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Edge-Skeletons in Arrangements with Applications 

H. Edelsbrunner 1'2 

Abstract. An edge-skeleton in an arrangement A(H) of a finite set of planes in E 3 is a connected 
collection of edges in A(H). We give a method that constructs a skeleton in O(v/n log n) time per 
edge. This method implies new and more efficient algorithms for a number of structures in computa- 
tional geometry including order-k power diagrams in E 2 and space cutting trees in E 3. 

We also give a novel method for handling special cases which has the potential to substantially 
decrease the amount of effort needed to implement geometric algorithms. 

Key Words. Arrangements of planes, Power diagrams, Computational geometry, Asymptotic com- 
plexity, Dynamic data structures, Perturbation 

1. Introduction. So-called (order-k) power diagrams in E 2 [A, IIM] and three- 
dimensional space cutting trees in E 3 [YDE, DE, EH] are structures designed for 
the algorithmic solution of several geometric problems (see Sections 5 and 6 for 
definitions of these notions). Once built, power diagrams can be used to find k 
nearest neighbour queries in the Laguerre metric, compute the area covered by at 
least k of some n given discs, etc. Space cutting trees in E 3 support a rather 
broad class of three-dimensional intersection queries [DE] including the following 
type: 

given a set of n points in E 3, determine how many or which are contained 
in a query tetrahedron. 

The construction of both structures, and a few related ones, is non-trivial and 
only trivial and strikingly inefficient algorithms are known. 

This paper demonstrates an algorithm that constructs the order-k power 
diagram for n circles in E 2 in O(sk(n)v/n log n) time and O(n) extra storage, 
where sk(n ) is the maximal number of regions that can occur in such a diagram. 
When all circles degenerate to points then the diagram is also known as the 
k-order Voronoi diagram. In this case, sk(n ) = O(k(n - k)), and the algorithm 
takes O(knv~ log n) time which improves the result of [L] who needs O(k2n log n) 
time and storage. (In fact, the storage is improved for all k, and the time is 
improved whenever k = ~o(fn-).) 

The trivial method for constructing a space cutting tree (as described in [YDE]) 
for n points in E 3 takes O(n 7) time and O(n) storage. We improve on this result 
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with an algorithm that takes O(t2(n))  time and O(n)  storage, where t (n)  is a 
poorly-understood function counting the number of edges in a combinatorial 
structure. The only bounds known for t (n)  are O(n 3) and ~2(n log n). 

The results mentioned above are applications of a general method that com- 
putes so-called skeletons in arrangements of planes in E 3. We briefly sketch these 
concepts: 

a set H of n planes in E 3 dissects the space into a cell complex called the 
arrangement A(  H )  of H. 

A ( H )  consists of various /-dimensional faces, for 0 < i < 3, called cells (i = 3), 
facets (i = 2), edges (i = 1), and vertices (i = 0). 

a subset E of edges in A ( H )  defines a skeleton if the union of their closures 
is connected. 

The connection between skeletons and order-k power diagrams relies on a 
geometric transformation that maps circles in E2 into planes in E 3. The diagram 
can then be obtained by vertical projection of a particular skeleton of the 
arrangement onto a horizontal plane. A similar connection exists between skele- 
tons and space cutting trees: planes used to build such trees correspond by 
duality to points of particular skeletons in a dual arrangement. 

Sections 2 and 3 describe an algorithm that computes a skeleton edge by edge 
with an effort of O ( f n  log n) time per edge. The algorithm is general in the sense 
that it does not depend on the particular skeleton; in principle, it can be used to 
construct any skeleton. Section 4 gives a new method for coping with degenerate 
cases like four planes intersecting in a common point, etc. We believe that the 
method can cut down the effort in implementing many known geometric al- 
gorithms. 

How power diagrams correspond to skeletons in arrangements is explained in 
Section 5. Section 6 elaborates on the construction of two planes which cut two 
point-sets into respective balanced quaters; the method finds a skeleton in a dual 
arrangement. Finally, Section 7 offers a discussion of the contributions. 

2. Skeletons and Eulerian Tours. This section gives formal definitions of 
arrangements and skeletons, and elaborates on the construction of eulerian tours 
in directed graphs which correspond to skeletons. 

Let H be a finite set of non-vertical planes in E 3, that is, each plane in H 
intersects the x3-axis in exactly one point. For a plane h: x 3 = ax 1 + bx 2 + c, we 
define 

h + : x  3 > a x  l + b x  2 + c ,  and 

h -  : x 3 < ax I + bx 2 + c. 

A point p is said to be above, on, below h if h +, h, h -  contains p, respectively. 
H dissects E 3 into a cell complex called the arrangement A ( H )  of H. A face f is 
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a m a x i m a l  set such that, for each h in H,  f is contained in h +, h, or h - .  If  the 
affine hull a of  f is k-dimensional  2, for 0 < k < 3, then f is called a cell, facet, 
edge, vertex of A(H),  for k = 3,2, 1,0, respectively. Not ice  that  all faces are 
relat ively open  and that  no two faces intersect. Formulas  for the maximal  n u m b e r  
of  faces in an a r rangement  of n planes are classical results in the combinator ia l  
l i terature  [G, AW, etc.]: 

PROPOSITION 2.1. 

