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Fractional Cascading: I. 
A Data Structuring TechniquC 

Bernard Chazelle 2 and  Leonidas  J. Guibas  3'4 

Abstract. In computational geometry many search problems and range queries can be solved by 
performing an iterative search for the same key in separate ordered lists. In this paper we show that, 
if these ordered lists can be put in a one-to-one correspondence with the nodes of a graph of degree 
d so that the iterative search always proceeds along edges of that graph, then we can do much better 
than the obvious sequence of binary searches. Without expanding the storage by more than a constant 

factor, we can build a data-structure, called a fractional cascading structure, in which all original 
searches after the first can be carried out at only log d extra cost per search. Several results related 
to the dynamization of this structure are also presented. A companion paper gives numerous 
applications of this technique to geometric problems. 

Key Words. Binary search, B-tree, Iterative search, Multiple look-up, Range query, Dynamization 
of data structures. 

1. Introduction. This paper  introduces  a new data s tructuring technique  for 

improving  existing solut ions to retrieval problems.  For  il lustrative purposes,  let 

us consider  the fol lowing three classical problems in computa t iona l  geometry: 

(a) Given  a collect ion of intervals on the line, how many  of them intersect an 

arbitrary query interval?  

(b) Given  a po lygon P, which sides of P in t e~ec t  an arbitrary query l ine? 

(c) Given  a col lect ion of  rectangles, which of them conta in  an arbitrary query 
po in t?  

What  do these problems have in c o m m o n ?  Except  that they each fall into the 

b roader  class of geometric retrieval problems, little seems to relate them together 
in  one way or the other. Yet, we can speed up the best algorithms know n  for 

solving these problems using a single c o m m o n  technique,  which we call fractional 
cascading. This novel technique  is general  enough  to speed up the solut ions not  

only of these three problems but  of a host of  others; we will give numerous  
examples in part  II of  this paper  [CG].  
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In a nutshell, fractional cascading is an efficient strategy for dealing with the 
following problem, termed iterative search: let G be a graph whose vertices are 
in one-to-one correspondence with a set of sorted lists; given a query consisting 
of a key q and a subgraph Ir of G, search for q in each of the lists associated 
with the vertices of r This problem has a trivial solution involving repeated 
binary searches. Fractional cascading establishes that it is possible to do much 
better: under some weak assumptions, we show that with only linear space it is 
possible to organize the set of  lists so that all the searches can be accomplished 
in optimal time, at roughly constant cost per search. 

As the second part of this paper [CG] amply demonstrates, iterative search is 
a fundamental component of many query-answering algorithms. Let us take 
Problem 3, for instance: given a collection of rectangles, which of them contain an 
arbitrary query point? The data structure for this problem with the most efficient 
asymptotic performance [C] is a complete binary tree whose nodes point to 
auxiliary lists. Answering a query involves tracing a path in the tree, while 
searching for a given value (one of the coordinates of the query point) in each 
auxiliary list associated with the nodes visited on the path. Here, as well as in 
many other algorithms for retrieval problems, iterative search is the main computa- 
tional bottleneck. For this reason, it is desirable to treat the problem in an abstract 
setting, so the results obtained can be directly applied to as many problems as 
possible. 

Following this approach, we present an optimal solution to iterative search, 
which we then apply to a number of retrieval problems. By doing so, we are able 
to improve upon a host of previous complexity results. It is worth noting, and 
this will become even more apparent when we go into applications of fractional 
cascading, that this technique can be usefully thought of as a postprocessing step 
that can be applied to speed up already existing solutions of various problems. 

Part I of this paper describes and analyzes fractional cascading in a general 
setting. We present and discuss the construction of the data structure, its use for 
query-answering, and the issues involved in making our solution dynamic. In 
part II we present a number of specific applications of the technique, and examine 
the complexity of  iterative search in the light of fractional cascading. The two 
parts can be read almost independently of each other. Only Section 2.1 of this 
part, which introduces the basic concepts and presents the main results, is 
necessary for reading the second part. 

2. The Fractional Cascading Technique. In this section we present a static 
description of  what the fractional cascading structure is and how it can be used 
to solve the iterated search problem. 

2.1. Preliminaries: Setting the Stage; Summary of the Main Result. We consider 
a fixed graph G =  (V, E)  of IV[ = n vertices and IEI = m edges. The graph G is 
undirected and connected, and contains no loops or multiple edges. In addition 
to this classical graph structure, we have associated with each vertex v of G a 
catalog Cv, and associated with each edge e a range Re. 
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A catalog is an ordered collection of records, where each record has an 
associated value in the set 91 u {-oo, +oo}. The records are stored in the catalog 
in nondecreasing order of their value; note that different records may contain 
the same value. A catalog is never empty: it always contains one record with 
value -oo and one record with value +oo. These special records play the role of 
sentinels so as to simplify the algorithms. 5 A range is simply an interval of the 
form [x, y], [-oo, y], [x, +ce], or [-oe,  +oo]. In all cases, it is specified by two 
endpoints chosen from the linear order. We will refer to our graph G, together 
with the associated catalogs and ranges, as a catalog graph. This is the com- 
binatorial structure to which fractional cascading can be applied. 

For notational convenience we make the following assumption: if value K is 
an endpoint of  the range R(u,o) associated with edge (u, v), then K appears as 
the values of  some record in both catalogs Cu and Co. In fact, if two ranges R(u,o) 
and R(o,w) have an endpoint in common, its value will appear twice in the catalog 
Co of their shared vertex v. This requirement does not in any way restrict the 
generality of our discussion and, since G is connected, it provides a notational 
advantage. Indeed the space required to store a catalog graph is proportional to 
the total size of its catalogs. If  s = Y~o~ v ICv 1, then the O(m + n) storage required 
to represent the graph structure itself, plus the storage for all the sorted multisets 
which are the catalogs, plus that for the intervals which are the ranges adds in 
total to O(s) .  

Next, we give a string of three definitions to introduce some basic concepts. 
We start with a notion related to the degree of the vertices because, as we will 
see, the performance of our data structure will be very sensitive to high degrees, 
and more accurately, to high local degrees. 

DEFINITION 1. A catalog graph is said to have locally bounded degree d if for 
each vertex v and each value x ~ 9t the number of edges incident on v whose 
range includes x is bounded by d. 

Note that if G has bounded degree it also has locally bounded degree, but the 
converse is not true in general. From now on, unless specified otherwise, we will 
assume that G has locally bounded d~gree d. The next definition formalizes the 
intuitive notion of enumerating the vertices of a subgraph in a "connected" way. 
The one after that makes precise the type of query underlying the notion of 
iterative search. 

DEFINITION 2. A generalized path ~r in G is a sequence of vertices vl, Vz , . . . ,  vp 
and co~responding edges ez . . . .  , ep such that for each vertex vl, i > 1, the edge 
ei connects v~ to a vertex vj of the path, with j < i. 

Since our graph G is connected, it is obvious that there exist permutations of 
V that are generalized paths of G. In general, any connected subgraph of  G gives 
rise to a generalized path. 

s Our assumption that the values are real numbers is only for notational convenience; any linearly 
ordered set will do. 
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DEFINITION 3. A multiple look-up query is a pair (x, 7r), where x is a key value 
in ~ and 7r is a generalized path of G. The value x must fall within the range 
of  every edge of 7r. The path 7r may be specified on-line, in other words, one 
edge at a time. 

For a catalog C we will denote by o-(x, C) the first record in C whose value 
is greater than or equal to x; we will call the value of this record the successor 
of x in (7. Computing this value is equivalent to locating x in the sorted multiset 
of values represented by C. The main subject of this work, the iterative search 
problem, can now be formally stated as follows: 

Given a multiple look-up query (x, r look up x successively in the catalogs 
C, associated with each vertex v of 7% and in each case report o-(x, C~). If ~r 
is given on-line, then the reporting is to be done on-line as well. 

The problem which we are confronting is to preprocess a catalog graph G, 
along with its associated catalogs and ranges, so as to answer any multiple look-up 
query efficiently. If we do no preprocessing whatsoever, the catalog graph takes 
up O(s) space, as previously observed. In order to answer a particular query, 
we look up x in each catalog along ~'. If  this is done by using binary search in 

P o each catalog, the total reporting cost will be O ( ~ =  11 g (ICy, l)), where the sum 
is over all vertices of 7r. 

