
Algorithmica (1986) 1:93-109 Algorithmica
�9 t986 Sprmger-Verlag New M~rk Inc.

Edge-Skeletons in Arrangements with Applications

H. Edelsbrunner 1'2

Abstract. An edge-skeleton in an arrangement A(H) of a finite set of planes in E 3 is a connected
collection of edges in A(H). We give a method that constructs a skeleton in O(v/n log n) time per
edge. This method implies new and more efficient algorithms for a number of structures in computa-
tional geometry including order-k power diagrams in E 2 and space cutting trees in E 3.

We also give a novel method for handling special cases which has the potential to substantially
decrease the amount of effort needed to implement geometric algorithms.

Key Words. Arrangements of planes, Power diagrams, Computational geometry, Asymptotic com-
plexity, Dynamic data structures, Perturbation

1. Introduction. So-called (order-k) power diagrams in E 2 [A, IIM] and three-
dimensional space cutting trees in E 3 [YDE, DE, EH] are structures designed for
the algorithmic solution of several geometric problems (see Sections 5 and 6 for
definitions of these notions). Once built, power diagrams can be used to find k
nearest neighbour queries in the Laguerre metric, compute the area covered by at
least k of some n given discs, etc. Space cutting trees in E 3 support a rather
broad class of three-dimensional intersection queries [DE] including the following
type:

given a set of n points in E 3, determine how many or which are contained
in a query tetrahedron.

The construction of both structures, and a few related ones, is non-trivial and
only trivial and strikingly inefficient algorithms are known.

This paper demonstrates an algorithm that constructs the order-k power
diagram for n circles in E 2 in O(sk(n)v/n log n) time and O(n) extra storage,
where sk(n) is the maximal number of regions that can occur in such a diagram.
When all circles degenerate to points then the diagram is also known as the
k-order Voronoi diagram. In this case, sk(n) = O(k(n - k)), and the algorithm
takes O(knv~ log n) time which improves the result of [L] who needs O(k2n log n)
time and storage. (In fact, the storage is improved for all k, and the time is
improved whenever k = ~o(fn-).)

The trivial method for constructing a space cutting tree (as described in [YDE])
for n points in E 3 takes O(n 7) time and O(n) storage. We improve on this result

1 Institutes for Information Processing, Technical University of Graz, Schiesstattgasse 4a, A-8010 Graz,
Austria.
2Current address: Department of Computer Science, University of Illinois, 1304 West Springfield
Avenue, Urbana, IL 61801, USA.

Received January 12, 1985; revised October 25, 1985, communicated by B. Chazelle.

94 Edelsbrunner

with an algorithm that takes O(t2(n)) time and O(n) storage, where t (n) is a
poorly-understood function counting the number of edges in a combinatorial
structure. The only bounds known for t (n) are O(n 3) and ~2(n log n).

The results mentioned above are applications of a general method that com-
putes so-called skeletons in arrangements of planes in E 3. We briefly sketch these
concepts:

a set H of n planes in E 3 dissects the space into a cell complex called the
arrangement A(H) of H.

A (H) consists of various /-dimensional faces, for 0 < i < 3, called cells (i = 3),
facets (i = 2), edges (i = 1), and vertices (i = 0).

a subset E of edges in A (H) defines a skeleton if the union of their closures
is connected.

The connection between skeletons and order-k power diagrams relies on a
geometric transformation that maps circles in E2 into planes in E 3. The diagram
can then be obtained by vertical projection of a particular skeleton of the
arrangement onto a horizontal plane. A similar connection exists between skele-
tons and space cutting trees: planes used to build such trees correspond by
duality to points of particular skeletons in a dual arrangement.

Sections 2 and 3 describe an algorithm that computes a skeleton edge by edge
with an effort of O (f n log n) time per edge. The algorithm is general in the sense
that it does not depend on the particular skeleton; in principle, it can be used to
construct any skeleton. Section 4 gives a new method for coping with degenerate
cases like four planes intersecting in a common point, etc. We believe that the
method can cut down the effort in implementing many known geometric al-
gorithms.

How power diagrams correspond to skeletons in arrangements is explained in
Section 5. Section 6 elaborates on the construction of two planes which cut two
point-sets into respective balanced quaters; the method finds a skeleton in a dual
arrangement. Finally, Section 7 offers a discussion of the contributions.

2. Skeletons and Eulerian Tours. This section gives formal definitions of
arrangements and skeletons, and elaborates on the construction of eulerian tours
in directed graphs which correspond to skeletons.

Let H be a finite set of non-vertical planes in E 3, that is, each plane in H
intersects the x3-axis in exactly one point. For a plane h: x 3 = ax 1 + bx 2 + c, we
define

h + : x 3 > a x l + b x 2 + c , and

h - : x 3 < ax I + bx 2 + c.