+ n + l  

vertices. 

Let H be a set of  n planes in E 3. A(H)  contains at most  

cells, 3 ( ; )  + 2(2 ) + n facets, 3(3 ) + ( 2 )  edges, and (~) 

T h e  uppe r  bounds  of Proposi t ion 2.1 are tight, and they are realized if A(H)  is 
simple, that  is, if any three planes of H intersect in a c o m m o n  point  and no four  
p lanes  do so. Two  faces are said to be incident if one is contained in the closure of 
the other,  and  the dimensionali t ies of  their affine hulls differ by  one. The  
m a x i m u m  n u m b e r  of incidences is again realized if A(H)  is simple. In this case, a 
vertex,  edge, facet is incident upon  6 edges, 4 facets, 2 cells, respectively. 

Let  E be a subset  of edges in A(H). S(E)  = {x ~ E3lx E cle 3, e ~ E} is 
t e rmed  a skeleton of A(H)  if it is connected.  The  edges and vertices of S(E)  are 
the edges and  vertices of  A(H)  contained in S(E). We adopt  the convent ion that  
each  u n b o u n d e d  edge of S ( E )  is incident  upon  a vertex at infinity. S ( E )  defines 
in a na tura l  way  a digraph G(N, A) termed the skeleton graph of E or of S ( E ) :  

the set N of nodes stands in one- to-one correspondence  with the set of 
vertices of  S(E). A directed arc a = (v, w) is in A if E contains  an edge 
incident  upon  the vertices (corresponding to) v and w. 

W e  say that  arc a leads f rom its origin v to its destination w, that  v and w are 
adjacent, and  that  a is an incoming (outgoing) arc of w (v). The number  of  
i ncoming  (outgoing)  arcs of some node  v is called the in-degree d-(v)  (out-degree 
d+(v)) ofv. By definition, arc a = (v, w) is in A if and only if - a  = (w, v) is in 
A; consequent ly  d - ( v ) =  d+(v), for every node  v in N. A sequence T =  
(a  0 . . . .  ak)  of  arcs in A is a path if the origin of  a i coincides with the dest inat ion 
of  a i_  1, for  1 < i < k, and T is a tour if fu r thermore  the origin of  a 0 equals the 
des t ina t ion  of  a k and a i ~ aj  if i r j .  T is an eulerian tour of G if it is a tour  and 
conta ins  each arc of  A. A necessary and sufficient condi t ion for the existence of 
an euler ian tour  is d e g - ( v )  = deg+(v) ,  for  each node  v which is trivially true for 
any  skeleton graph.  We thus conclude: 

OBSERVATION 2.2. There  is an eulerian tour  in every skeleton graph. 

The set of points x which can be described as x = Eaip i, with pi ~ f and Zai = 1 is the affine hull 
of f. 
-'The affine hull of f is k-dimensional if it can be described as the intersection of 3 - k but no fewer 
planes. 
3c/e is an abbreviation for the closure of e. 
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On a high level of understanding, the algorithm of Section 3 which constructs a 
skeleton traverses an eulerian tour of the corresponding skeleton graph G. Since G 
is not completely known before the end of the traversal, the traversal of the 
eulerian tour must work with information local to a visited node and its incoming 
and outgoing arcs. One such algorithm is the traversal of a graph in depth-first 
search. A different method which avoids the use of recursion is described in the 
remainder of this section. To aid the presentation, we call an arc a untouched 
(w.r.t. the running algorithm) if neither a nor - a have been traversed. Arc a is 
touched if - a  has been traversed but not a, and a is forbidden if a has been 
traversed. 

Algorithm 1 (Eulerian tour). Initially, all arcs of A are untouched and v is an 
arbitrary node in N. 

while not all outgoing arcs of v are forbidden do if there is an untouched 
a r c a  = ( v , w )  then Traverse a, that is, set v := w. else Let a = ( v ,w)  be the 
non-forbidden arc with origin v such that a has been touched the latest, and 
traverse a, that is, set v .'= w. endif endwhile. 

We argue about correctness: 

LEMMA 2.3. Algorithm 1 traverses an eulerian tour of the skeleton graph 

G = ( N , A ) .  

PROOF. Evidently, Algorithm 1 determines a path T in G. Also each arc is in T 
at most once, and T is a tour since d - ( v )  = d+(v), for each node v, guarantees 
that T ends in the node where it starts. By the following argument, T is eulerian if 
no touched arc remains: 

Call an arc a in A saturated if a and - a  are forbidden. Suppose that no 
arc in A remains touched and that T fails to be eulerian. Then there is a 
node v with saturated and untouched incoming arcs which contradicts the 
control flow of Algorithm 1. 