The strategy adopted by fractional cascading is to do only one binary search 
at the beginning, and then, as each vertex v of  ~- is specified, locate x in Cv with 
an additional effort that only depends on d (the locally bounded degree). If for 
simplicity we assume that each catalog has the same size c, and that d is a 
constant, then fractional cascading reduces the query time from O(p log c) in 
the naive method to O ( p + l o g  c). Of course if the catalogs to be queried are 
unrelated, then knowing the position of x in one catalog might not help to locate 
it in its neighboring catalogs. So fractional cascading has to build auxiliary 
structures that correlate these catalogs. 

One way to attain query time additive in log c and p is to merge all the catalogs 
into a master catalog M, and then for such catalog C to keep a correspondence 
dictionary between positions in C and positions in M. If  we do this, we can look 
up x in M once and for all when a query is specified, and subsequently, for each 
vertex of  7% simply follow the appropriate correspondence dictionary to locate 
x in the catlog of that vertex in constant time. Unfortunately the correspondence 
dictionaries altogether take up space f l (n  ~ w v  ICvl), which is not O(s). For 
example, in the special case considered above, the storage required grows from 
optimal O(nc) with the naive method, to O(n2c) when the master catalog is used. 
An important accomplishment of fractional cascading is that it attains the query 
time claimed while still keeping the overall storage linear. 

A side remark is appropriate here: the reason the edges of G have been assigned 
ranges is to make fractional cascading more general and unifying. If G has 
bounded degree, however, the notion of ranges becomes irrelevant and the 
requirement "x  must fall within the range of every edge of ~r" (Definition 3) can 
be dropped altogether, as each range can be taken to be [-co,  +o0]. The range 
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enhancement is not gratuitous; it will come in very handy in some of the 
applications treated later on. Now, before embarking on a fairly l~6ng technical 
development, let us summarize our main result concerning fractional cascading, 
as will be proved in Sections 3 through 5. 

THEOREM S. Let G be a catalog graph of size s and locally bounded degree d. In 
O(s) space and time, it is possible to construct a data structure for solving the 
iterative search problem. The structure allows multiple look-ups along a generalized 
path of length p to be executed in time O(p log d + l o g  s). I f  d is a constant, this 
is optimal. 

So far we have only dealt with static catalogs. In many applications, however, 
allowing insertions and deletions Of records into or from these catalogs is 
necessary. Thus Section 7 investigates how fractional cascading can be made 
dynamic. The results we have obtained there are less conclusive: 

THEOREM D. The fractional cascading data structure can be made dynamic with 
the following bounds: I f  only insertions and look-ups are performed, the amortized 
time for each insertion can be O(log s), while the look-up cost remains the same as 
before. Here we are amortizing over a sequence of O(s) insertions. The same bounds 
hold for deletions and look-ups only. I f  intermixed insertions and deletions are 
desired, then each of them can still be done in O(log s) amortized time, but the time 
required for a query increases to O( p log d log log s+ lo g  s). 

For a discussion of amortized computational complexity see IT]. 

2.2. The Fractional Cascading Data Structure. There are two key goals that the 
fractional cascading structure must accomplish: (1) somehow correlate each 
pair of neighboring catalogs in the catalog graph so a look-up in one of them 
aids the look-up in the other and (2) keep the overall storage linear. The former 
goal suggests augmenting each catalog by introducing additional records bor- 
rowed from neighboring catalogs. 

2.2.1. Bridges and Gaps. Each original catalog Co will be enlarged with addi- 
tional records to produce an augmented catalog A~, which too will be a linear 
list of records whose values form a sorted multiset. Exactly how this is to be 
done is explained in Section 3. Here we will be content simply to describe the 
desired state of  affairs after this augmentation has occurred. A related idea has 
been described in [VW]. Augmented catalogs for neighboring nodes in G will 
contain a number of records with common values. The corresponding pairs of 
records will be linked together to correlate locations in the two catalogs. More 
formally, for each node u and edge e connecting u with v in G we will maintain 
a list of bridges from u to v, Du~, which will be an ordered subset of the records 
in A~ having values common to both Au and A~ and lying in the range Re; in 
particular, the endpoints of Re are the first and last records in Du~. We will have 
a symmetric situation with node v, where we maintain, for each bridge in D~v, 
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a companion bridge in D~u. We call Du~ the correspondence dictionary from Au 
to Av. Remember that, in order to allow for the occasional presence of duplicates, 
we distinguish between a record of a catalog and its value. For example, Duv 
and D~u have no record in common, although they have the same set of values. 
A bridge is most usefully considered as a variant record in an augmented catalog 
pointing to a record with the same value in a neighboring augmented catalog. 
Bridges respect the ordering of equal-valued records, so they never "cross". 

In order to disambiguate communication between catalogs of adjacent vertices, 
we add the requirement that each bridge should be associated with a unique edge 
of G. This means that if a given value in Au is to be used to form a bridge in 
both D~ and D~w then it must be duplicated and stored in two separate records 
of Au. 

A pair of consecutive bridges associated with the same edge e = (u, v) defines 
a gap. Let a~ and b~ be two consecutive bridges in D,~ and let a~ (resp. by) be 
the companion bridge of a, (resp. b~). Assume that bu occurs after au in Au. We 
form the gap of b~ by including into it each element of Au positioned strictly 
between a, and b~ and each element of A~ positioned strictly between a~ and 
b~ (a gap does not contain the bridges which define it). Note that the gap of bu 
is the same as the gapof  b~. The element b~ (or b~) is called the upper bridge of 
the gap. Except for the bridges formed by the endpoints of the range Re, all 
other bridges associated with the edge e are both the upper bridge of some gap 
and the lower bridge of another. See Figure 1. A key property of the structure 
built by fractional cascading is that gap size is kept small. This guarantees that 
the bridges correlating two adjacent catalogs are never too far apart. The particular 
constraint we maintain is: 

The gap invariant: No gap can exceed 6d - 1 in size. 

We will see in Section 4 why the magic bound of 6 d -  1 has been chosen. 
Figure 1 illustrates the gaps and bridges of the augmented catalogs associated 
with three vertices on a single path. We end this subsection with some general 
remarks, before proceeding to the detailed description of the data structures 
needed for fractional cascading. 

The key to the design of the fractional cascading data structures is maintaining 
the correspondences between adjacent augmented catalogs, and between aug- 
mented catalogs and the associated original catalogs. The former facilitate the 
iterative search; the latter allow positions in the augmented catalogs to be 
translated into positions in the original catalogs. About the former correspondence 
and its implementation via bridges we will have a lot to say shortly in Section 3. 

Surprisingly, it is the latter correspondence, that between augmented and 
original catalogs, which becomes the bottleneck in the complexity when we need 
to deal with dynamic catalogs, where insertions and deletions are allowed. This 
is so because the records of C~ define an ordered partition of Av into disjoint 
sets, each corresponding to a range of values between two successive records of 
C~; by convention each such range contains its upper endpoint only. In the 
dynamization of the fractional cascading structures, we will need to implement 
insertions and deletions into both augmented and ordinary catalogs. While 
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degree d = 2, 6d-1 = 11 
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augmented catalog modifications clearly correspond to insertions/deletions of 
elements into one of the sets of the ordered partition, original catalog 
modifications give rise to splits and joins of adjacent sets in the partition. Thus 
we will need a data structure for handling the operations of find (what set contains 
a given element), insert, delete, split, and join in an ordered set partition. Maintain- 
ing the ordered set partition is an interesting data structure problem in its own 
right, which we will examine in Section 7. 

For now we are confining our attention to building a static fractional cascading 
structure, so the correspondence between agumented and original catalogs can 
be finessed by just keeping, for each augmented catalog element, a separate 
pointer to indicate its successor in the associated original catalog. Formally, for 
a record r of an augmented catalog Av with value x we define its original successor 
*,(r) to be tr(x, C~). 

2.2.2. A Close-Up of the Data Structure. Original and augmented catalogs will 
be represented by linked-list structures. Each record in Co consists of tWO 
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one-word (used  here in the generic sense of  a unit of  storage) fields (key, 
up-pointer). ,The ,key field contains the value of the record, while the up-pointer 
field refers to the record in Co immediately following the current one in increasing 
order. The last record in this chain has a key of  +co and its pointer refers to NIL. 
The structure for Ao is more complex. It can be described as a doubly-linked list 
of  records containing cross-references to the records in C~ and with additional 
information stored in nodes that are bridges. 

