ~, and, as is readily
seen, the minimum o f that minimum value with ~ varied is attained if ~ is chosen
equal to ~(~) determined by (4.1).

By determining ~(~) and t in that manner, we shall get

(5.15) ? = f (t) ~ l + t i rl(~)r (~)~+Kz
f(0) ~=l

: 1 - K ~/2 ~ i H(~7,)6(~)'6 (~)a + K2.
K : I A=I

6 This a s s u m p t i o n may seem too strict in the genera l s i tua t ion , and is, indeed , somet imes ha rd to

ho ld va l id in al l d i rect ions . However , as is seen f rom the proof, it suffices for the a s s u m p t i o n to ho ld

only for the d i rec t ions ~(~) and ; - x (~), which , in exper iments , is obse rved a lmos t a lways to be the case.

468 M. Iri and H. Imai

If we chose ~ = ~ - x (~) (= - e ~)) and determined t by (5.14) accordingly, we
should have

K=I A=I

rl(~)~ ~ = - 1 - w(x(~)),
K = I

..x~sr-r<~)c~xs = w(x<~)) 1 + w(x ~) + i~, y" w(x ~))

= w(x ~)) + w(x~)) ~ - w(x ~)) + 2 w'(x~)) 2

: w (x ~) ~+ E w'(x~)) ~
i~1

(cf. (5.2), (5.3), (5.6), and (5.7)), or

(5.16) f (t) r : f (0) = 1 - t (l + w(x(~)))+K 2

= 1 ~/2K(I + w(xr ~- K2"

X/w(xr 2 + E w'(xr 2
i~I

Since wi(x (~)) > 0 and w(x (~)) = ~irx wi(x(~)), we have

y, wi(x(~))2 <_ w(x(~)) 2,
i~1

so that we have

(5.17) V W(X(V))2 nt-i~1 Wi(X(V))2 <- ~/~W(X(~))'

o r

K (I + w(xr
(5.18) r < 1 w(x(,,))

K q - K 2 = I - K - - q - K 2.
w(x ~))

Since the F in (5.15) is by definition not greater than the r in (5.18), we finally have

(5.19) ~< 1 - K (1 - K) . []

Thus, if the assumption of Proposition 5.2 is satisfied, at each iteration step,
we have the value of the function F (x (~)) reduced at least by a constant factor
1 - K(1 - K) approximately:

F(x~+l))
(5.20) F(xr) < 1 - K (1 - K) ,

A Multiplicative Barrier Function Method for Linear Programming 469

the factor being equal, for example', to 3, 13 57 1 ~, and ~ with K = I , z, and ~,
respectively.

6. Some Remarks

6.1. Practical Efficiency of the Algorithm. The proposed algorithm seems to
require a small number of iterations in practice. However, it obviously has the
disadvantage that, at each iteration step, we have to solve a large, rather dense
system of linear equations (4.1). In order for this algorithm to become "practical"
in the true sense of the word, that disadvantage should be overcome. The prospect
is not very gloomy but rather bright, because the gradient ~ as well as the
Hessian Hx~ has a seemingly very nice structure (see (3.4), (3.9), etc.). In fact,
Professor Kunio Tanabe of the Institute of Statistical Mathematics suggested the
possibility of applying a conjugate-gradient-type algorithm for the solution of
the system of linear equations. Evidently there will also be many other devices
to make this stage of computation more and more effective, e.g., using an
approximate Hessian instead of the complete one, devising an effective way of
updating the inverse (or, more practically, the LU- or the QR-decomposition) of
the Hessian, etc., by making use of the special structures of the gradient and the
Hessian. 7

6.2. A Linear Subiteration Scheme. It may be possible to make use of some
factorization (e.g., LU-decomposition) of a Hessian ~ : ~ �9 ~x~ more than once to
improve an approximate solution x t''~. In fact, from (5.6), we might expect the
x (~§ determined by the line search along ~(~,1~:

X (v+l ' l) = X 0") -t- t~ (v'l),

where ~(~':> is determined by

(6.1) ~ H(x~)~(~'I)K=--(: ai(x(~+l))~ ai(x(~§ "
K=I i=l ai(x(V)-~] nA(X(v))'~- :i=I ai(x(~)) :i(x(V))'

would be a better approximation than x (~). We may repeat this process by
regarding x ("+1':) as x (~+:). Computational experiments have shown that it is
sometimes, though not very often, the case. Since, once we have the LU-decompo-
sition of ..x~u(~, iteration (6.1) is not very costly, we may iterate (6.1) as long as
the value of F(x (~'tl) is being improved substantially.

7 A referee has kindly informed the authors that the following recent report contains such devices:
P. E. Gill, W. Murray, M. A. Saunders, J. A. Tomlin, and M. H. Wright, "On projected Newton
barrier methods for linear programming and an equivalence to Karmarkar's projective method",
Technical Report SOL 85-11, Department of Operations Research, Stanford University, 1985.

470 M. Iri and H. Imai

6.3. An Extension. Dr. Kazuo Murota of the University of Tsukuba reported,
in a personal communication to the authors, his observation that the function
F(x) defined in (3.1) remains convex if we take any "convex" function for c(x)
and any "concave" functions for the a~(x)'s. In fact, we then have the same
expression (3.6) for ~7~(x)= [1/F(x)](OF(x)/Ox ~) if we replace the definitions
of ~ (x) and the cT~(x)'s by

1 0
~(x) c(x) ox ~ c(x),

1 0
= ai(x), (6.2) diK(x) ai,x,[) Ox ~

fi~(x) 1 ~. : - a ~ (~) .
m i = l

BaK = 02 log F(x)/OxaOx ~ is expressed as

/ " m + l 0 2 " 1 0 2 }
(6.3) Bx~(x) = [- ~ i Ox,OxK c(x)-i~=l a~(x) OxaOx~ ai(x)

+{-(m+l)~a(x)~.(x)+ i=1~ I]~(X)d/(X)} '
and (3.8) remains unchanged. Since e(x) is convex and the a~(x)'s are concave,
the matrix in the first pair of braces on the right-hand side of (6.3) is nonnegative
definite. Furthermore, as is easily seen~ the manipulation of completing the squares
for the sum of the second pair of braces on the right-hand side of (6.3) and
rl~(x)~7~(x) can be carried out in entirely the same manner as in (3.9). Therefore
H~K (x) is still positive definite in this generalized case.

It is not quite obvious whether this observation of Murota's is of some direct
significance for a nonlinear programming problem or not, but, in the context of
this paper, it shows us the interesting fact that F(x) = m' m C(X) /IJi=l a i(x) with any
m' greater than or equal to m + 1 is always convex in the case of linear program-
ming. To prove this fact, we may simply replace e(x) by e'(x) = e(x) m'/(m+l), the
latter being convex if c(x) is linear.

6.4. Observations on Invariance. It is one of the principal characteristics and
advantages of our algorithm that, except for the arbitrariness of the choice of an
initial feasible point, everything is invariant under (i) the group of affine transfor-
mations of R" and (ii) the group of rescalings of the functions ai(x) and c(x)
(where "rescaling" means multiplication of each ai(x) (or c(x)) by an arbitrary
constant). This makes a clear contrast with Karmarkar's algorithm which requires
the introduction of an artificial constraint Y,x ~ = M which is not affine-invariant.
Of course, Karmarkar's algorithm enjoys another type of invariance, i.e., the
invariance under the projective transformations in another space, as is well known
[4].

A Multiplieative Barrier Function Method for Linear Programming 471

Part II. Preliminary Experiments

7. Design of Computational Experiments. We show the results of preliminary
computational experiments of the algorithm proposed in Part I. The algorithm
was coded into a FORTRAN program for the purpose of investigating the behavior
of the algorithm only; therefore the advanced techniques discussed in Section 6
were not made use of. All the experiments were executed with double-precision
(14 hexadecimal digits) arithmetic on the HITAC M-280H of the Computer
Centre of the University of Tokyo.