A point p is said to be above, on, below h if h +, h, h - contains p, respectively.
H dissects E 3 into a cell complex called the arrangement A (H) of H. A face f is

Edge-Skeletons in Arrangements with Applications 95

a m a x i m a l set such that, for each h in H, f is contained in h +, h, or h - . If the
affine hull a of f is k-dimensional 2, for 0 < k < 3, then f is called a cell, facet,
edge, vertex of A(H), for k = 3,2, 1,0, respectively. Not ice that all faces are
relat ively open and that no two faces intersect. Formulas for the maximal n u m b e r
of faces in an a r rangement of n planes are classical results in the combinator ia l
l i terature [G, AW, etc.]:

PROPOSITION 2.1.

+ n + l

vertices.

Let H be a set of n planes in E 3. A(H) contains at most

cells, 3 (;) + 2(2) + n facets, 3(3) + (2) edges, and (~)

T h e uppe r bounds of Proposi t ion 2.1 are tight, and they are realized if A(H) is
simple, that is, if any three planes of H intersect in a c o m m o n point and no four
p lanes do so. Two faces are said to be incident if one is contained in the closure of
the other, and the dimensionali t ies of their affine hulls differ by one. The
m a x i m u m n u m b e r of incidences is again realized if A(H) is simple. In this case, a
vertex, edge, facet is incident upon 6 edges, 4 facets, 2 cells, respectively.

Let E be a subset of edges in A(H). S(E) = {x ~ E3lx E cle 3, e ~ E} is
t e rmed a skeleton of A(H) if it is connected. The edges and vertices of S(E) are
the edges and vertices of A(H) contained in S(E). We adopt the convent ion that
each u n b o u n d e d edge of S (E) is incident upon a vertex at infinity. S (E) defines
in a na tura l way a digraph G(N, A) termed the skeleton graph of E or of S (E) :

the set N of nodes stands in one- to-one correspondence with the set of
vertices of S(E). A directed arc a = (v, w) is in A if E contains an edge
incident upon the vertices (corresponding to) v and w.

W e say that arc a leads f rom its origin v to its destination w, that v and w are
adjacent, and that a is an incoming (outgoing) arc of w (v). The number of
i ncoming (outgoing) arcs of some node v is called the in-degree d-(v) (out-degree
d+(v)) ofv. By definition, arc a = (v, w) is in A if and only if - a = (w, v) is in
A; consequent ly d - (v) = d+(v), for every node v in N. A sequence T =
(a 0 ak) of arcs in A is a path if the origin of a i coincides with the dest inat ion
of a i_ 1, for 1 < i < k, and T is a tour if fu r thermore the origin of a 0 equals the
des t ina t ion of a k and a i ~ aj if i r j . T is an eulerian tour of G if it is a tour and
conta ins each arc of A. A necessary and sufficient condi t ion for the existence of
an euler ian tour is d e g - (v) = deg+(v) , for each node v which is trivially true for
any skeleton graph. We thus conclude:

OBSERVATION 2.2. There is an eulerian tour in every skeleton graph.

The set of points x which can be described as x = Eaip i, with pi ~ f and Zai = 1 is the affine hull
of f.
-'The affine hull of f is k-dimensional if it can be described as the intersection of 3 - k but no fewer
planes.
3c/e is an abbreviation for the closure of e.

96 Edelsbrunner

On a high level of understanding, the algorithm of Section 3 which constructs a
skeleton traverses an eulerian tour of the corresponding skeleton graph G. Since G
is not completely known before the end of the traversal, the traversal of the
eulerian tour must work with information local to a visited node and its incoming
and outgoing arcs. One such algorithm is the traversal of a graph in depth-first
search. A different method which avoids the use of recursion is described in the
remainder of this section. To aid the presentation, we call an arc a untouched
(w.r.t. the running algorithm) if neither a nor - a have been traversed. Arc a is
touched if - a has been traversed but not a, and a is forbidden if a has been
traversed.

Algorithm 1 (Eulerian tour). Initially, all arcs of A are untouched and v is an
arbitrary node in N.

while not all outgoing arcs of v are forbidden do if there is an untouched
a r c a = (v , w) then Traverse a, that is, set v := w. else Let a = (v ,w) be the
non-forbidden arc with origin v such that a has been touched the latest, and
traverse a, that is, set v .'= w. endif endwhile.

We argue about correctness:

LEMMA 2.3. Algorithm 1 traverses an eulerian tour of the skeleton graph

G = (N , A) .

PROOF. Evidently, Algorithm 1 determines a path T in G. Also each arc is in T
at most once, and T is a tour since d - (v) = d+(v), for each node v, guarantees
that T ends in the node where it starts. By the following argument, T is eulerian if
no touched arc remains:

Call an arc a in A saturated if a and - a are forbidden. Suppose that no
arc in A remains touched and that T fails to be eulerian. Then there is a
node v with saturated and untouched incoming arcs which contradicts the
control flow of Algorithm 1.