Let now a be the last arc in T which is not saturated, so - a  is not in T, and if 
arc b follows a in T then - b  is in T. Let v be the destination of a. By the 
control flow of Algorithm 1, an outgoing arc b of v can follow a in T only if b 
was untouched at the time of its traversal; so also - b follows a in T. Since this is 
true for each outgoing arc of v following a in T, T ends in v; a contradiction 
since - a  is a non-forbidden outgoing arc of v. [] 

To turn Algorithm 1 into an algorithm that actually constructs a skeleton, we 
need a procedure that distinguishes edges of the skeleton from other edges in the 
arrangement (this procedure turns the general method into one that computes a 
particular skeleton), and a procedure that traverses arcs (note that arcs are given 
only implicitely by the planes). 
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3. Constructing Skeletons. This section details the construction of a skeleton 
without addressing the problem of recognizing edges of the desired skeleton. The 
description is necessarily incomplete as several components of the algorithm 
depend on the particular skeleton to be built; Sections 5 and 6 specify such 
components which lead to methods for computing order-k power diagrams in E 2 
and dissecting planes in E 3. In this section, we assume that the arrangement 
considered is simple; the general case is treated in Section 4. 

The algorithm makes use of two data structures that support the various 
actions taken: 

1. The (currently known part of the) skeleton is stored in an adjacency structure 
ADJ of the corresponding skeleton graph. A dictionary is exploited to keep 
this representation augmentable. 

2. The set of planes is organized in a data structure PEN which supports 
so-called penetration queries, insertions, and deletions. 

We consider the first structure. Let G = (N, A) be the skeleton graph which is not 
completely known before the computation ends. At any point in time, we let N '  
denote the set of nodes visited by the algorithm, and A' = N '  x N. Only nodes in 
N '  and arcs in A' are stored in ADJ. Note that not every arc in A' is also 
traversed by the algorithm: An arc in N '  • (N - N ' )  is necessarily untouched, 
while an arc in N '  • N '  can be of any type. For this reason, untouched, touched, 
and forbidden arcs are carefully distinguished. We proceed with the detailed 
specification of ADJ (see Fig. 1): 

(a) Each node v of N '  is stored in a record which contains an array of six 
elements, each capable of storing one outgoing arc of v (every vertex in a 
simple arrangement is incident upon at most six edges of any skeleton). 

(b) Each arc a of A' holds its status (untouched, touched, or forbidden), if it is 
touched, then it indicates the number of arcs with the same origin which 
became touched before a, and unless it is untouched it stores a pointer to its 
destination. 

(c) Each node stores the three planes which define the corresponding vertex, and 
each arc stores the two planes which contain the corresponding edge. 

(d) All records representing nodes in N '  are organized in a dictionary that 
discriminates, say, by sets of containing planes. 

Fig. l(b) illustrates ADJ for the incomplete skeleton graph shown in (a): 
forbidden, touched, and untouched arcs are indicated by full, dotted, and broken 
lines, respectively. The adjacency lists with sets of containing planes omitted are 
displayed in Fig. l(b). Clearly, the status of an arc can be changed in constant 
time. Furthermore, given a touched or forbidden arc a, arc - a  can be found in 
constant time since it is one of at most six outgoing arcs of the destination of a. 
By standard implementations of a dictionary, a node, specified by the three planes 
which intersect at the corresponding vertex, can be found or inserted into ADJ in 
logarithmic time (see [K] or [AHU]). 

The second data structure PEN supports penetration queries defined as follows: 
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Fig. 1. Representing a skeleton graph. (a) Incomplete skeleton graph. (b) Adjacency lists. 

Let H be a set of n planes that define n open halfspaces with non-empty 
common intersection T. A query is specified by a point p in T and a 
non-zero vector v, and asks for a plane that is hit first as p moves in the 
direction of v. 

[EM] call this the penetration search problem and provide a solution that requires 
O(n) storage, O(log n) time for a query, and O(n log n) time for its construction. 
Applying a general dynamization technique of [MO, vLW] yields 

PROPOSITION 3.1. For a current number of n halfspaces, there is a data structure 
that takes O(n) storage and o(~fn log n) time for a penetration query and an 
insertion or deletion of a halfspace. 

We remark only marginally that a technique of [GK] can be used to speed up 
queries, insertions and deletions to O(~/~log n ) which costs O(n log log n) stor- 
age, however. 

A formal description of the algorithm is given below. Without confusion, little 
distinction is drawn between vertices (edges), corresponding nodes (arcs), and 
records which represent them in storage. On a high level of understanding, the 
algorithm traverses an eulerian tour of G = (N, A). 