A record in Ao ~consists of  five fields; four of  these are one word long each. 
We assume that a word is large enough to contain a key value, or a pointer to 
another record, or an integer count. The fifth field is a single bit used internally 
by the algorithms. More specifically, the fields for a record r are: 

(1) key: stores the value K of r. 
(2) C-pointer: holds a pointer to v(r), the successor of r in Co (thus giving us 

a constant-time implementation of the find operation above). 
(3) up-pointer: points to the next element in Av (or NIL if last). 
(4) down-pointer: points to the previous element in Av (or NIL if first). 
(5) flag-bit: a bit used during construction or update of  the structure. 

Bridge records need to store more specialized information, so they have the 
following additional five fields. These are all one word long. 

(6) prey-bridge-pointer: if r is a bridge in Do~, then this field points to the 
previous (lesser value) bridge in Dow. A NIL pointer is used to indicate that 
this record is the lower endpoint of  a range. 

(7) companion-pointer: points to the companion bridge. 
(8) edge: if r is a bridge in D~w, then this field stores the label of  edge vw. 
(9) count: This field stores the number of  records in Av that belong to the gap 

of which r is the upper  bridge. Set to 0 for the lowest bridge in a correspon- 
dence dictionary. Its sum with the corresponding count field in the com- 
panion bridge gives the gap size of  this bridge. 

(10) rank: used internally in the construction phase and during updates. 

Figure 2 illustrates the data structure on a small example. Note that, aside from 
catalog-related information, the structure also contains a full description of the 
graph G because the range endpoints become bridges providing the node 
adjacency information. In the next section we describe how to answer an incoming 
query; we postpone discussion of the construction of the data structure until 
Section 3. 6 

2.2.3. Answering a Multiple Look-Up Query. How do we proceed to answer a 
multiple look-up query (x, ~ )?  The idea is to follow the generalized path r via 

6 A structure such as the above can easily be built by following the naive approach, mentioned earlier. 
Construct a master catalog M by merging all catalogs together and repeating each record as many 
times as the degree of the vertex it came from. Then make M the augmented catalog of each vertex. 
We can easily choose the bridges so that each gap has size at most 2d. The interesting task ahead 
will be how to avoid the blow-up in storage which this simple-minded approach implies. 
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Fig. 2. A close-up of the augmented catalogs. 

the bridges provided in the data structure. Each time a search is performed in 
an augmented catalog Av, the result of the look-up must be carried over to the 
associated original catalog Co as well. The following lemmas provide the two 
basic primitives needed. 

LEMMA 1. I f  we know the position of  a value x in the augmented catalog Ao, in 
other words a record r with the smallest value greater than or equal to x, then we 
can compute the position (in the same sense) o f  x in Cv in exactly one step. 

PROOF: Use the C-field of the record to retrieve v(r). [] 

LEMMA 2. I f  we know the position of  a value x in the augmented catalog Ao, and 
e = (v, w) is an edge o f  G such that x is in the range Re, then we can compute the 
position of  x in Aw in O(d)  time. 
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PROOF. From the position of r = o-(x, A~) in Av follow up-pointers until a bridge 
is found that connects to Aw. To do so, simply check the edge-field of every 
bridge visited. Because of the gap invariant, such a bridge will be found within 
6d steps. At this point, follow the bridge-pointer and traverse Aw following 
down-pointers until x has been located. Again because of the gap invariant, both 
these traversals can be accomplished in at most 6d + 2 comparisons. [] 

Lemmas 1 and 2 show that a multiple look-up query (x, 7r) can be answered 
very efficiently, provided that the position of x in Ay is known, where f is the 
first vertex in ~. It is too early now to describe in detail how to compute the 
position of  x in the initial catalog A/. If we were to store Av as a one-dimensional 
array as well, then we can certainly locate x in it in O(log s) time. However, this 
solution is rather inconsistent with our previous list-based structures. We will 
show in Section 6 that this initial search for x can be accomplished in O(log s) 
time using a technique which preserves the unity and simplicity of the data 
structure. 

To summarize the situation at this point, we can handle any multiple look-up 
query satisfactorily, provided that the fractional cascading structures have already 
been built, and that efficient search is possible for the first augmented catalog to 
be considered. In the following section we show that the fractional cascading 
structure can be constructed in time O(ds) and space O(s). One remarkable 
feature of this data structure is that its size is independent of d. In the ensuing 
developments, d is considered a parameter and not a constant. It will therefore 
not disappear in the O-notation. 

3. The Construction of the Fractional Cascading Structures. In order to add 
motivation to our discussion, we will start by describing an approach which, 
although flawed and ultimately inadequate, introduces the basic idea of  fractional 
cascading in very simple terms. The reader who does not care for motivation at 
this point may skip the next paragraph. 

Since this discussion is only for motivation, let us be concrete and assume that 
G is regular of degree d and each catalog Co has size exactly c. Define a k-sample 
of a catalog C to be a maximal subcatalog of C obtained by taking values k 
apart; we call k the sampling order. Then Ao will be simply Co, together with a 
(2d)-sample of each neighbor of v one away, a (2d)2-sample of each neighbor 
two away, and so on. Here we are counting distances according to the underlying 
graph G. The size of Ao will be bounded by 

c+d 1-~-c+d2(1) 2 
2d ~-~ c + . . . .  2c, 

and thus the size of all the augmented catalogs is bounded by twice the size of 
the original catalogs. Any two adjacent nodes in G differ in their distances to a 
third node by at most +1. Therefore any two samples merged into the adjacent 
catalogs Ao and Aw may differ by a factor of at most 2d in the sampling order. 
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This might make us hope that the gap invariant would also be satisfied. Unfortu- 
nately this need not be the case, as the merge of  two k-samples can leave gaps 
of size 2k. It is this problem that makes the argument above only a heuristic and 
not a rigorous construction. To overcome this difficulty we must do the sampling 
in parallel with the construction of the augmented catlogs, as described in the 
sequel. Specifically, our plan will be to insert one new record at a time, maintaining 
the gap invariant as we go along. To ensure this, splitting some gaps into 
smaller gaps will occasionally be necessary. Although the time taken by a specified 
insertion is fairly unpredictable, the total running time of the algorithm can be 
made optimal with a careful implementation. Incidentally, the key idea of propa- 
gating geometrically decreasing samples of each catalog to nodes further away 
is responsible for the term "fractional cascading". 

We now explain rigorously how, for every vertex v of G, the augmented catalogs 
A~ can be built efficiently. We will present the construction of the fractional 
cascading structures in an incremental fashion. By incremental we mean that we 
will show how to update these structures when a new record is added to one of 
the original catalogs. Starting then from a graph G with all catalogs empty, we 
can arrive at the desired state with repeated insertions. 

The overall algorithm consists of two nested loops. For each vertex v of G in 
turn, we consider the elements of C~ in increasing order and insert them into Av 
one at a time. Before inserting an element we make sure that all the gap invariants 
have been restored since the previous insertion. Note that even before any element 
of Cv has been inserted into A~, this augmented catalog is already likely to 
contain elements originating from other catalogs. Therefore we must implement 
the insertion by merging C~ into Av. Each insertion of a given element of C~ 
may cause serious changes in Ao, as well as in other augmented catalogs, 
necessitated by the restoration of gap invariants. The total cost of these operations, 
however, will be at most proportional to the final size of all the augmented catalogs. 

3.1. Adding a N e w  Record. We will partition the processing required when 
inserting a new record into three stages. In stage 1 we simply insert the new 
record r into the appropriate place in its augmented catalog A~. After such an 
insertion we must update the count-fields of all gaps containing r and then split 
excessive gaps into smaller ones. These splits will cause additional insertions in 
neighboring catalogs, so count-fields must be checked again, and so forth. The 
counting of gap sizes and the splitting of excessive gaps constitute respectively 
stages 2 and 3. We may need to loop around stages 2 and 3 several times, but 
eventually all gap invariants will be restored and this process will terminate. We 
now describe these operations in detail. 

Stage 1. Insert  new record. Let p be the next record from C~ to be inserted into 
A~. Recall that p may possibly be the endpoint of a range. Let r' be the record 
from C~ previously inserted into A~ (or the first record of Av, if none has been). 
Starting from r', follow the up-pointers of A~ until the correct position of p has 
been found. At this point, insert a copy r of p into A~ (breaking ties arbitrarily). 
The initialization of the first five fields is straightforward; the flag bit is set to 0. 
We also add a pointer to r into a set of newly inserted records, called the 
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count-queue. When the previous insertion was fully processed, the count-queue 
became empty, so now its only element is r. 