Let now a be the last arc in T which is not saturated, so - a is not in T, and if
arc b follows a in T then - b is in T. Let v be the destination of a. By the
control flow of Algorithm 1, an outgoing arc b of v can follow a in T only if b
was untouched at the time of its traversal; so also - b follows a in T. Since this is
true for each outgoing arc of v following a in T, T ends in v; a contradiction
since - a is a non-forbidden outgoing arc of v. []

To turn Algorithm 1 into an algorithm that actually constructs a skeleton, we
need a procedure that distinguishes edges of the skeleton from other edges in the
arrangement (this procedure turns the general method into one that computes a
particular skeleton), and a procedure that traverses arcs (note that arcs are given
only implicitely by the planes).

Edge-Skeletons in Arrangements with Applications 97

3. Constructing Skeletons. This section details the construction of a skeleton
without addressing the problem of recognizing edges of the desired skeleton. The
description is necessarily incomplete as several components of the algorithm
depend on the particular skeleton to be built; Sections 5 and 6 specify such
components which lead to methods for computing order-k power diagrams in E 2
and dissecting planes in E 3. In this section, we assume that the arrangement
considered is simple; the general case is treated in Section 4.

The algorithm makes use of two data structures that support the various
actions taken:

1. The (currently known part of the) skeleton is stored in an adjacency structure
ADJ of the corresponding skeleton graph. A dictionary is exploited to keep
this representation augmentable.

2. The set of planes is organized in a data structure PEN which supports
so-called penetration queries, insertions, and deletions.

We consider the first structure. Let G = (N, A) be the skeleton graph which is not
completely known before the computation ends. At any point in time, we let N '
denote the set of nodes visited by the algorithm, and A' = N ' x N. Only nodes in
N ' and arcs in A' are stored in ADJ. Note that not every arc in A' is also
traversed by the algorithm: An arc in N ' • (N - N ') is necessarily untouched,
while an arc in N ' • N ' can be of any type. For this reason, untouched, touched,
and forbidden arcs are carefully distinguished. We proceed with the detailed
specification of ADJ (see Fig. 1):

(a) Each node v of N ' is stored in a record which contains an array of six
elements, each capable of storing one outgoing arc of v (every vertex in a
simple arrangement is incident upon at most six edges of any skeleton).

(b) Each arc a of A' holds its status (untouched, touched, or forbidden), if it is
touched, then it indicates the number of arcs with the same origin which
became touched before a, and unless it is untouched it stores a pointer to its
destination.

(c) Each node stores the three planes which define the corresponding vertex, and
each arc stores the two planes which contain the corresponding edge.

(d) All records representing nodes in N ' are organized in a dictionary that
discriminates, say, by sets of containing planes.

Fig. l(b) illustrates ADJ for the incomplete skeleton graph shown in (a):
forbidden, touched, and untouched arcs are indicated by full, dotted, and broken
lines, respectively. The adjacency lists with sets of containing planes omitted are
displayed in Fig. l(b). Clearly, the status of an arc can be changed in constant
time. Furthermore, given a touched or forbidden arc a, arc - a can be found in
constant time since it is one of at most six outgoing arcs of the destination of a.
By standard implementations of a dictionary, a node, specified by the three planes
which intersect at the corresponding vertex, can be found or inserted into ADJ in
logarithmic time (see [K] or [AHU]).

The second data structure PEN supports penetration queries defined as follows:

98 Edelsbrunner

_ 1 5 " . .

(a)

u ~ v ~ w

., . . | I-.~ 1-., 1,1
"= ~ I', i'11 I ~
13 f 0 - a S f i 7 u �9

y//, ,, ,/, v / /A v i a
Y//, % f// ~///X/~A F///~/VA

(b)

Fig. 1. Representing a skeleton graph. (a) Incomplete skeleton graph. (b) Adjacency lists.

Let H be a set of n planes that define n open halfspaces with non-empty
common intersection T. A query is specified by a point p in T and a
non-zero vector v, and asks for a plane that is hit first as p moves in the
direction of v.

[EM] call this the penetration search problem and provide a solution that requires
O(n) storage, O(log n) time for a query, and O(n log n) time for its construction.
Applying a general dynamization technique of [MO, vLW] yields

PROPOSITION 3.1. For a current number of n halfspaces, there is a data structure
that takes O(n) storage and o(~fn log n) time for a penetration query and an
insertion or deletion of a halfspace.

We remark only marginally that a technique of [GK] can be used to speed up
queries, insertions and deletions to O(~/~log n) which costs O(n log log n) stor-
age, however.

A formal description of the algorithm is given below. Without confusion, little
distinction is drawn between vertices (edges), corresponding nodes (arcs), and
records which represent them in storage. On a high level of understanding, the
algorithm traverses an eulerian tour of G = (N, A).

The determination of sets of planes that contain vertices or edges deserves no
mention in the outline; in all cases, it is either trivial or external to the algorithm.