It is now widely known that the timing data are considerably dependent on
the implementation technique as well as on the particular architecture of the
machine. However, the results we show in the following, i.e., how fast the function
value F (x (')) decreases as the iteration proceeds, how the number of necessary
iterations depends on the problem size, etc., will be almost independent of the
implementation and of the machine arthitecture. Here, it is important to note
that for an algorithm which produces a "linearly convergent" sequence (as
Khachian's and also Karmarkar'sS), the number of necessary iterations is highly
dependent on the required accuracy, whereas for an algorithm producing a
"superlinearly convergent" sequence (as ours), it is insensitive to the required
accuracy.

The computational experiments were performed first on small-size sample
problems and then on three classes of small- and medium-size structured problems
with parameters. Most of the small-size problems were of two variables (n = 2)
(Examples (C1)-(C6)), for which the feasible regions as well as the histories of
iterative processes of the algorithm are here illustrated together with the contour
lines of the barrier functions F(x) . A "diet problem" (Example (D)) was also
taken as a small-size sample problem. The three classes of the structured problems
are the Klee-Minty problems [7] (Example (KM)), the random problems
(Example (R)), and the assignment problems (Example (A)). The sizes of these
problems can be varied by adjusting the parameters, which enables us to know
what effect the size of the problem has on the performance of the algorithm. We
also show by computational experiments how effectively the linear subiteration
scheme given in Section 6.2 works.

In order to make the value of the objective function for the optimum solution
equal to zero and to produce an initial interior feasible solution we adopted the
following primal-dual pair approach. Consider the linear programming problem:

(7.1)

min c Tx,

A x >- b,

x_>O.

s In many computational experiments, it has been observed that Karmarkar's algorithm also produces
a linearly convergent sequence. It seems that no theoretical proof has been done for the superlinear
convergence of Karmarkar's algorithm.

472 M. Iri and H. Imai

From the duality theorem, this problem is equivalent to finding a feasible solution
of the following linear inequalities:

Ax >- b,

(7.2) --A Ty >- --C,
-cTx + b Xy >_ O,

x,y>-O.

Rewrite (7.2) by Pal_> Cio and ~-> 0 with ~ = (x a', yT)X. In order to find a feasible
solution of (7.2), let us consider the following linear programming problem in
the canonical form (2.1) and (2.2) of Part I"

rain A,

(7.3) A~+ dA - ~io--- 0,

~,,~---0,

where ~ is defined as follows: let e = (1 , . . . , 1) ~r and a'=.4e-do; then set
di = 1 - ai' if a~ -< 0 and di= 0 if al > 0. Then, ~(o) = e, A (~ = 1 is an initial interior
feasible solution for (7.3), and (7.1) has the optimum solution iff the value of
the objective function for the optimum solution of (7.3) is zero; furthermore, the
optimum solution of (7.3) with the value of the objective function equal to zero
affords the optimal pair of primal and dual solutions for (7.1).

Throughout the following computational experiments, we did not adopt any
theoretical stopping criteria for the iteration, but we continued the iteration until
the finite-precision computation would proceed no further. As for the validity of
the assumptions in Section 2, we were "optimistic," i.e., without checking their
validity for each problem we entered into the computation to see what would
happen.

8. Small-Size Problems. Examples (C1)-(C6): We first consider six problems
with two variables x = (x, y) (n =2) for which the values of objective functions
for the optimum solutions are a priori known to be zero. The computational
experiments were executed with three starting points chosen rather arbitrarily
for each problem. The problems are as follows, where c = c(x) and a i= ai(x):

(C1): c=x+y; a l = x ; a2=y ; a 3 = 2 - 2 x - y ; a4=3+2x-4y.

(C2): c=x+y; al=x; a 2 = y ; a 3 = 2 - 2 x - y ; a4=3+2x-4y;

aS=x+2y.
(C3): c=3+2x-4y; a l = x ; a2=y; a 3 = 2 - 2 x - y ; a4=3+2x-4y.