Stage 2 is invoked next to update the count-fields. In the general situation the 
count-queue will contain references to several new records created by the gap 
splitting process of  stage 3. 

Stage 2. Update count fields. Our task is to find all gaps containing each of the 
records referenced by the count-queue and update their count-fields. A simple 
solution consists of  identifying these gaps, and then traversing each of them in 
order to evaluate their current size. The difficulty with this method is that gaps 
can grow to be very large and these repeated traversals can be costly. It is not 
so obvious how such a bad situation can arise, but appendix A shows that it 
really does. This forces us to use a cleverer method which is described below. 

We process the pointers in the count-queue twice. In the first traversal we 
identify the maximal groups of new records belonging to the same augmented 
catalog such that no two consecutive new records in the group are further than 
6d apart. These groups are called clusters. Note that no gap can contain new 
elements in a given augmented catalog that come from more than one cluster. 
In the next traversal we visit each cluster and update the count-fields of  the 
bridge records covered by the cluster. I f  some gap sizes have overflowed, then 
these gaps are added to the wide-gap-queue, which forms the input to stage 3. In 
more details, the traversals work as follows: 

First Traversal. For each reference to a new record in the count-queue go to 
that record and walk 6 d -  1 steps down from it in its augmented catalog. In 
the process mark the 6d records thus visited by setting their flag bit to the 
value 1. In each augmented catalog the maximal runs of  records with flag bits 
set to 1 define the clusters discussed above. 

Second Traversal. Now visit every reference in the count-queue once more, 
this time removing each reference from the queue as it is processed. I f  a 
reference points to a record r, in (say) Av, with its flag bit set to 0 then do 
nothing: the cluster of  Av in which that record belongs has already been taken 
care of. Otherwise we must process that cluster. As long as we see records 
with their flag bit set to 1, we walk down Av from r to the last such record, 
or to the bot tom of the catalog, whichever comes first. Let p denote the bottom 
record thus identified. We next walk up from p and in the process update the 
count fields of all bridges in Av whose gaps contain new records in the cluster 
of  r. We call this the ranking process. 

The ranking process proceeds from p up to 6d steps past the last record 
encountered whose flag bit is set to 1. A running count of  the records visited 
during the ascent is maintained, called the rank. We start out by giving p rank 
1. Whenever we come to a bridge b we take a number of  actions. First we 
store in the rank field of  b the current value of  this count. By following the 
prev-bridge-pointer of  b to b' and looking at the rank field of  that record, we 
can compute the number  j of  records from A~ currently belonging to the gap 
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of b. Let i be the current value of the count-field of b, and k the count-field 
of the companion bridge of b. In general j > i and the gap of  b has increased 
in size from i+  k to at least j +-:k ( j  + k need not be the true size since the 
other side of the gap might not have been ranked yet). We now set the 
count-field of b t o j  and, i f j + k > - 6 d  but i + k < 6 d ,  then add the gap of b to 
the wide-gap queue for splitting during stage 3. The above conditions guarantee 
that a gap is added to the wide-gap queue only the first time a ranking process 
shows it has overflowed. Our last action in processing the bridge b is to set 
the rank of  b' to 0. When the ranking process has reached its last record, the 
rank field of  the last bridge encountered is also set to 0. In addition, the flag 
bit of each record visited in the process is set to 0--thus marking the cluster 
as processed. 

At the end of stage 2 the count-queue is empty, all count fields of bridges are 
correct and all gaps whose size exceeds 6d - 1 have been placed in the wide-gap 
queue. 

Stage 3. Restore gap invariants. If  the wide-gap queue is not empty, remove its 
top element and split the gap of the upper bridge to which it points. To do so, 
merge all the elements of the gap into a temporary linked list. Let K 1 , . . . ,  Kg 
be a labeling of  this list in nondecreasing order, and let H1 be the first group of 
3d elements, /-/2 the second group of 3d elements, etc. chosen from this list. 
Since the gap count  g satisfies g>-6d, we have at least two groups, and more 
precisely i = [g/3 d ] of  them. If  the last group Hi contains fewer than 3 d elements, 
then we merge Hi and Hi_a together. Let j be the new number of groups (j  = i 
o r j  = i - 1). We separate H~ from/-/2 by making two copies of the largest element 
in H~, each to become a bridge in the augmented catalogs associated with the 
gap. We then iterate on this process for t h e j  groups, which leads to the introduc- 
tion of 2(j  - 1) bridges. All gaps produced have size exactly 3d, except possibly 
for the last one, which has size g - 3 ( j -  1 ) d - - 6 d -  1. 

Note that each partitioning element already occurs on one side of the gap. If  
it is not already a bridge to another neighbor on either side, then it need be 
duplicated only on the missing side. Otherwise it must be duplicated also on the 
side where it already occurs as a bridge, because of our convention that a record 
in an augmented catalog can only function as a bridge for a single edge. See 
Figure 3 for an illustration of the splitting process. We omit the details of  the 
initialization of  the new records; we just mention that it is imperative to insert 
references to them into the count-queue. 

At the end of  stage 3 the wide-gap queue is empty and no gap has size exceeding 
6 d -  1, according to the count fields present in the structure. All new records 
created from the splitting are referenced in the count-queue. 

We now recapitulate the basic flow of operations. Stage 1 is called to insert a 
new key. At this point, stage 2 updates all count fields. Stage 3 is then called to 
restore the gap invariants. At termination, all gaps will have acceptable size, /f 
we discount the new elements that stage 3 has created. To remedy this discrepancy, 
we call stage 2 again to obtain the list of flawed gaps. Stage 3 is then invoked to 
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Fig. 3. The gap splitting process. 

fix them, and the process iterates in this way until stage 2 fails to reveal any 
flawed gaps. It  is important to ensure that stage 2 and stage 3 operate completely 
separately. All count fields must be correct before restoring any gap invariant 
and all gaps must be valid (up to the discrepancies caused by newcomers) before 
stage 2 is called again into action. 

3.2. Proof of Correctness. Why is this process correct, and why should it always 
terminate? Let us leave termination aside for the time being; we first prove the 
two assertions made earlier: (1) after completion of stage 2, all count-fields are 
correct; (2) after completion of stage 3, no gap contains more than 6d - 1 elements 
which were also in existence before. 
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We prove these assertions by induction. The second one follows directly from 
the description of the algorithm. Incidentally, not that after stage 3 has started, 
some splits may occur with a value of the count-field less than the correct one, 
because of  earlier insertions caused by this stage. We now turn to stage 2. By the 
induction hypothesis (stating the correctness of the previous applications of stages 
2 and 3), only the gaps containing the elements in the count-queue need have 
their count-fields updated. We will first show that the updating performed in 
stage 2 correctly restores the counts of the gaps it touches, and then that all 
affected gaps are processed. 

Let us concentrate our attention on the augmented catalog Av. We call new 
any element on the count-queue just before stage 2; other elements will be called 
old. The key to the correctness of stage 2 is that no gap can contain more than 
6d - 1 consecutive old elements in Av. Indeed, this would contradict the induction 
hypothesis that gaps were valid before the introduction of new elements. Con- 
sequently, all new elements A~ within a given gap must be linked together in 
stage 2 into one cluster, so the updating cannot miss any of them. The use of 
ranks is to identify exactly how many new elements lie in a given gap. 

To see that the work in stage 2 is sufficient, we will prove that the algorithm 
does examine any gap which contains a new element. Let 3' be a gap with upper 
bridge K ~ A~, and let Ku be the new element positioned highest in A~ such that 
Ku occurs within y. K cannot lie more than 6d places above K~ in Av (by the 
gap invariant), therefore K will be processed in that stage when the cluster of 
the new element Ku is handled. This completes the proof  of correctness of our 
algorithm. 

4. The Complexity of Fractional Cascading 

4.1. Time Requirement. We now show that the insertion algorithm not only 
terminates, but that it does so with delay which is O(d)  when amortized over 
all insertions performed during the construction of the fractional cascading 
structures. In order to prove this bound we will use certain accounting techniques 
common in amortized complexity analysis IT]. The essence of those techniques 
is to associate "bank accounts" with parts of the data structure, into which 
deposits and withdrawals are made at appropriate instants during the execution 
of the algorithm. It is important to realize that these book-keeping operations 
are only an artifact of the analysis and not part of the algorithm proper. 