Edge-Skeletons in Arrangements with Applications 99

Algorithm 2 (constructing skeletons). Initially, find some vertex v of S(E)
and all incident edges in E. Add the corresponding node v and all outgoing
arcs of v (as untouched arcs) to ADJ. Construct PEN for all open
halfspaces which are bounded by a plane in H and contain v.

while v has an untouched or touched arc do
if no arc of v is untouched then

Mark the latest touched arc (v, w) as forbidden.
else (v has an untouched arc}

Mark any untouched arc a of v as forbidden. Pose a penetration
query for point v and the vector defined by a; this yields a plane
which intersects the line that contains the edge corresponding to a in
the destination w of a.
if w is not yet in ADJ then

Determine the outgoing arcs of w and add w and these arcs to
ADJ.

endif;
Change the status of - a to touched and record w as the destination
of a.

endif;
Update PEN so that w is in the common intersection and v is not, that is,
delete (insert) the unique open half-space that is bounded by a plane
through w (v) and which contains v (w). Traverse (v, w), that is, set
U : ~ W .

endwhile.

The complexity of the algorithm depends heavily on the complexity of its
various components. Let n be the cardinality of H and m the one of E. Then we
define

Si(n) (T l (n)) - - . the amount of storage (time) needed for finding an initial
vertex,

Sic(n) (Tt; (n)) . . . the storage (time) required for determining all edges in E
incident to some given vertex,

Sp(n) . . . the storage taken by PEN, and
Tp(n) . . . the maximal time needed for a query, insertion, or deletion in PEN.

The construction of one arc including its destination costs O(log m) time for
manipulat ions in ADJ, TE(n) time for finding new outgoing arcs, and Tp(n) time
for a query, an insertion, and a deletion in PEN. Since ADJ takes only O(m)
storage, this yields

LEMMA 3.2. Let H be a set of n planes in E 3, with A(H) simple, and let S(E)
be a skeleton of m edges in A(H). S(E) can be constructed in O(m + Si(n) +
S>:(n) + Sp(n)) storage and O(TI(n) + re(log m + TE(n) + Tp(n))) time.

100 Edelsbrunner

By Proposition 3.1, Sp(n) = O(n) and Tp(n) = o(fn- log n) is achievable. In
all applications treated in this paper, we also have SE(n) and TE(n) constant, and
S l (n) = O(n) . In this case, the complexities are O (m + n) storage and O(T~(n)
+ mfn- log n) time.

4. Coping with Degenerate Cases. We now come back to the general case which
deals with arbitrary, so possibly non-simple arrangements. The degeneracy that
hurts Algorithm 2 the most occurs if more than three planes intersect in a
common point. We remove all degeneracies artificially by simulation of a con-
trolled perturbation:

the parameters of each plane are changed into polynomials in e, with e a
positive real number that remains without exact specification.

We simulate the construction of the perturbed arrangement resting on the choice
of e which must be sufficiently small but can be arbitrarily small.

Let H = {h 0 h,,_l) be a set of non-vertical planes in E 3, with A (H) not
necessarily simple. We derive a simple arrangement A (H (e)) which retains all
important combinatorial properties of A(H):

For hi: x 3 = a ix 1 + bix 2 + c i in H, define hi(e): xa = a~x I + blx 2 + cl,
23i+ 1

with a ~ = a t + e 2~ 2, b~ = b i + e , a n d c ~ = c i + e 2"', for O < i < n - 1.
Then H(e) = (hi(e)]O < i < n - 1).

Notice that the amount of perturbation experienced decreases double-exponen-
tially with increasing index. We show

LEMMA 4.1. A (H (e)) is simple if e is small enough.

PROOF. We first argue that any three planes intersect in exactly one point, then
we show that no four planes have a point in common.

Three planes h~(e), hi(e), hk(e) intersect in a common point if and only if their
normal vectors are linearly independent, that is, if and only if

(a; b i - 1

det a~ bj - 1 4=0,

a; b 2 - 1

which is trivially true if e is sufficiently small.
Four planes with indices i, j , k, l intersect in a common point only if

(,) (a~ b~ c" - 1
t ! !

det aj bj c) - 1
a; bl

a~ b~

= 0
t --1 c k

c; - 1

which is impossible for small enough e. []

Edge-Skeletons in Arrangements with Applications 101

(a) (b)

Fig. 2. Perturbing a non-simple arrangement. (a) Degenerate case. (b) Perturbed arrangement.

To substantiate that H(e) is a useful substitute for H, we demonstrate that
A(H(e)) and A(H) are combinatorially related in a strong sense, and that the
simulation of A(H(e)) is inexpensive. Some notation is introduced first.

A face f in A(H) defines a partition of H into sets Hf + = (hlf in h+),
Hi = (hlf in h} and Hf = (hlf in h -) . Similarly, a face g in A(H(e)) defines
a partition of H into sets H i , Hg, H~ such that h is in H~, Hg, H~- if g is in
h(e) +, h(~), h(e)- , respectively. Now g is in the perturbation off if Hf is minimal
such that

Hf- _ H g , H f c H~-, and He_ Hf.