The determination of sets of planes that contain vertices or edges deserves no 
mention in the outline; in all cases, it is either trivial or external to the algorithm. 
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Algorithm 2 (constructing skeletons). Initially, find some vertex v of S(E)  
and all incident edges in E. Add the corresponding node v and all outgoing 
arcs of v (as untouched arcs) to ADJ. Construct PEN for all open 
halfspaces which are bounded by a plane in H and contain v. 

while v has an untouched or touched arc do 
if no arc of v is untouched then 

Mark the latest touched arc (v, w) as forbidden. 
else (v has an untouched arc} 

Mark  any untouched arc a of v as forbidden. Pose a penetration 
query for point v and the vector defined by a; this yields a plane 
which intersects the line that contains the edge corresponding to a in 
the destination w of a. 
if w is not yet in ADJ  then 

Determine the outgoing arcs of w and add w and these arcs to 
ADJ. 

endif; 
Change the status of - a  to touched and record w as the destination 
of a. 

endif; 
Update  PEN so that w is in the common intersection and v is not, that is, 
delete (insert) the unique open half-space that is bounded by a plane 
through w (v)  and which contains v (w). Traverse (v, w), that is, set 
U : ~ W .  

endwhile. 

The complexity of the algorithm depends heavily on the complexity of its 
various components.  Let n be the cardinality of H and m the one of E. Then we 
define 

Si(n ) ( T l ( n ) ) - - .  the amount of storage (time) needed for finding an initial 
vertex, 

Sic(n) (Tt; (n)) . . .  the storage (time) required for determining all edges in E 
incident to some given vertex, 

Sp(n) . . .  the storage taken by PEN, and 
Tp(n) . . .  the maximal time needed for a query, insertion, or deletion in PEN. 

The construction of one arc including its destination costs O(log m) time for 
manipulat ions in ADJ, TE(n ) time for finding new outgoing arcs, and Tp(n) time 
for a query, an insertion, and a deletion in PEN. Since ADJ  takes only O(m) 
storage, this yields 

LEMMA 3.2. Let H be a set of n planes in E 3, with A(H)  simple, and let S(E)  
be a skeleton of m edges in A(H).  S(E)  can be constructed in O(m + Si(n) + 
S>:(n) + Sp(n)) storage and O(TI(n ) + re(log m + TE(n ) + Tp(n))) time. 
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By Proposition 3.1, Sp(n)  = O(n )  and Tp(n)  = o(fn- log n) is achievable. In 
all applications treated in this paper, we also have SE(n ) and TE(n ) constant, and 
S l ( n )  = O(n) .  In this case, the complexities are O ( m  + n) storage and O(T~(n)  
+ mfn- log n) time. 

4. Coping with Degenerate Cases. We now come back to the general case which 
deals with arbitrary, so possibly non-simple arrangements. The degeneracy that 
hurts Algorithm 2 the most occurs if more than three planes intersect in a 
common point. We remove all degeneracies artificially by simulation of a con- 
trolled perturbation: 

the parameters of each plane are changed into polynomials in e, with e a 
positive real number that remains without exact specification. 

We simulate the construction of the perturbed arrangement resting on the choice 
of e which must be sufficiently small but can be arbitrarily small. 

Let H = {h 0 . . . .  h,,_l) be a set of non-vertical planes in E 3, with A ( H )  not 
necessarily simple. We derive a simple arrangement A ( H ( e ) )  which retains all 
important combinatorial properties of A(H):  

For hi:  x 3 = a ix  1 + bix 2 + c i in H, define hi(e): xa = a~x I + blx 2 + cl, 
23i+ 1 

with a ~ = a  t + e 2~ 2, b~ = b i + e , a n d  c ~ = c  i +  e 2"', for O < i < n -  1. 
Then H(e )  = (hi(e)]O < i < n - 1). 

Notice that the amount of perturbation experienced decreases double-exponen- 
tially with increasing index. We show 

LEMMA 4.1. A ( H ( e ) )  is simple if e is small enough. 

PROOF. We first argue that any three planes intersect in exactly one point, then 
we show that no four planes have a point in common. 

Three planes h~(e), hi(e), hk(e ) intersect in a common point if and only if their 
normal vectors are linearly independent, that is, if and only if 

( a; b i - 1  

det a~ bj - 1  4=0, 

a;  b 2 - 1 

which is trivially true if e is sufficiently small. 
Four planes with indices i, j ,  k, l intersect in a common point only if 

(,) ( a~ b~ c" - 1  
t ! ! 

det aj bj c) - 1  
a;  bl 

a~ b~ 

= 0  
t --1 c k 

c; - 1  

which is impossible for small enough e. [] 
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(a) (b) 

Fig. 2. Perturbing a non-simple arrangement. (a) Degenerate case. (b) Perturbed arrangement. 

To substantiate that H(e) is a useful substitute for H, we demonstrate that 
A(H(e)) and A(H) are combinatorially related in a strong sense, and that the 
simulation of A(H(e)) is inexpensive. Some notation is introduced first. 

A face f in A(H) defines a partition of H into sets Hf + = (hlf  in h+),  
Hi = (hlf  in h} and Hf = (hlf  in h - ) .  Similarly, a face g in A(H(e)) defines 
a partition of H into sets H i ,  Hg, H~ such that h is in H~,  Hg, H~- if g is in 
h(e) +, h(~), h(e)- ,  respectively. Now g is in the perturbation off if Hf is minimal 
such that 

Hf- _ H g ,  H f  c H~-, and He_ Hf. 