Each gap has associated with it a piggy-bank holding some tokens. A token can 
pay for a constant amount of computation (recall that O(d)  is not interpreted 
as "constant") .  We choose this amount large enough so as to cover the actual 
cost in our implementation for any of the following: (1) creating a record for a 
new element or a new bridge and properly linking it into its augmented catalog 
(stages 1 and 3), (2) processing an element during the traversals designed to 
update the count fields in stage 2, and (3) processing an element in the merge 
preceding the gap splitting procedure of stage 3. Besides the piggy-banks, we 
have a cash-bank associated with each new element in the count-queue. We will 
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make deposits or withdrawals from these banks in order to cover the restoration 
costs of  an insertion: these are the costs associated with restoring the gap 
conditions. We will contain the following invariant. 

Each gap of size k, 0-< k < 6d, holds in its piggy-bank a number  of  tokens 
equal to at least  21 max(0, k-3d). Each new element contains 6d tokens in 
its cash-bank. 

When an element K of Cv is to be inserted into Ao, it is given 27d + 1 tokens. 
Twenty-one tokens go into the piggy-bank of each gap containing K. Since there 
are at most d such gaps, there are at least 6d + 1 remaining tokens; K keeps  6d 
tokens for its own cash-bank, uses one token for the creation of its new record, 
and throws away the others. All bank conditions are then satisfied. Except f o r  
the double loop which performs the actual updating of the count fields, the time 
taken by stage 2 is clearly proportional to dN, where N is the number  of  new 
elements. As to the double loop, its time of  execution is O(dN+ V), where V is 
the number  of  new elements visited during each count update. But because of 
the locally bounded degree condition, no now element can be examined more 
than d times. Therefore the total running time of stage 2 is still O(dN). By our 
assumption about the token value, all this can be paid for with the 6d tokens 
from the cash-bank of each new element. 

Processing each element G in the wide-gap queue during stage 3 takes time 
proportional to the size of  the gap being split. Consider the new gaps produced 
during the splitting. We can distribute the tokens of  the old piggy-bank of G into 
packets. The highest new gap H is of  size between 3d and 6 d -  1; it receives a 
packet containing 21t tokens, where t is the excess of  the size of  H over 3d. This 
packet supplies the (new) piggy-bank of H. Each of the other gaps can thus 
receive a packet containing 21 x 3d = 63d tokens. Since, however, they all have 
size 3d, their piggy-banks do not need any tokens at all. Now each new gap, 
except H, has to pay for the creation of one or two new bridges, as well as the 
necessary deposits to the piggy-banks of other gaps that the insertion of these 
bridges necessitates. Obviously at most 2(d - 1) other gaps are affected. Thus we 
need the following: 2 tokens to create the two new bridge records; 2 x 6d = 12d 
tokens to deposit into their cash-banks; and 21 • 1 ) = 4 2 d - 4 2  tokens for 
deposits to other piggy-banks. Since we have a total of  63 d tokens on hand, we 
can do all that and still have 9d +40 tokens left over. 

We must still account for the work of splitting the gap G. I f  k denotes the size 
of  G, then k tokens suffice to pay for splitting. Suppose that G is broken up into 
H, the highest gap of size between 3d and 6d - 1, and j other gaps, j --- 1, of  size 
exactly 3d. By the analysis above each of  the latter gaps has a surplus of  9d + 40 
tokens, for a total of  (9d+40)j .  Since (9d+40)j>-3jd+6d-l>-k, we have 
enough to pay for the splitting out of the pooled surpluses. 

In conclusion, the entire insertion process can be paid for with (27d+  1)s 
tokens (recall that s is the total catalog size) and therefore the preprocessing 
time of the algorithm is O(ds). Next, we turn our attention to the storage utilized 
by the data structure. 
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4.2. Space Requirement. A space-token, or token for short, will buy 10 words 
of memory-- tha t  is, storage for one record in Ao. We take space tokens to be 
divisible units and divide each such token into d equal credits. We maintain the 
following invariant: 

At the completion of each stage, every gap of size g has at least 2 max(0, g - 3 d) 
credits in its (space) piggy-bank. 

To handle an initial insertion (stage 1), we grant each new key three tokens. One 
of them covers the storage for the key itself. The other two tokens are exchanged 
for 2d credits: two of the credits are then deposited in the space piggy-bank of 
each containing gap; the remaining credits are thrown away. Note that this 
transaction preserves the piggy-bank invariant. To handle the gap splitting of 
stage 3, we use the packet argument of the previous section. This shows that each 
bridge of a newly created pair receives 6d/2 = 3d credits to use, after preserving 
all bank conditions. Two of them are deposited into the piggy-bank associated 
with each of  the gaps containing the endpoints of the bridge. This still leaves at 
least 3 d - 2 ( d -  1)= d +2  credits per bridge, which is more than one token, so 
the bridge can then pay for its own record. As a net result, only 3s tokens must 
be used to account for all the space used, so this space is O(s). More precisely, 
only 30 words of memory are necessary per catalog element (on the average). 

THEOREM 1 (Preliminary Result). Let G be a catalog graph of size s and locally 
bounded degree d. In O(s) space and O( ds) time, it is possible to construct a data 
structure for solving the iterative search problem. The structure allows multiple 
look-ups along a generalized path of length p to be executed in time O( dp +log s). 
I f  d is a constant, this is optimal. 

We conclude by remarking that in our 6d - 1 bound for the gap size invariant, 
the constant 6 can be reduced to 4+ e, for any e > 0. As it turns out, when e goes 
to zero, the implied constants in our time and space analysis (in other words, 
the number of time or space tokens needed per insertion) go to infinity. Although 
the analysis breaks down for gap sizes less than or equal to 4d, the algorithms 
we have presented continue to work correctly. Figures 4 and 5 show two examples 
of fractional cascading structures on two simple graphs, where we in fact used 
4 d - 1  as the maximum allowed gap size. 

bridge t ~  
elemelt 

I~ I,,, 
Fig. 4. Example (1) of fractional cascading. 

aug. catalog 

graph G 
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d = 4, max. gap size = 15 
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Fig. 5. Example (2) of fractional cascading. 

Although our current result will be improved shortly, it is interesting in its own 
right because it does not attempt to modify the combinatorial nature of  the graph. 
We will see in the next section that by rewriting the graph G in a canonical 
manner so that it has bounded degree, the preprocessing time can be reduced to 
O(s), while the query time goes down to O(p log d + log  s) f r o m  O(pd +log  s). 
In practice, on the other other hand, d is most likely to be a small constant, so 
these asymptotic considerations are immaterial. 

5. An Improved Implementation of Fractional Cascading. We have seen that the 
complexity of  the query-answering process is proportional to the degreefl .  This 
is unavoidable given the approach taken here: the gap size must be proportional  
to the degree if the overall storage is to remain linear. Through the medium of 
bridges, the query-answering process simulates a traversal of  a graph of degree 
d represented by traditional adjacency lists. This means that in the worst case, 
to go from node v to its neighbor w, we may have to look at all d neighbors of 
v. To avoid this delay, we choose to resolve high degrees in the graph G by 
rewriting it in a canonical fashion. This will lead to a graph G* of bounded 
degree which emulates G and allows us to go from a vetex v of  G to a particular 
neighbor w in O(log d) time. Briefly, G* is constructed by adding a small balanced 
tree at each node, called a star-tree. We solve the iterative search problem on G 
by applying fractional cascading to G*, as described in the previous section. 

DEFINITION 4. A star-tree Tn is an oriented tree with n leaves (vertices of  degree 
1), endowed with a distinguished vertex called its center, and obtained inductively 
as follows. 

(1) The tree T1 is a single vertex which, of  course, is also its center. The tree T2 
has two vertices connected by an edge; one of  them is arbitrarily chosen to 
be the center. 

(2) For i>2, a T~ can be obtained from a T~-a as follows: choose a leaf w of 
T~-a which has minimum distance to the center of  that tree. To form T~ attach 
two new edges to w and leave the center the same--see  Figure 6. 

Note that this definition is non-deterministic. In all cases, however, Tn has exactly 
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Fig. 6. The star-trees used to resolve high degrees. 

n vertices of degree one, all interior vertices have degree three, and no vertex is 
at a distance greater than [lg n ] from the center. 