Intuitively, the perturbation of f consists of all faces in A(H(e)) which collapse
into f when e approaches zero. We illustrate the concept for the two-dimensional
arrangements of lines shown in Fig. 2. All bounded faces of the perturbed
arrangement (Fig. 2(b)) are in the perturbation of the only vertex in the non-per-
turbed arrangement (Fig. 2(a)). The perturbations of all other faces have cardinal-
ity one. Tedious but otherwise straightforward arguments show

OBSERVATION 4.2. Let H be a finite set of planes in E 3, and let e > 0 be
sufficiently small.

(i) The perturbations of faces in A(H) define a partition of the faces in
A(H(,)).

(ii) Faces f l and f2 in A(H) are incident if and only if there are faces gl and
g2 in the perturbations of f l and f2, respectively, with gl and g2 incident.

By Observation 4.2(i), the following definition makes sense: Let E' be some set
of edges in A(H(e)). An edge e of A(H) is in the concentration E of E' if there is
an edge of E' in the perturbation of e. By Observation 4.2(ii), S(E) is a skeleton
in A(H) if S(E') is one in A(H(e)).

The simulation of A(H(s)) in the construction of a skeleton S(E) in A(H)
consists of three parts:

1. Define a skeleton S(E') in A(H(e)) with E the concentration of E'.
2. Simulate computations in A(H(e)) although e remains without exact specifi-

cation.
3. Obtain S(E) from S(E').

102 Edelsbrunner

Part 1 depends on the particular application and will not be discussed in this
section. Part 3 is straightforward and can be performed by repeated eliminating
or merging of vertices and edges. The only operations of Algorithm 2 affected by
the perturbation of A(H) are the penetration queries which now yield unique
answers since A(H(e)) is simple. The simulation can be performed on the basis of
the possibility to choose e arbitrarily small, but positive:

The only primitive operation needed to answer penetration queries involves
a plane (say h,(e)) and a vertex v (the intersection of three planes, say
hi(e)), hk(e), hi(e)), and decides whether v is above or below hi(e); by
perturbation, hi(e) cannot contain v. To decide the case, however, it is
enough to determine whether the determinant in (*) is positive or negative.
This determinant is a polynomial in e and the decision can be based on the
sign of the first non-zero coefficient if the terms are ordered in increasing
exponents. (Details of the method will appear elsewhere.)

Such a decision can still be done in constant time although some care is
necessary to keep the constant small. The increase in storage is negligible since a
polynomial can be constructed from three indices.

We now recalculate the requirements for the construction of a skeleton (see
Lemma 3.2) in an arrangement A(H) of n planes. We assume that the skeleton is
defined for any finite set of nonvertical hyperplanes, that is, E = E(H), and that
E(H) is the concentration of E(H(e)) (which is true for all applications in this
paper). Recall that S,(n), Tt(n), Se(n), TE(n), Sp(n), and Tp(n) denote the
requirements in storage and time for finding an initial vertex, determining
incident edges, and processing penetration queries or insertions and deletions of
half spaces.

THEOREM 4.3. Let H be a set of n planes in E 3, S(E(H)) a skeleton in A(H),
and re(n) the maximum cardinality of E (H) , over all sets H of n planes.
S(E(H)) can be constructed in O(m(n) + Sl(n) + SE(n) + Sp(n)) storage and
O(T1(n) + m(n)(logm(n) + TE(n) + Tp(n))) time.

Again, we remark that for all applications in this paper, the requirements are
O(m(n)) storage and O(m(n) fn log n) time.

5. Order-k Power Diagrams. Let s be a circle with center c = (q , c2) and radius
r _ 0 in E 2. For p = (Pl , P2) a point in E 2, ds(p) = (Pl - q)2 + (P2 - c~) 2
- r 2 is called the power or the Laguerre distance ofp from s. If s is a point then
ds (p) is the square of the Euclidean distance between s and p. If p is outside s
then d , (p) is also the length squared of the segment on a tangent through p
which connects p and the point of s where the tangent touches s.

For S a set of n circles in E 2 and S '_c S, d o m (S ') = { x ~ E 2 L d , (x) <
dl(x), s ~ S', t ~ S - S '} is termed the domination of S'. If we define dom(s, t)
= {x ~ E2ld,(x) < dr(x)) then

dom(S ') = ["] dom(s, t)
s ~ S ' , t ~ S - S '

Edge-Ske le tons in A r r a n g e m e n t s with Appl ica t ions 103

and d o m (S ') is a convex polygon since dora(s, t) is a halfplane. The collection of
all non-empty dominations for subsets of S with cardinality k (1 < k < n - 1)
define the order-k power diagram k-PD(S) of S.

To construct k-PD(S), we use a geometric transform E which maps each circle
in S into a plane in E 3 and relates k-PD(S) with some particular skeleton in the
arrangements. More specifically, there is a skeleton such that k-PD(S) can be
obtained by projecting it vertically onto the plane x 3 = 0:

for s a circle with center c -:-: (q , c2) and radius r, E maps s into the plane
E(s) : X 3 = 2 C l X 1 -t- 2c2x 2 + (t .2 - c 2 - c22).