Intuitively, the perturbation of f consists of all faces in A(H(e)) which collapse 
into f when e approaches zero. We illustrate the concept for the two-dimensional 
arrangements of lines shown in Fig. 2. All bounded faces of the perturbed 
arrangement (Fig. 2(b)) are in the perturbation of the only vertex in the non-per- 
turbed arrangement (Fig. 2(a)). The perturbations of all other faces have cardinal- 
ity one. Tedious but otherwise straightforward arguments show 

OBSERVATION 4.2. Let H be a finite set of planes in E 3, and let e > 0 be 
sufficiently small. 

(i) The perturbations of faces in A(H) define a partition of the faces in 
A(H(,)). 

(ii) Faces f l  and f2 in A(H) are incident if and only if there are faces gl and 
g2 in the perturbations of f l  and f2, respectively, with gl and g2 incident. 

By Observation 4.2(i), the following definition makes sense: Let E' be some set 
of edges in A(H(e)). An edge e of A(H) is in the concentration E of E' if there is 
an edge of E' in the perturbation of e. By Observation 4.2(ii), S(E) is a skeleton 
in A(H) if S(E') is one in A(H(e)). 

The simulation of A(H(s)) in the construction of a skeleton S(E) in A(H) 
consists of three parts: 

1. Define a skeleton S(E') in A(H(e)) with E the concentration of E'. 
2. Simulate computations in A(H(e)) although e remains without exact specifi- 

cation. 
3. Obtain S(E) from S(E'). 
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Part 1 depends on the particular application and will not be discussed in this 
section. Part 3 is straightforward and can be performed by repeated eliminating 
or merging of vertices and edges. The only operations of Algorithm 2 affected by 
the perturbation of A(H)  are the penetration queries which now yield unique 
answers since A(H(e)) is simple. The simulation can be performed on the basis of 
the possibility to choose e arbitrarily small, but positive: 

The only primitive operation needed to answer penetration queries involves 
a plane (say h,(e)) and a vertex v (the intersection of three planes, say 
hi(e)), hk(e ), hi(e)), and decides whether v is above or below hi(e); by 
perturbation, hi(e ) cannot contain v. To decide the case, however, it is 
enough to determine whether the determinant in (* )  is positive or negative. 
This determinant is a polynomial in e and the decision can be based on the 
sign of the first non-zero coefficient if the terms are ordered in increasing 
exponents. (Details of the method will appear elsewhere.) 

Such a decision can still be done in constant time although some care is 
necessary to keep the constant small. The increase in storage is negligible since a 
polynomial can be constructed from three indices. 

We now recalculate the requirements for the construction of a skeleton (see 
Lemma 3.2) in an arrangement A(H) of n planes. We assume that the skeleton is 
defined for any finite set of nonvertical hyperplanes, that is, E = E(H),  and that 
E(H)  is the concentration of E(H(e)) (which is true for all applications in this 
paper). Recall that S,(n), Tt(n ), Se(n ), TE(n ), Sp(n), and Tp(n) denote the 
requirements in storage and time for finding an initial vertex, determining 
incident edges, and processing penetration queries or insertions and deletions of 
half spaces. 

THEOREM 4.3. Let H be a set of n planes in E 3, S(E(H))  a skeleton in A(H),  
and re(n) the maximum cardinality of E ( H ) ,  over all sets H of n planes. 
S( E( H)) can be constructed in O(m(n) + Sl(n ) + SE(n ) + Sp(n)) storage and 
O(T1(n ) + m(n)(logm(n) + TE(n ) + Tp(n))) time. 

Again, we remark that for all applications in this paper, the requirements are 
O(m(n)) storage and O(m(n) fn  log n) time. 

5. Order-k Power Diagrams. Let s be a circle with center c = ( q ,  c2) and radius 
r _ 0 in E 2. For p = (Pl ,  P2) a point in E 2, ds(p) = (Pl - q)2  + (P2 - c~) 2 
- r 2 is called the power or the Laguerre distance ofp from s. If s is a point then 
ds (p )  is the square of  the Euclidean distance between s and p. If p is outside s 
then d , ( p )  is also the length squared of the segment on a tangent through p 
which connects p and the point of s where the tangent touches s. 

For S a set of n circles in E 2 and S '_c  S, d o m ( S ' ) =  { x ~ E 2 L d , ( x ) <  
dl(x ), s ~ S', t ~ S - S '}  is termed the domination of S'. If we define dom(s, t) 
= {x ~ E2ld,(x) < dr(x) ) then 

dom(S ' )  = ["] dom(s,  t ) 
s ~ S ' ,  t ~ S -  S '  
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and d o m ( S ' )  is a convex polygon since dora(s, t) is a halfplane. The collection of 
all non-empty  dominations for subsets of S with cardinality k (1 < k < n - 1) 
define the order-k power diagram k-PD( S) of S. 