Now let e l , . . . ,  ek be the edges of G adjacent to a vertex v of V. If t l , . . . ,  td 
are the leaves of some Ta, we will attach each el to some tj so that the leaves of 
Td have a local degree of at most 2. Computing the assignment is straightforward. 
At the outset, the index of each tj is inserted into a leaf-queue. We also extract 
from Co the 2k endpoints of Re~ , . . . ,  R e k  in sorted order (this does not require 
sorting, since these endpoints form a subset of Co, which is itself assumed to be 
given in nondecreasing order). We perform the assignment by going through the 
endpoints in order, as follows. If the endpoint is a lower endpoint of Re,, remove 
any index j from the leaf-queue and assign edge ei to leaf tj. If the endpoint is 
an upper endpoint of Re,, re-insert back into the leaf queue the index l of the 
leaf h to which el had been previously assigned. Because of the locally bounded 
degree condition, the queue will always contain at least one label when one is 
needed. This whole process can be carried out in O(k+ d) t ime--see Figure 7. 

The graph G* is obtained from G by replacing each node of G with a copy 
of Td. (Actually, if a particular node of G has local degree f <  d, a tree Tf could 
be used instead to save space). Each edge e = (u, v) of G becomes an edge in 
G* connecting the two leaves of the star-trees corresponding to u and v to which 
e has been assigned by the previous algorithm. In the star-tree T used to replace 
node u we assign empty catalogs to all nodes, except for the center to which we 
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Fig. 7. Using the star-tree T10. 

assign Cu. Also, each edge of T is given a range [ - m ,  +~ ] .  It is now easy to 
check that all the nodes of G* have local degree bounded by 3. The graph G* 
thus constructed has a number of edges proportional to m, the number of edges 
in G, and can clearly be built in time O(s). 

Searching for neighbors in G* is trival. Each tree Td (or Ty) used in G* has 
its edges labeled in a depth-first traversal. This allows us to go from one leaf to 
another in O(log d) time, provided that we know the labels of the starting and 
ending edges. All we have to do then is provide a correspondence table to translate 
the name of an edge in G into the local label of its new adjacent edges (see 
Figure 7). Each edge of  G will appear in at most two correspondence tables. 

The emulation catalog graph is now ready for use. Note incidentally that the 
path of a star-tree between two of its leaves may avoid the center. Since the 
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center must be visited in order to retrieve the desired information, we will fork 
the traversal into two paths: one going towards the center, the other pursuing its 
route towards the exit leaf. The emulation path is obviously still a generalized 
path. We conclude with an improved version of Theorem 1. 

THEOREM 2. Let G be a catalog graph of size s and locally bounded degree d. In 
O(s) space and time, it is possible to construct a data structure for solving the 
iterative search problem. The structure allows multiple look-ups along a generalized 
path of length p to be executed in time O(p log d +log s). I f  d is a constant, this 
is optimal. 

6. The Notion of Gateways. We address here one of the points left open in 
previous sections: the location of a query value in the first catalog of  the 
generalized path. The solution proposed earlier consisted of  keeping a copy of 
each augmented catalog in a table, with the idea of performing a binary search 
in one of them in order to get a multiple look-up started. This is unsatisfying for 
at least two reasons. For one thing, the solution is inherently static and will 
support modifications only with great difficulty. Also, it breaks the unity of 
fractional cascading by stepping out of  the list-based world in which we have 
(implicitly) pledged to remain. 

The answer to these objections will be found in the notion of gateways. To each 
vertex v of  (3, attach an extra edge connecting v to a new vertex g(v), called the 
gateway of  v. The vertex g(v) will have an augmented catalog attached to it but 
no catalog per se. The edge (v, g(v)) is called a transit edge; its range is 
[ - m ,  +m] - -no t e  that these definitions are made with respect to G and not its 
emulation graph G*: the transition to G* must come, as prescribed above, in a 
postprocessing phase and will ignore differences between edges and transit edges, 
etc. The augmented catalog of g(v) is required to have exactly three elements. 
When the preprocessing takes place, if Ag(v~ should end up with less than three 
elements, it is not created. On the other hand, if it ends up with more than three 
elements, another gateway is attached to it. This process might go on for a while, 
creating a chain of new vertices emanating from each vertex of G - -  see Figure 
8. Only the last vertex in the chain is called a gateway, all the others are called 
transit vertices. 

It is clear that every time a new gateway is created, there are enough tokens 
around to pay for this creation. This is all the more obvious as the degree of a 
transit vertex is two. It is not hard to see that the length of a gateway will be 
roughly proportional to the logarithm of the size of  the augmented catalog at its 
attachment to G. To answer a query we perform the initial search in Av by starting 
at the gateway of v and proceed into to v. This will take O(log s) time. 

As it turns out, a gateway chain is quite similar to a B-tree [BM]. In a way it 
corresponds to a B-tree where all nodes at a given level have been combined into 
a supernode. The bridges between adjacent levels play the role of  the inter-level 
links in the tree. The whole fractional cascading structure can be viewed as a 
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Fig. 8. A gateway. 

generalization of B-trees. The upper and lower bounds that must be maintained 
on the gap size correspond naturally to the upper and lower bounds on the node 
size of a B-tree. The main difference, and one of the most intriguing aspects of 
fractional cascading as well, is that in the latter the gap splittings (or mergings) 
can cycle back to a node previously visited, and so go on for an unpredictable 
length of  time. 

7. Dynamic Fractional Cascading. We now examine how the fractional cascading 
structures can be made dynamic. When building the static structure as described 
in Section 3, we took advantage of inserting the keys present in each original 
catalog in increasing order. This sorting allowed us to use a simple linear scan 
to locate the position of each new key in the augmented catalog, and at the same 
time to set the value of the C-pointer of each augmented catalog element passed 
over. Both the location problem, and the augmented-to-original correspondence 
problem are much more difficult in the dynamic case. 

7.1 Insertions or Deletions Only. Let us first tackle insertions only. Suppose a 
new key K is to be inserted in Cv. We must (1) compute the position of K in 
Av, (2) update whatever representation we are using to relate positions in A~ to 
positions in C~, and (3) restore any gap invariants that have been violated by 
the new insertion. The similarity between gateways and B-trees makes dynamiz- 
ation a straightforward operation, at least as regards (1). Unfortunately, the static 
structure is grossly inadequate when it comes to problem (2). Too many C-pointers 
may need to be changed following a single insertion to allow any hope for a 
logarithmic update cost. In fact, what we must solve is an instance of the ordered 
set partition problem where we allow the operations find, insert, and split, as 
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described in Section 2.2.1. The find operation replaces the C-pointers of the static 
structure, the split operation corresponds to the insertion of a new key in an 
original catalog, and the insert operation is used for the secondary insertions 
occasionally necessary for the restoration of the gap invariants. A recent paper 
by Imai and Asano [IA] has shown how to solve this particular case of the 
ordered set partition problem in constant amortized time per insertion or split, 
and constant actual time per find. The only assumption their argument requires 
is that we start with an empty structure. Finally problem (3) can be handled--for 
a change--exactly as in the static case. We must, however, use the Imai-Asano 
structure for the secondary insertions associated with stage 3 (the gap splitting). 
In conclusion: 

THEOREM 3. I f  we allow only insertions, then fractional cascading can be made 
dynamic while preserving all the previous bounds for space, preprocessing, and query 
time. The cost of  an insertion is O(log s) when amortized over a sequence of  s 
insertions into an initially empty structure. 

It is possible to handle deletions (and only deletions) in a way analogous to 
that for insertions. The correspondence between augmented catalogs and original 
catalogs now require a solution to the ordered set partition problem where the 
allowed operations are merge, delete, insert, and find. Although not explicitly 
stated as a result in their paper, Imai and Asano show in fact how to adapt the 
Gabow and Tarjan [GT] method to handle the first three of the operations above 
in constant amortized time and find in constant actual time. With deletions a 
new issue arises. It seems hopeless to try to eliminate all copies of an element 
being deleted from the structure at one. On the other hand, leaving these propa- 
gated copies lying around raises the possibility that the structure may no longer 
remain of linear size in the number of elements present in the original catalogs. 
But, as observed by Fries, Mehlhorn and N/iher, we can allay this fear if we 
simply impose a lower bound on the gap size as well [FMN]. 