Intuitively, E identifies E 2 with the plane x 3 = 0 in E 3, and maps s into the
plane E(s) which intersects the paraboloid U: x 3 = x~ + x 2 in the vertical
projection of s onto U. For a point p = (Pl , P2) in E 2 let Pu = (Pl , P2, p2 + p~)
and PEck) = (Pl, P2,2clpl + 2c2p2 + (r2 - c2 - ca))be the vertical projections
of p onto U and E(s), respectively. Then we have

OBSERVATION 5.1. Let s and p be a circle and a point in E 2. Then ds(p) equals
the (vertical) distance between Pv and PF.(sr

Define H = E (S) = {E(s)ls ~ S}, and for any point p in E 3, let
a(p), o(p), b(p) denote the number of planes h in H with p in h- , h, h +,
respectively. Obviously, a (p) + o (p) + b (p) = n, the cardinality of H. Without
details we state

OBSERVATION 5.2. Let S be a set of n circles in E 2, H = E(S) , and k some
integer with 1 < k < n - 1.

(i) The set E k of edges in A(H) with a(p) < k - 1 and b(p) < n - k - 1
define a skeleton S(Ek) in A(H).

(ii) The vertical projection of S(Ek) onto x 3 -- 0 yields k-PD(S).

We refer to [A, ES] for details on the correspondence between S(Ek) and
k-PD(S). To construct Sk(E), we use Algorithm 2 outlined in Section 3 and
remove degeneracies by the methods of Section 4. This allows us to assume that
o(p) = 2, for any point p of any edge in A(H), and that any fixed (and
non-perturbed) line in E 3 intersects the planes of H in n distinct points. To
complete the specification of Algorithm 2 we demonstrate

1. how the edges in S(Ek) incident upon a vertex v in S(Ek) can be determined
in constant time, if one incident edge e and the three planes f , g, h in H that
define v are given, and

2. how an initial vertex of S(Ek) can be found in linear time.

Task 1 is trivial since f , g and h intersect in three lines giving rise to six edges
incident upon vl Among the six edges, three are below one of f , g, h, and the
other three have none of the planes above them. The two edges in the same class
with e are in S(E) .

104 Edelsbrunner

The remainder of this section elaborates on the second task and concludes with
the main result. To compute an initial vertex of S(Ek), we use

OBSERVATION 5.3. Let S, H, and S(Ek) be as defined above and let p be a
point in E 3. p is a vertex of S(Ek) if and only if o(p) = 3 and a(p) = k - 1 or
k - 2 .

Intuitively, the algorithm computes a line, intersects it with all planes, and finds a
point close to a desired vertex. This vertex is then determined by setting up a new
line through the point.

Algorithm 3 (Initial vertex for S(Ek)).
Step 1: Let h* = E(s*) such that s* in S has the rightmost center

c = (Q, c2) (that is, c 1 is maximal).
Step 2: Let g be the plane x 2 = 0, define line g = h* C~ g, and intersect f

with all planes in H - {h*}. {Comment: f is the steepest line in
{h C~ glh ~ H}, therefore a(pi) = i - f and o(pi) = 2, if
P l P , -1 is the sequence of intersections on f , sorted by decreasing
xl-coordinates. }

Step 3: Determine Pk and plane h ~ with Pk = fC~ h ~ (Comment: Pk is
contained in an edge of S(Ek) supported by h* n h~

Step 4: Intersect h* f3 h ~ with all other planes of H and find the intersection
v closest to Pk. {Comment: v is a vertex of S(Ek). }

O(n) time suffices for all four steps of Algorithm 3. By Theorem 4.3, we
conclude

THEOREM 5.4. Let S be a set of n circles in E 2, and define mk(n) as the
max imum number of edges in the order-k power diagram of n circles. There is an
algorithm which constructs k-PD(S) in O(mk(n)) storage and O(mk(n)~/-n log n)
time.

For the case k = 1 or n - 1, E~ is the set of edges of a convex polyhedron in
E 3 which can be constructed in O(n log n) time [A, PH], thus outperforming our
method. However, if k > 1, the outlined algorithm is the first one that avoids the
expensive construction of the arrangement A(H) (H = E(S)) [EOS], which takes
O(n 3) time and storage. Unfortunately, no good upper bounds on mk(n) are
presently known except for

ml (n) = n which is trivial,

m2(n) = 3n - 6 lESt], and

mk(n) = O(nk 5) [CP].

In the special case when S is a set of points in E 2, k-PD(S) is known as the
order-k Voronoi diagram k-VOD(S) of S [SH]. For this case mk(n) =

Edge-Skeletons in Arrangements with Applications 105

O(k(n - k)) and an algorithm that constructs k-VOD(S) in O(k2n) storage and
O(kZn log n) time is known [L]. Our algorithm is more space efficient and
asymptotically faster unless k = O(v~-).

6. Quartering Separated Point-Sets in E 3. For the sake of this section's defini-
tions we introduce the concept of a directed plane h in E 3 given by a normal
vector v and some real number a, that is, h consist of all points x with
(x, V) = ct. h p : (x, v) > ot and h": (x, v) < a are called the positive and
negative sides of h, respectively, h is said to bisect a set P of n points in E 3 if

max(lP n hPl,]P n h"[} < n/2.