(C4): c = l - x ; al = x; a2= y; a3 = l - x - y.
(C5): c = x - y / 4 + ~ ; a~=x; a2=y; a3=x+y-�89 a4=2x-y+~;

a 5= - 3 x + y + 2; a 6= - x / 4 - y + l .

(C6): c = - x + y + ~ ; a~=x; a2=y; a3 =x+y-~; a4=2x-y+~;

aS=-3x+y+2; a 6 = - x / 4 - y + l .

A Multiplicative Barrier Function Method for Linear Programming 473

A

Function values= Function values=

256. 256.

64.16. ~ ~ ~ ~ i i i , i i ~ i , l ~ ~ k i . : : :~-~, . . <",:: 64.16.
1. 1.
.25 .25
.0625 .0625
.015625 .015625

(CONTOUR1)
c=x +y; a(1)=x; a(2}=y; a(3)=2.0-2.0*x-Y;

a(4} = 3 .0 + 2 , 0 * x - 4.0*y
(a)

{CONTOUR2)
c=x+y; a(1)=x; a(2)=y; a(3)=2.0-2.0*x-y;

a(4) =3,0 +2.O*x-4.0y; a(5}=x +2,0*y
(b)

Function values =
65536.
16384.
4096.
1024.
256.
64.
16.
4.
1.
.25
.0625
.015625

Y

~ _ / "

(CONTOUR3)
c=3.0+2.0,x-4.0u a(l/=x; a(2)=y; aI3)=2.0-2,0*x-y;

a(4)=3.0 +2.0*x-4.0*y
(e)

Function values =
1024.
256.
64.
16.
4.
1.
.25
.0626

(CONTQUR4)
c=l .0-x; a(1)=x; a(2)=y; a(3)=l .0-x-y

(d)

Function values=
50.
5.
.5
.05
.005
.0005
.00005

V,

X

{CONTOUR5)
c=x-y/4+1/12; a(1)~x; a(2)=y; a(3)=x+y- 1/3;

a(4}=2*x-y+1/3; a(5}=-3*x+y+2; a(6)=-x/4-y+l
(e}

Function values =
10000.
1000.
lOO.
lO.
1,
.1
.01
.001

i /

I P /r' j /

{CONTOUR6)
e=-x+y+2/3; a(1)=x; a(2)=y; a{3)=x+y-1/3;

a(4}=2*x-y+1/3; a(5)=-3*x+y+2; a(6)=-x/4-y ~ 1
(fl

Fig. 1. Computational results for the small sample problems with two variables. (a) Example (C1).
(b) Example (C2). (c) Example (C3). (d) Example (C4). (f) Example (C5). (e) Example (C6).

474 M. Iri and H. Imai

We illustrate the process of iteration together with the contour lines of the barrier
functions F(x) in Figure 1 (from the contour lines, the good properties of the
barrier functions would be observed visually).

Example (D): Next, we consider the following problem, which is a so-called
diet problem, taken from the HITAC MPSII manual:

min cTx,

Ax >- b,

x>--O,

A=

where

J 41t 351 270 260 451 156 59 721 58 130 118 77 51 40 24 28 311

0.8 6.2 8 17.5 12 12.7 2.9 0.6 6 17.5 20 1.9 1.3 1.2 1.6 3 34.2

0.8 1.5 20.5 44.3 11.2 3.3 81.6 3.5 6 3.5 0.1 0.2 0.2 0.2 0.4 0.7 0.3

6 11 6 9 65 100 10 120 80 12 5 35 40 45 98 470 1

2 480 90 90 90 36 780 5 100 90 12 57 10 15 25 600

0.4 1 1.3 1.2 2.6 0.1 0.1 1.4 3 0.7 0.5 0.5 0.5 0.4 3.3 23 0 . 2 |

) 0 0 25 0 800 120 2400 0 60 40 0 1300 6 33 2600 10000 40

0 . 0 9 0 . 1 0 . 0 4 0 . 4 0 . 1 0 . 0 4 0 . 0 1 0 . 0 2 0 . 0 2 0 . 1 5 0 . 1 0 . 0 6 0 . 0 3 0 . 0 8 0 . 1 2 0 . 2 1 0 . 0 9