LEMMA 3. I f  the minimum gap size is kept to yd for  some y > 2, then the size o f  
the fractional cascading structure will be O( ys /  ( y -  2)). 

PROOF. Let (v, w) be an edge of G. We use lower case a's and c's to denote 
the size of the corresponding augmented and original catalogs, b(v,w) to designate 
the number of bridges between A~ and Aw, and g(~,w) to designate the number 
of elements in A~ u Aw whose value falls in the range of (v, w). We then have 
g(v,w)- (b(~,w)- 1)yd + 2b(~,~), and therefore b(v,~)- (g(~,~)+ yd )/( yd + 2). 

Since we have made the convention that the original catalogs contain the 
endpoints of the ranges of their adjacent edges, we obtain 

a~<-e~+ Y, (b~v,w)-2). 
(v,w)cE 
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It follows that 

Y~ a ~ -  < Y~ co+ Y~ Y, (b(~,~)-2) 
v~ V v ~ V  v E V  ( v , w ) E E  

- - s + 2  Y~ (b(~,~)-2) 
(~,w)EE 

[ g(~,w) + yd_ 2] 
- s + 2  Y, [ yd+2 ] 

( v , w ) ~ E  

2d 
_<s+--ST-~, ~ ~ a~. 

)~a  - 1 - /  v~  V 

From this desired result follows. 

Maintaining both a lower and an upper bound on the gap size gets to be quite 
intricate. The accounting has to be modified to leave tokens in the piggy-banks 
for underflowing as well as overflowing gaps, following the method described by 
Fries, Mehlhorn, and Niiher [FMN]. We will not give the details here, but simply 
state the end result. 

THEOREM 4. I f  we allow only deletions, then fractional cascading can be made 
dynamic while preserving all the previous bounds for space, preprocessing, and query 
time. The cost of a deletion is O(log s) when amortized over a sequence of s deletions 
leading to an empty structure. 

Next, we will attack the general problem of handling both insertions and 
deletions at the same time. Instead of placing a lower bound on the gap size, we 
let the data structure degenerate gradually and rebuild it every now and then. 
The idea is just to mark the deleted elements, but not expend the effort to remove 
them right away from the structure. The obvious problem with this scheme is 
that since the data structure never decreases in size, it may become intolerably 
large compared to the number of live elements it contains after many deletions. 
To deal with this difficulty, we could stop the computation when the ratio of live 
elements to the total of those present drops below some threshold and re-insert 
every element still alive from scratch. But we now face the problem that although 
this scheme might have a good amortized performance, the occasional interrup- 
tions might be simply too long to be acceptable. Think for example of an on-line 
system where requests have to be handled in immediately. The next section will 
bring an answer to this dilemma. 

7.2. A General Scheme for Efficient Deletions. Consider a database reacting to 
three types of requests: insertions, deletions, and queries. Each insertion can be 
performed in v amortized time, and each deletion can be recorded in 6 actual 
time, where v, 8 = O(1). The notion of recording a deletion as opposed to 
performing it is the following: an element can be marked off in 6 time so that 
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queries may go on and provide correct answers. Recording a deletion, however, 
does not free any storage, so it is not a viable alternative in the long run. To 
prove the following result, we use a dynamization technique originating in a 
paper by Bentley and Saxe [BSa], and one by Overmars [O]. 

LEMMA 4. Consider a data structure in which we can only insert new elements 
and answer queries. Let M ( s )  be the storage used to store s elements, assumed 
polynomial in s, and let ~, indicate the amortized time for an insertion, assumed to 
be constant. I f  the time 8 to mark off an element to be deleted is also constant (thus 
ensuring that queries can still be answered correctly), it is then possible to implement 
each deletion in constant actual (non-amortized) time. The storage used is O( M ( s ) ), 
and the time for inserting a new element or answering a query is the same as before, 
up to within a constant factor. 

PROOF. The idea, as mentioned earlier, is to "mark"  the deleted elements as 
dead, then periodically garbage collect them to prevent the dead elements from 
swamping the live ones. Consider the situation at a generic time t. We always 
keep two identical copies of  the data structure, so called the query copy and the 
survival copy. All requests are handled simultaneously (i.e., in a time-sharing 
fashion) in the two structures, except for queries, which are handled exclusively 
in the query structure. Recall that deletions are handled by simply recording the 
event, which will make a total of 28 time. By keeping counters, we check that 
the live elements always outnumber the dead ones. As soon as this is not the 
case, we fork two concurrent processes, as described below; in the following, we 
let A denote the value of the two counters when they meet. 

(1) Process 1 continues to handle all three types of requests in the query 
structure as though nothing was happening. 

(2) Process 2 consists of  two subprocesses, which can pipe information between 
them. Subprocess 2.1 will keep a transcript of all incoming requests during the 
entire lifetime of process 2. This includes all insertions and deletions but not 
queries. Subprocess 2.2 will go through three consecutive stages. In the first one, 
the subprocess re-inserts every element that is alive in the survival structure into 
a new survival structure. When this is done, the subprocess enters its second 
stage, where it makes a copy of  the new survival structure; from then on the 
subprocess will work in double, performing the same operations in both copies 
of the new survival structure. We will not mention this duplication of effort in 
the following. In the third stage, the subprocess goes through the transcript 
maintained by subprocess 2.1 and starts responding to each request in chronologi- 
cal order. As soon as process 1 has spent 8,4/2 cycles in deletions and insertions 
(not counting queries), we complete the current request and immediately termin- 
ate all processes and subprocesses. The query structure is thrown away, and the 
two copies maintained by subprocess 2.2 become the query and survival structures. 
We will make sure that at this point the number of  dead elements cannot exceed 
the number of live ones, so we are back to the initial conditions. 
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The idea is to have process 2 operate faster than process 1. First of  all observe 
that after a while process 2 mimics process 1, although the duplicating task and 
the bookkeeping of subprocess 2.1 make this work about three times as hard, At 
any rate, giving a little more than three cycles to process 2 for every cycle of  
process 1 should be enough for process 2 eventually to catch up with process 1. 
However, this catching up should not be delayed too long or we may end up in 
a forbidden situation where more elements are dead than alive. Recall that from the 
moment processes 1 and 2 are triggered, no incoming deletion is effectively taken 
into account until the next process fork. 7 

We will show that setting the speed of process 2 to be 3+  [8(v/8)]  times the 
speed of process 1 satisfies all our conditions. Let I and D be respectively the 
number of  insertions and deletions handled by process 1. We have 

A 
(1) vI+SD~_8--. 

2 

We must show that during these 8,4/2 cycles of process 1, process 2 has had 
time to go through its third stage and handle all I insertions and D deletions. 
The time necessary for these operations is 

(1) Subprocess 2.1. I +  D transcript operations which can be generously accom- 
plished in vI+ 8D time; these constants are chosen for convenience. 

(2) Subprocess 2.2 (stage 1). Going through every element of the data structure 
cannot take more time than it would to rebuild it from scratch, so 2vA is an 
upper bound on the scanning time. Re-inserting the A elements alive will 
take vA time. 

(3) Subprocess 2.2 (stage 2). Copying the data structure takes less time than 
rebuilding it, that is, at most vA cycles. 

(4) Subprocess 2.2 (stage 3). Implementing the I + D  requests twice takes 
2(vI +SD) time. 