To construct k-PD(S), we use a geometric transform E which maps each circle 
in S into a plane in E 3 and relates k-PD(S) with some particular skeleton in the 
arrangements.  More specifically, there is a skeleton such that k-PD(S) can be 
obtained by projecting it vertically onto the plane x 3 = 0: 

for s a circle with center c -:-: ( q ,  c2) and radius r, E maps s into the plane 
E(s) :  X 3 = 2 C l X  1 -t- 2c2x 2 + ( t  .2 - c 2 - c22). 

Intuitively, E identifies E 2 with the plane x 3 = 0 in E 3, and maps s into the 
plane E(s) which intersects the paraboloid U: x 3 = x~ + x 2 in the  vertical 
projection of s onto U. For a point p = (Pl ,  P2) in E 2 let Pu = (Pl ,  P2, p2 + p~) 
and PEck) = (Pl, P2,2clpl + 2c2p2 + ( r2 - c2 - ca ) )be  the vertical projections 
of p onto U and E(s), respectively. Then we have 

OBSERVATION 5.1. Let s and p be a circle and a point in E 2. Then ds(p) equals 
the (vertical) distance between Pv  and PF.(sr 

Define H =  E ( S ) =  {E(s)ls ~ S}, and for any point p in E 3, let 
a(p), o(p), b(p) denote the number  of planes h in H with p in h- ,  h, h +, 
respectively. Obviously, a ( p )  + o ( p )  + b ( p )  = n, the cardinality of H. Without 
details we state 

OBSERVATION 5.2. Let S be a set of n circles in E 2, H = E(S) ,  and k some 
integer with 1 < k < n - 1. 

(i) The set E k of edges in A(H) with a(p) < k - 1 and b(p) < n - k - 1 
define a skeleton S(Ek) in A(H). 

(ii) The vertical projection of S(Ek) onto x 3 -- 0 yields k-PD(S). 

We refer to [A, ES] for details on the correspondence between S(Ek) and 
k-PD(S). To construct Sk(E), we use Algorithm 2 outlined in Section 3 and 
remove degeneracies by the methods of Section 4. This allows us to assume that 
o(p) = 2, for any point p of any edge in A(H), and that any fixed (and 
non-perturbed)  line in E 3 intersects the planes of H in n distinct points. To 
complete the specification of Algorithm 2 we demonstrate 

1. how the edges in S(Ek) incident upon a vertex v in S(Ek) can be determined 
in constant time, if one incident edge e and the three planes f ,  g, h in H that 
define v are given, and 

2. how an initial vertex of S(Ek) can be found in linear time. 

Task  1 is trivial since f ,  g and h intersect in three lines giving rise to six edges 
incident upon vl Among the six edges, three are below one of f ,  g, h, and the 
other three have none of the planes above them. The two edges in the same class 
with e are in S(E) .  
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The remainder of this section elaborates on the second task and concludes with 
the main result. To compute an initial vertex of S(Ek), we use 

OBSERVATION 5.3. Let S, H, and S(Ek) be as defined above and let p be a 
point  in E 3. p is a vertex of S(Ek) if and only if o(p) = 3 and a(p) = k - 1 or 
k - 2 .  

Intuitively, the algorithm computes a line, intersects it with all planes, and finds a 
point  close to a desired vertex. This vertex is then determined by setting up a new 
line through the point. 

Algorithm 3 (Initial vertex for S(Ek) ). 
Step 1: Let h* = E(s*) such that s* in S has the rightmost center 

c = (Q, c2) (that is, c 1 is maximal). 
Step 2: Let g be the plane x 2 = 0, define line g =  h* C~ g, and intersect f 

with all planes in H -  {h*}. {Comment: f is the steepest line in 
{h C~ glh ~ H}, therefore a(pi) = i - f and o(pi) = 2, if 
P l . . . .  P , -1  is the sequence of intersections on f ,  sorted by decreasing 
xl-coordinates. } 

Step 3: Determine Pk and plane h ~ with Pk = fC~ h ~ (Comment: Pk is 
contained in an edge of S(Ek) supported by h* n h~ 

Step 4: Intersect h* f3 h ~ with all other planes of H and find the intersection 
v closest to Pk. {Comment: v is a vertex of S(Ek). } 

O(n) time suffices for all four steps of Algorithm 3. By Theorem 4.3, we 
conclude 

THEOREM 5.4. Let S be a set of n circles in E 2, and define mk(n ) as the 
max imum number  of edges in the order-k power diagram of n circles. There is an 
algorithm which constructs k-PD(S) in O(mk(n)) storage and O(mk(n)~/-n log n) 
time. 

For  the case k = 1 or n - 1, E~ is the set of edges of a convex polyhedron in 
E 3 which can be constructed in O(n log n) time [A, PH], thus outperforming our 
method. However, if k > 1, the outlined algorithm is the first one that avoids the 
expensive construction of the arrangement A(H)  (H = E(S)) [EOS], which takes 
O(n 3) time and storage. Unfortunately, no good upper bounds on mk(n ) are 
presently known except for 

ml (n  ) = n which is trivial, 

m2(n ) = 3n - 6 lESt], and 

mk(n ) = O(nk 5) [CP]. 