0 . 0 3 0 . 0 3 0 . 1 1 0 . 1 0 . 4 0 . 1 5 0 . 0 3 0 . 0 2 0 . 1 5 0 . 2 0 . 0 3 0 . 0 4 0 . 0 2 0 . 0 5 0 . 3 1 0 . 0 2 /

o o o o o o o 1 , 1, lO , o lOO

o/ 0 0 0 0 10 0 0 0 530 0 0 0 0 0 0 0

b = (2300, 75, 38, 660, 1300, 10, 1900, 1.2, 1.2, 63, 400) T,

c = (25, 30, 350, 150, 40, 20, 100, 40, 60, 100, 17, 20, 20, 12, 75, 900, 20) T.

The optimum value of this problem is 354.03042. We solved this problem in
two ways: first, solving it directly with Co = 354.03042 and an initial interior feasible
solution (100, 100 , . . . , 100) T, and second, solving the extended problem as
described in (7.2) and (7.3). The results are shown in Figure 2.

2 Primal (optimal value and
17 x+x an interior point

-1-
-2 .

- 3 i
- 4 c Primal-dual pair

-i:': ~ 7 2) and (7 3)

- 8

10 20

Iterations

Fig. 2. Computational results for Example (D) (diet problem).

A Multiplicative Barrier Function Method for Linear Programming 475

9. Klee--Minty Problems. Example (KM): The class of problems initially pro-
posed by Klee and Minty [7] (the present form (9.1) is due to Avis and Chv~ital
[1]) is well known as linear programming problems with N variables for which
the simplex method with various pivot rules (e.g., Bland's rule) requires an
exponential, in N, number of pivot steps to reach the optimum:

N

m a x ~ EN-Jxj,
j = l

i - - 1

(9.1) 2 ~ e'-Jxj+x,<-I (i = l , 2 , . . . , N) ,
j = l

xj_>0 (j = 1 ,2 , . . . , N),

where 0 < e <1. The optimum solution of this problem is xj = 0 (j = 1 , . . . , N - 1)
and xN = 1. Concerning the size m, n of the problem obtained by combining this
problem with its dual, m = 2(2N + 1) and n = 2N + 1. Computational experiments
were performed for the cases with e = 0.4 and N = 2, 4, 8, 16. The results are
shown in Figure 3.

Among the problems tested, the growth of the number of iterations required
by the Klee-Minty problems as the number of variables increased was the most
remarkable, but it seems still O(N).

10. Random Problems. Example (R): Random linear programming problems
were used by several computational experiments for the simplex algorithm (e.g.,

0

-7- N=16

- 8 -
. i i I i

0 10 20 30 40
Iterations

Fig. 3. Computational results for Example (KM) (the Klee-Minty problem).

- 2

§
- 3

- 4 -

o

~" -5-

476 M. Iri and H. Imai

see Avis and Chv~ital [1]). The problem is described as follows:

(10.1)

m a x eTx ,

Axe< 10 4,

x>=O,

where e = (1 , . . . , 1) T and A is an M x N matrix with M < - N , the elements of
which are random integers from 1 to 1000. The problems have many redundant
constraints. Furthermore, it seems that problems of this class are not as practical
since their A's are dense while the A's in the ordinary linear programming
problems being solved in practice are sparse. However, the random problems
give us some insight into the performance of the algorithm for dense problems,
especially into the effect of problem size on the number of iterations required by
the algorithm for structured dense problems.

/

100 Simplex method (the largest coefficient rule)

0

z

Simplex method (the largest decrease rule)

4050 f ~ / / / ~ T ~ / w ' ~ ~
o Slope ~ (oc~/g)

o 8o
30 ! ^ ~ .