Two sets P and Q in E 3 are said to be separable if P c_ h p and Q _c h" for
some directed plane h. [YDE] show

PROPOSITION 6.1. Let P and Q be separable sets of m and n points in E 3,
respectively. There are directed planes g and h which both bisect P and Q such
that max{lP n gP n hP[, [P n gP n hn[,]P n gn N hP[, 1P n gn n h"[) < m/4,
and max{I Q n gP n hP[, [Q n gP N hn[, [Q N g" n hPl, [Q n g" N h"[} < n/4~

A straightforward perturbation argument shows that g and h can be restricted
to planes f (termed spanned bisectors) which satisfy

(i) I P n f l > l a n d l Q n f l > - l , a n d
(ii) not all points in (P u Q) n f are collinear.

For convenience, we assume that no three points of P U Q are collinear; in this
case, (ii) is equivalent to requiring that f contains at least three points. Further
justification of this assumption is provided by the methods of Section 4 which
simulate simplicity if degeneracies occur.

We now develop a correspondence between all spanned bisectors of P and Q
and the vertices of a particular skeleton in an arrangement A(G U H) dual to
P u Q. Sets G and H of planes in E 3 can be obtained by means of the following
transform D:

For p = (Pl, P2, P3) a point in E 3, D(p) is a plane defined by
x3 = 2paxl + 2 p 2 x 2 - P 3 - Conversely, we write D (g) = D-l (g) , for a
non-vertical plane g. Then G = D (P) (= (g [g = D (p) , p ~ P)) and
H = D(Q).

A (H U G) is dual to P u Q because of

OBSERVATION 6.2. Let p be a point and h a non-vertical plane in E 3. Then p is
in h +, h, h - if and only if point D(h) is in D(p) § D(p), D(p) - , respectively.

For any point q in E3,we define ac(q), oc(q), bc(q) (all(q), oH(q), bH(q)) as
the number of planes g in G (H) with q in g , g, g§ respectively. We now have

106 Edelsbrunner

OBSEgVATION 6.3. Let h be a non-vertical plane in E 3 and write q = D(h). h is
a spanned bisector of P and Q if

(i) max(ac(q) , bo(q) } <_ [G/Z[and oo(q) >__ 1,
(ii) max(al l (q) , bH(q)) < I///21 and on(q) >_ 1, and

(iii) oo(q) + on(q) > 3.

We now show that conditions (i) and (ii) define a skeleton in A(G U H) if the
sets of planes, respectively their dual sets of points, satisfy the following condi-
tions:

1. IPI and IQI are odd, and
2. all points in P (Q) have negative (positive) xt-coordinates.

Conditions 1 and 2 are no loss of generality by the following arguments: if IP I
(IQI) is even then add an arbitrary point to P (Q) which does not violate
condition 2 and the separability of P and Q; a plane bisects the new set only if it
bisects the old one. To achieve 2, apply a suitable rotation and translation to
P u Q .

LEMMA 6.4. Let P and Q be separable point-sets in E 3 which satisfy conditions
1 and 2 above, define G = D(P) and H = D(Q), and let Eo, H contain all edges
in A(G U H) whose points q satisfy (i) and (ii) from Observation 6.3. Then
S(EG, H) is a skeleton.

PROOF. We first show that any plane f normal to the x2-axis intersects S(Ec, H)
in a unique point. Define

G/ = { f n gig ~ G} and Hf --- { f C~ gig ~ H }.

A(G/) and A(Hf) are two arrangements of lines in f . All lines in G/ (Hf) have
negative (positive) slope if we use the xl-axis (x3-axis) to define the horizontal
(vertical) direction in f . Define the median level in A(Gu) (A(Hf)) as the set of
points q in f which satisfy condition (i) (condition (ii)) of Observation 6.3. Since
[Gf[and [Hf[are odd, both median levels are continuous functions from x I to x3,
and they intersect exactly once since they consist of a finite number of linear
pieces, and one monotonely decreases while the other monotonely increases. To
trace all points of S(EG, H), move plane f continuously through the three-dimen-
sional arrangement. Since the lines in plane f move continuously at the same
time, the intersection of the two median levels is a continuously moving point
which implies the connectivity of S(Ec, H)" []

To construct S(Eo, n) using Algorithm 2, we need to specify how an initial
vertex can be determined, and, given a vertex v with incident edge and defining
planes, how all edges of S(Eo, n) incident upon v can be found. The latter task is
trivial since v is the ifftersection of exactly three planes (see Section 4). An initial
vertex can be found by intersecting the median levels in A(G/) and A(Hf), for f :
x 2 = 0, say (see the proof of Lemma 6.4). The determined point defines a vertex
or an edge of S(Eo, n); in the latter case an endpoint is trivially computed in

Edge-Skeletons in Arrangements with Applications 107

linear time. By [M], there is an algorithm that intersects the two median levels in
O([GI + [HI) time; a suboptimal method can be found in [CSY]. If we write t(n)
for the maximum number of edges in S(EG, •), for n = IG] + [HI, then Theorem
4.3 implies

THEOREM 6.5. Let P and Q be separable sets of a total of n points in E 3. There
is an algorithm that constructs S(Eo, H), with G = D(P) and H = D(Q), in
O(t(n)~/n log n) time and O(t(n)) storage.