In the special case when S is a set of points in E 2, k-PD(S) is known as the 
order-k Voronoi diagram k-VOD(S) of S [SH]. For this case mk(n ) = 
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O(k(n  - k)) and an algorithm that constructs k-VOD(S) in O(k2n) storage and 
O(kZn log n) time is known [L]. Our algorithm is more space efficient and 
asymptotically faster unless k = O(v~-). 

6. Quartering Separated Point-Sets in E 3. For the sake of this section's defini- 
tions we introduce the concept of a directed plane h in E 3 given by a normal 
vector v and some real number a, that is, h consist of all points x with 
(x,  V) = ct. h p : (x, v) > ot and h": (x, v) < a are called the positive and 
negative sides of h, respectively, h is said to bisect a set P of n points in E 3 if 

max( lP  n hPl, ]P n h"[} < n/2.  

Two sets P and Q in E 3 are said to be separable if P c_ h p and Q _c h" for  
some directed plane h. [YDE] show 

PROPOSITION 6.1. Let P and Q be separable sets of m and n points in E 3, 
respectively. There are directed planes g and h which both bisect P and Q such 
that max{lP n gP n hP[, [P n gP n hn[, ]P n gn N hP[, 1P n gn n h"[) < m/4,  
and max{I Q n gP n hP[, [Q n gP N hn[, [Q N g" n hPl, [Q n g" N h"[} < n/4~ 

A straightforward perturbation argument shows that g and h can be restricted 
to planes f (termed spanned bisectors) which satisfy 

(i) I P n f l  > l a n d l Q n f l > - l , a n d  
(ii) not all points in (P u Q) n f are collinear. 

For convenience, we assume that no three points of P U Q are collinear; in this 
case, (ii) is equivalent to requiring that f contains at least three points. Further 
justification of this assumption is provided by the methods of Section 4 which 
simulate simplicity if degeneracies occur. 

We now develop a correspondence between all spanned bisectors of P and Q 
and the vertices of a particular skeleton in an arrangement A(G U H) dual to 
P u Q. Sets G and H of planes in E 3 can be obtained by means of the following 
transform D: 

For p = (Pl, P2, P3) a point in E 3, D(p) is a plane defined by 
x3 = 2paxl + 2 p 2 x 2 - P 3 -  Conversely, we write D ( g ) =  D-l (g) ,  for a 
non-vertical plane g. Then G = D ( P )  (=  ( g [ g = D ( p ) , p  ~ P)) and 
H = D(Q). 

A ( H  U G) is dual to P u Q because of 

OBSERVATION 6.2. Let p be a point and h a non-vertical plane in E 3. Then p is 
in h +, h, h -  if and only if point D(h) is in D(p)  § D(p),  D(p) - ,  respectively. 

For any point q in E3,we define ac(q),  oc(q), bc(q) (all(q),  oH(q), bH(q) ) as 
the number of planes g in G (H)  with q in g ,  g, g§ respectively. We now have 
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OBSEgVATION 6.3. Let h be a non-vertical plane in E 3 and write q = D(h). h is 
a spanned bisector of P and Q if 

(i) max(ac(q) ,  bo(q) } <_ [G/Z[ and oo(q) >__ 1, 
(ii) max(al l (q) ,  bH(q) ) < I///21 and on(q) >_ 1, and 

(iii) oo(q) + on(q) > 3. 

We now show that conditions (i) and (ii) define a skeleton in A(G U H) if the 
sets of planes, respectively their dual sets of points, satisfy the following condi- 
tions: 

1. IPI and IQI are odd, and 
2. all points in P (Q) have negative (positive) xt-coordinates. 

Conditions 1 and 2 are no loss of generality by the following arguments: if IP I 
(IQI) is even then add an arbitrary point to P (Q) which does not violate 
condition 2 and the separability of P and Q; a plane bisects the new set only if it 
bisects the old one. To achieve 2, apply a suitable rotation and translation to 
P u Q .  

LEMMA 6.4. Let P and Q be separable point-sets in E 3 which satisfy conditions 
1 and 2 above, define G = D(P) and H = D(Q), and let Eo, H contain all edges 
in A(G U H) whose points q satisfy (i) and (ii) from Observation 6.3. Then 
S(EG, H) is a skeleton. 

PROOF. We first show that any plane f normal to the x2-axis intersects S(Ec, H) 
in a unique point. Define 

G/ = { f n gig ~ G} and Hf --- { f C~ gig ~ H }. 