20

10

go
?

o Algorithm proposed in Part I

I I
&

I [I 1 I J)

10 20 30 40 50 100 N = M

Problem size

Fig. 4. Computational results for Example (R) (random problems): the number of iterations (O) and
pivotings (A, 0) required [1].

A Multiplicative Barrier Function Method for Linear Programming 477

Computational experiments were executed for the cases with M = N and
N = 10, 20, 30, 40, 50, where the size parameters m, n of the problem constructed
as in (7.2) and (7.3) are m = 2 (2 N + 1) and n = 2 N + 1, where, in these computa-
tional experiments, each row of the original problem (10.1) is scaled, i.e., multi-
plied by a factor 10 -4. The results are shown in Figures 4 and 5.

In Figure 4 we also depict the results, taken from Avis and Chv~ital [1], on
the number of pivotings of the simplex methods for the original problems (not
the primal-dual problems). It is seen that the simplex method requires about
O (N 15) pivotings, while the algorithm proposed in Part I requires about O(n ~
iterations. (Note that one pivoting in the simplex method is cheaper than one
iteration of the proposed algorithm with a naive implementation, and so it is not
fair to compare the two algorithms based on these results alone.) If one iteration
of our algorithm is to be compared to M pivotings of the simplex algorithm,
then the two algorithms may have the same performance, at least in the order of
magnitude.

11. Assignment Problems. Example (A): Assignment problems were taken up
as a typical class of test problems which are sparse and structured, although they
might be too special in structure, being highly degenerate. The problems are of
the following form:

k k

max }2 }2 cOxi j,
i=1 j = l

k

}2 x/j-< 1,
(11.1) i=1

k

xo-<l,
j = l

X 0 >-- O,

where co(i,j= 1, . . . , k) are random real numbers in the interval (0, 1). The
number N of variables of the original problems is k 2, and the size parameters
m, n of the extended problem (7.2), (7.3) are m = 2 (k + l) 2 and n = (k + l) 2.
Computational experiments were performed for the cases with k = 2, 4, 6, 8. The
results are shown in Figures 6 and 7.

As is seen from Figure 6, the number of iterations required by the algorithm
for the assignment problems is remarkably few.

12. Computational Results on the Linear Subiteration Scheme. This section pre-
sents computational results on the linear subiteration scheme given in Section 6.2.
We repeat here the subiteration process as long as log10 F(x) decreases at least
0.1. The subiteration scheme was tested for the three classes of the above-
mentioned structured problems, (KM), (R), and (A). The computational results

478 M, Iri and H. Imai

§

-2
et0
@

0

-3

- 4

-5

- 6

- 7

- 8 -
. i I - ' i i D

10 20 30 40

Iterations
(a)

1 -

0

-1

- 2

+
- 3 �84

- 4
-2

o
v - - 5 _

i ' " ' 1 j i " ' ' ' ' i �9

0 10 20 30 40

Iterations

(b)

Fig. 5. Computational results for Example (R): the decrease of the barrier function. Three random
problems with (a) M = N = 20 and (b) M = N = 50.

A Multiplicative Barrier Function Method for Linear Programming 479

"'~.~ 40/20 ~ Slope 1 (ocN, ozk 2)

.2~ / ~ Slope ~ (ocNl/5, ock 2/5)

10
8

Z

4

41 I li6 I 36 i t 614 t ~N
10 20 40 100 2 4 6 8 k

Problem size

Fig. 6. Computational results for Example (A) (assignment problems): the number of iterations
required.

are shown in Figures 8-10. In these figures, the "number of iterations" denotes
the number of LU-decompositions of the Hessian matrices and not the number
of subiterations in total (note that a subiteration is less costly compared with an
LU-decomposition). The average number of successful subiterations per iteration
was 1.4, 1.2, and 1.1 for (KM), (R), and (A), respectively.