The total running time is dominated by 3 ( v I +  6D)+4vA, which by (1) is less 
than (38+4v)A. This corresponds to a number of cycles in process 1 at most 
equal to 

(~8 +4v)A_ 8A. 
3+8(,,/8) 2 

7 Note also that the maintenance of multiple copies of the same structure makes the assumption that 
elements can be marked "dead" in constant time a bit tricky to implement. We cannot refer to an 
element to be deleted from both the copy and survival structures by a single pointer. We must instead 
access the element by naming an insertion or query operation record that referenced that element 
earlier. This "name" could, for example, be the serial number of the operation, which would be the 
same in the two structures. 
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Therefore, process 2 and its subprocess will be complete when process 1 is. Note 
that during that time no more than A/2 requests for deletions can be accepted 
since process 1 lasts only 8A/2 cycles. It follows that during the time the processes 
are active there are at least A/2 live elements and at most A/2 dead ones. 
Therefore the initial invariant is preserved: the dead count never exceeds the live 
count. Since the function M(s) is polynomial in s, the space will be at all times 
proportional to what it could be at best, that is M(A/2) .  The proof  is therefore 
complete. [] 

Lemma 4 provides a method for the general dynamization of  fractional cascad- 
ing. Whereas insertions are handled as usual, we use a lazy deletion mechanism 
to remove elements. This means ignoring deletions from augmented catalogs 
altogether, but reacting to deletion requests by just removing the appropriate 
elements from their catalogs. As in lemma 4 we will maintain a count of the 
elements alive and a count of those removed since the last cleanup operation. 
All the pieces of this process have been described above, except for the correspon- 
dence between original and augmented catalogs. Fries, Mehlhorn, and N~iher 
[FMN] have shown how to modify the van Emde Boas priority queue [BKZ] so 
as to reduce the storage to linear and allow all five operations needed by the 
ordered set partition problem to be performed in time O(log log s), where s is 
the total number of elements present in the structure. This implies that a fully 
dynamic version of fractional cascading is possible, but at the expense of increas- 
ing the cost per look-up to log log s from constant: 

THEOREM 5. I f  we allow both insertions and deletions, then a fractional cascading 
structure can be built whose size is O(s) and where a multiple look-up along a 
generalized path of length p costs O( p log d log log s + log s) in time. Both deletions 
and insertions can be handled in amortized time O(log s). 

8. General Remarks. In Part II of this paper [CG] we give a large number of 
applications of fractional cascading to query problems. In fact, our discovery of 
this technique is due to noticing that tricks bearing a certain similarity had been 
used in a number of  published algorithms [C, Co, EGS] to deal with the problem 
of iterative search. Examples are the hive-graph of [C] and the chain refinement 
scheme of lEGS]. These connections are developed more fully in [CG]. 

The most unsatisfactory aspect of our treatment of  fractional cascading is the 
handling of  the dynamic situation. Is our method optimal? Whether it is or not, 
can it be simplified to the point of being useful in practice? Even in the insertion- 
only or deletion-only cases, our techniques are more of theoretical than practical 
interest, because of the large constants involved. We also feel that we do not 
fully understand the influence of high degree vertices in G on the method (see 
also [CG] for some additional comments on this). Can fractional cascading be 
applied to graphs, such as planar graphs, of bounded average degree--or  does 
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the presence of a small but non-constant number of high degree vertices really 
destroy the sampling/propagation? 

We conclude by remarking that the philosophy of fractional cascading can be 
extended to other iterative search problems, beyond that of  searching in a linearly 
ordered catalog. The three main requirements seem to be (1) that two search 
structures M and ~ can be merged into a joint structure efficiently (spec. in linear 
space), (2) that once the position of a "key"  is known in the merged structure, 
its position in the component structures should be computable efficiently (spec. 
in constant time), and (3) that an appropriate notion of "sample" exist such that 
location of  a key in the sample allows efficient (spec. constant time) location in 
the original. We hope that this paradigm will yield useful results in other areas 
as well. 
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Appendix A. How Gaps Can Get Big. It is possible to construct a catalog graph 
with any given degree d, d -> 3, where insertion of a single record in one catalog 
ultimately propagates to many insertions into the same gap of another catalog. 
In the example we give below, we achieve secondary insertions into the same 
gap whose total number is l~(sP), where s is the size of our catalog graph and 
p is roughly log 2/log(6d).  We do not know if this is best possible. This example 
shows the need for the careful gap size counting we had to do in Section 3.1. 

Our catalog graph will consist of two parts: a multiplier and a concentrator. 
The concentrator is just a linear chain o f  k +  1 nodes, k to be determined later 
on. Across the last edge ek of this chain there is only one gap (two bridges). This 
gap overlaps 6d - 1 gaps of  the previous edge ek-~; see Figure 9 for an illustration. 
Now each of  these gaps overlaps 6 d -  1 gaps of the previous edge ek-2, and so 
on. Therefore across the first edge el there will be ( r d ) k +  1 bridges. The catalog 
of the first node contains enough additional records to bring all gaps across the 
first edge el to saturation. The total size of this structure is |  

Consider what happens when we simultaneously insert one new record in each 
of the gaps of  the first catalog. By simultaneously we mean during the same 
invocation of  stage 3 as described in Section 3.1. All gaps of e~ will split, causing 
6d insertions into each gap of the second catalog. This will cause each gap over 
e2 to overflow and reach size 12d - 1. In the next  iteration through stage 3 these 
gaps will split and will push two new records to be inserted into each gap of e3 
(becausb 1 2 d - l = 3 d + 3 d + 6 d - 1 ) .  The gaps of e3 now will reach a size of  
1 6 d -  1 and will split the next time around, yielding four new insertions into 
each gap of  ea (since 18 d - 1 = 3 d + 3 d + 3 d + 3 d + 6d - 1). This pattern continues, 
with the number of insertions into each gap doubling at each iteration. In the 
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Fig. 9. The concentrator and the multiplier. 

last splitting , 2 k secondary insertions will occur simultaneously in the one gap 
o v e r  ek. 

The job of  the multiplier is to produce in the same stage all insertions needed 
to start the above process in the concentrator. It uses a doubling graph D (1) 
having an entry node u and an exit node v, and in addition four other nodes 
arranged as in Figure 9. The catalog A, has only two records, both bridges 
delimiting the same gap. The catalog A~ has three records, again all bridges 
delimiting two gaps. The catalogs of the other nodes are easily arranged so that 
an insertion into the gap of A, causes an insertion into each of  the gaps of  Ao 
three stages later. We need a total of  about 12d + O(1) records for this. 

If  we stack up m copies of these augmented catalogs on top of each other we 
obtain D ~ a graph where an insertion into each of the m gaps of A,  will cause 
an insertion into each of the 2m gaps of A~. The multiplier is constructed by 
concatenating D r D(2) , . . . ,  D ("~, where n is chosen so that 2" = (6d)k + 1. This 
compound graph produces the grouped insertions needed to feed the concentrator. 
The total size of our catalog graph is O((6d) k) and the number of insertions into 
a single gap it produces is 2 k. This proves the bound mentioned at the beginning 
if we fix k so that s = @((6d) k) and thus completes our construction. 



162 B. Chazelle and L. J. Guibas 

References 

[BSa] 

[BKZ] 

[C] 

[CG] 

[Co] 

[FMN] 

[EGS] 

[IA] 

[GT] 

[O] 

[T] 

[VW] 

J. L. Bentley and J. B. Saxe. Decomposable searching problems I: static to dynamic transforma- 
tions. J. Algorithms, 1 (1980), 301-358. 
P. van Emde Boas, B. Kaas and E. Zijlstra. Design and implementation of an efficient priority 
queue. Math. Syst. Theory, 10 (1977), 99-127. 
B. Chazelle. Filtering search: A new approach to query-answering. Proc. 24th Ann. Syrup. 
Found. Comp. Sci. (1983), pp. 122-132. To appear in SIAM J. Comput. (1986). 
B. Chazelle and L. J. Guibas. Fractional cascading H: applications. To appear in Algorith- 
mica (1986). 
R. Cole. Searching and storing similar lists. Tech. Report No. 88, Courant Inst., New York 
University, New York, Oct. 1983. To apper in J. Algorithms. 
O. Fries, K. Mehlhorn, and St. N~iher. Dynamization of geometric data structures. Proc. 1st 
ACM Computational Geometry Symposium, 1985, pp. 168-176. 
H. Edelsbrunner, L. J. Guibas, and J. Stolfi. Optimalpoint location in a monotone subdivision. 
To appear in SIAM J. Comput. Also DEC/SRC Research Report No. 2, 1984. 
H. Imai and T. Asano. Dynamic segment intersection search with applications, Proc. of 25th 
FOCS Sumposium, 1984, pp. 393-402. 
H. N. Gabow and R. E. Tarjan. A linear-time algorithm for a special case of disjoint set 
union. Proc. of 24th FOCS Symposium, 1983, pp. 246-251. 
M. H. Overmars. The design of dynamic data structures. PhD Thesis, University of Utrecht, 
The Netherlands, 1983. 
R. E. Tarjan. Amortized computational complexity. SIAM J. Alg. Disc. Meth., 6 (2) (April 
1985), 306-318. 
V. K. Vaishani and D. Wood. Rectilinear line segment intersection, layered segment trees, 
and dynamization. J. Algorithms, 3 (1982), 160-176. 