A(G/) and A(Hf) are two arrangements of lines in f .  All lines in G/ (Hf) have 
negative (positive) slope if we use the xl-axis (x3-axis) to define the horizontal 
(vertical) direction in f .  Define the median level in A(Gu) (A(Hf)) as the set of 
points q in f which satisfy condition (i) (condition (ii)) of Observation 6.3. Since 
[Gf[ and [Hf[ are odd, both median levels are continuous functions from x I to x3, 
and they intersect exactly once since they consist of a finite number of linear 
pieces, and one monotonely decreases while the other monotonely increases. To 
trace all points of S(EG, H), move plane f continuously through the three-dimen- 
sional arrangement. Since the lines in plane f move continuously at the same 
time, the intersection of the two median levels is a continuously moving point 
which implies the connectivity of S(Ec, H)" [] 

To construct S(Eo, n) using Algorithm 2, we need to specify how an initial 
vertex can be determined, and, given a vertex v with incident edge and defining 
planes, how all edges of S(Eo, n) incident upon v can be found. The latter task is 
trivial since v is the ifftersection of exactly three planes (see Section 4). An initial 
vertex can be found by intersecting the median levels in A(G/) and A(Hf), for f :  
x 2 = 0, say (see the proof of Lemma 6.4). The determined point defines a vertex 
or an edge of S(Eo, n); in the latter case an endpoint is trivially computed in 
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linear time. By [M], there is an algorithm that intersects the two median levels in 
O([GI + [HI) time; a suboptimal method can be found in [CSY]. If we write t(n) 
for the maximum number of edges in S(EG, •), for n = IG] + [HI, then Theorem 
4.3 implies 

THEOREM 6.5. Let P and Q be separable sets of a total of n points in E 3. There 
is an algorithm that constructs S(Eo, H), with G = D(P) and H = D(Q), in 
O(t(n)~/n log n) time and O(t(n)) storage. 

From S(EG. H), a pair of planes satisfying Proposition 6.1 can be determined 
by testing all pairs of spanned bisectors which appear as vertices of S(EG, H)" We 
keep one vertex fixed and test all other vertices in sequence. If we also keep track 
of the numbers of points in the four wedges defined by the corresponding planes, 
constant time suffices for a test. The O(t(n)) bound for the needed storage can be 
improved to O(n) if, at any point in time, only two connected pieces of S(EG, ri) 
with respective n vertices are kept in storage. For each first piece t(n)/n second 
pieces are constructed and pairs of vertices are tested. This strategy builds up 
S(Ec,,~f) t(n)/n + 1 times and needs O(t2(n)) time for the various pairs of 
vertices. We conclude 

THEOREM 6.6. Let P and Q be separable sets of a total of n points in E 3. There 
is an algorithm which finds two planes g and h with at most ]P]/4 (]Q]/4) points 
of P (Q) in each open wedge in O(t2(n)) time and O(n) storage. 

The result of this section suffer from our insufficient knowledge about t(n). To 
aid future combinatorial investigations of t(n), we offer a more intuitive defini- 
tion. Let P and Q be two separable sets of points in E 3 such that IPL and IQ] are 
odd. If n = [P] + JQ[, then t(n) equals the number of spanned bisectors of P and 
Q. Clearly t(n) = O(n3), and also t(n) = f~(n log n) follows from combinatorial 
results on two-dimensional point-sets reported in [ELSS, EW]. We conjecture that 
the lower bound is closer to the truth than the trivial upper bound. 

7. Discussion. The main contribution of this paper is the introduction of the 
rather general concept of skeletons in arrangements of planes in E 3 and the 
presentation of a method that constructs skeletons. The crucial components of the 
method are, first, a local algorithm for tracing an eulerian tour in a particular 
kind of directed graphs, and second, a data structure for finding a plane that is hit 
first by a linearly moving point. The serious problems that occur with degenerate 
cases are resolved by a controlled simulation of non-degeneracy; the author 
believes that this simulation method is widely applicable in the field of geometric 
computation. 

The presented method for constructing skeletons in three-dimensional arrange- 
ments leads to new and more efficient algorithms for several problems in 
computational geometry: Section 5 demonstrates the construction of order-k 
power diagrams for sets of circles in E 2 (if all circles are congruent then the 
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diagram coincides with the order-k Voronoi diagram for the centers). The 
construction of two planes that cut two separable point-sets in E 3 into respective 
four balanced parts is described in Section 6. Along similar lines, skeletons can be 
used to solve e.g. the following related problems: 

(1) Compute the k-degree power diagram for a set of n circles in E 2, with 
1 < k _< n - 1, defined as follows: each circle s in the sets gets associated the 
region of points p such that ds(p) is the k-th smallest, for all circles. 

(2) Determine the region ofcenterpoints of a set P of n points in E 3. (A point p 
is centerpoint of P if any closed halfspace bounded by a plane through p 
contains at least In/4] points of P.) 

(3) For three sets P, Q, R of points in E 3 compute a ham-sandwich plane h, that 
is, h bisects P, Q, and R. 

By methods similar to those in Section 6, problem (3) can be solved in O(t2(n)) 
time and O(n) storage if P, Q, and R contain a total of n points and any two are 
separable from each other. Together with Theorem 6.6, this yields an O(t2(n)) 
time and linear space algorithm for the type of space cutting trees described in 
[YDE]. 
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