From these results, it is observed that the linear subiteration scheme ettiectively
reduces the total number of iterations (the number of LU-decompositions) in
general. For the assignment problems (A), the subiteration scheme reduces the
total number of iterations to 70% on average. For the random problems (R)
especially, even the speed of increase of the number of iterations with the problem
size seems substantially reduced.

13. Conclusions to Part II. From the preliminary computational experiments of
the preceding sections the following two points may be concluded:

(i) The global linear convergence and the local superlinear convergence at the
final stages of the algorithm proposed in Part I are experimentally confirmed.

(ii) The number of iterations required by the algorithm is O(n ~) with t~ a little
less than 1, and, for structured problems, it happens to be O(n ~) with a
small e < 1.

This suggests that the algorithm becomes comparable and even faster than the
simplex method if an efficient way of computing ~ = -H- l -q is devised.

480 M. Iri and H. Imai

+

eat)
O

1

0

-1

- 2

-3

- 4

- 5 -

- 6 -

- 7 -

~ 8 -

0
. I I I D

I0 15 20

Iterations

(a)

1

0

- - 1 "

- - 2 "

- 3

_4 ~

- 5

~ 6 -

- 7

I I I I ; I ~

5 l0 15 20

Iterations

(b)

Fig. 7. Computational results for Example (A): the decrease of the barrier function. Three random
problems with (a) k = 4 and (b) k = 8.

0

- 1 -

-2-

+ - 3 ~

~.. -4-
=

o -5 -

-6-

-7 - N=16

-8-

A Multiplicative Barrier Function Method for Linear Programming 481

. i i i i , , ,

1 0 20 30 40
Iterations

Fig. 8. Computational results of the subiteration scheme for Example (KM).

o"
p

o

ca
E
Z

5o!
40

30

20

10

. . / Slope �89 (oc~NN)

g o ~

. o~ * I ~ ,~ S l o p e 0 . 3 (ccN ~

I I I I I , , I~

10 20 30 40 50 100 N = M

Problem size

Fig. 9. Computational results concerning the subiteration scheme for Example (R): the number of
iterations required with (O) and without (&) the subiteration scheme.

482 M. Iri and H. Imai

o

Z

20

10

8

c o o I

o~o o o o o o o o o ~ 1 7 6 1 4 9 Slope

�9 Slope ~ (ocN I/~, ~ k ~-/s)

4

I I I I I I I t
4 16 36 64 N

10 20 40 100
2 4 6 8 k

Problem size

Fig. 10. Computational results concerning the subiteration scheme for Example (A): the number of
iterations required with (A) and without (O) the subiteration scheme.

References

[1] D. Avis and V. Chv~ital, Note on Bland's pivoting rule, Math. Programming Stud., 8 (1978), 24-34.
[2] M. Iri, Another "simple and fast" algorithm for linear programming, paper presented at the

12th International Symposium on Mathematical Programming, August 5-9, 1985, MIT, Boston.
[3] M. Iri and H. Imai, A method of solving linear programming - with reference to the Karmarkar

method and the penalty function method, Research Meeting of the Mathematical Programming
Research Group of the Operations Research Society of Japan, February 16, 1985.

[4] N. Karmarkar, A new polynomial-time algorithm for linear programming, Combinatorica, 4
(1984), 373-395.

[5] L.G. Khachian, A polynomial algorithm in linear programming, Dokl. Akad. Nauk SSSR, 244
(1979), 1093-1096 (in Russian); transl, in Soviet Math. Dokl., 20 (1979), 191-194.

[6] L.G. Khachian, Polynomial algorithms in linear programming, Zh. Vychisl. Mat. i Mat. Fiz.,
20 (1980), 51-68 (in Russian); transl, in U.S.S.R. Comput. Math. and Math. Phys., 20 (1980),
53-72.

[7] V. Klee and G. J. Minty, How good is the simplex algorithm?, in Inequalities III (O. Shisha,
ed.), Academic Press, New York, 1972, pp. 159-175.