From S(EG. H), a pair of planes satisfying Proposition 6.1 can be determined
by testing all pairs of spanned bisectors which appear as vertices of S(EG, H)" We
keep one vertex fixed and test all other vertices in sequence. If we also keep track
of the numbers of points in the four wedges defined by the corresponding planes,
constant time suffices for a test. The O(t(n)) bound for the needed storage can be
improved to O(n) if, at any point in time, only two connected pieces of S(EG, ri)
with respective n vertices are kept in storage. For each first piece t(n)/n second
pieces are constructed and pairs of vertices are tested. This strategy builds up
S(Ec,,~f) t(n)/n + 1 times and needs O(t2(n)) time for the various pairs of
vertices. We conclude

THEOREM 6.6. Let P and Q be separable sets of a total of n points in E 3. There
is an algorithm which finds two planes g and h with at most]P]/4 (]Q]/4) points
of P (Q) in each open wedge in O(t2(n)) time and O(n) storage.

The result of this section suffer from our insufficient knowledge about t(n). To
aid future combinatorial investigations of t(n), we offer a more intuitive defini-
tion. Let P and Q be two separable sets of points in E 3 such that IPL and IQ] are
odd. If n = [P] + JQ[, then t(n) equals the number of spanned bisectors of P and
Q. Clearly t(n) = O(n3), and also t(n) = f~(n log n) follows from combinatorial
results on two-dimensional point-sets reported in [ELSS, EW]. We conjecture that
the lower bound is closer to the truth than the trivial upper bound.

7. Discussion. The main contribution of this paper is the introduction of the
rather general concept of skeletons in arrangements of planes in E 3 and the
presentation of a method that constructs skeletons. The crucial components of the
method are, first, a local algorithm for tracing an eulerian tour in a particular
kind of directed graphs, and second, a data structure for finding a plane that is hit
first by a linearly moving point. The serious problems that occur with degenerate
cases are resolved by a controlled simulation of non-degeneracy; the author
believes that this simulation method is widely applicable in the field of geometric
computation.

The presented method for constructing skeletons in three-dimensional arrange-
ments leads to new and more efficient algorithms for several problems in
computational geometry: Section 5 demonstrates the construction of order-k
power diagrams for sets of circles in E 2 (if all circles are congruent then the

108 Edelsbrunner

diagram coincides with the order-k Voronoi diagram for the centers). The
construction of two planes that cut two separable point-sets in E 3 into respective
four balanced parts is described in Section 6. Along similar lines, skeletons can be
used to solve e.g. the following related problems:

(1) Compute the k-degree power diagram for a set of n circles in E 2, with
1 < k _< n - 1, defined as follows: each circle s in the sets gets associated the
region of points p such that ds(p) is the k-th smallest, for all circles.

(2) Determine the region ofcenterpoints of a set P of n points in E 3. (A point p
is centerpoint of P if any closed halfspace bounded by a plane through p
contains at least In/4] points of P.)

(3) For three sets P, Q, R of points in E 3 compute a ham-sandwich plane h, that
is, h bisects P, Q, and R.

By methods similar to those in Section 6, problem (3) can be solved in O(t2(n))
time and O(n) storage if P, Q, and R contain a total of n points and any two are
separable from each other. Together with Theorem 6.6, this yields an O(t2(n))
time and linear space algorithm for the type of space cutting trees described in
[YDE].

Acknowledgements. The author thanks Ernst Muecke for implementing parts of
the algorithms described in this paper, for simplifying parts of them, and for
many interesting discussions on the material.

[AHU]

[AWl

[A]

[CP]

[CSY]

[DE]

[EH]

[EM]

[EOS]

[ES]

lESt]

References

A. V. Aho, J. E. Hopcroft, and J. D. Ullman, The design and analysis of computer algorithms.
Addison Wesley, 1974.
G. L. Alexanderson and J. E. Wetzel, Simple partitions of space. Math. Mag. 51 (1978),
220-225.
F. Aurenhammer, Power diagrams: properties, algorithms, and applications. Rep. F 120, Inst.
Inform. Process., Techn. Univ. Graz, Austria, 1983.
B. M. Chazelle and F. P. Preparata, Halfspatial range search: an algorithmic application of
k-sets. To appear in J. Discrete Comput. Geom.
R. Cole, M. Sharir and C. K. Yap, On k-hulls and related problems. Proc. 16th Ann. ACM
Syrup. Theor. Comput. Sci. (1984), 154-166.
D. P. Dobkin and H. Edelsbrunner, Space searching for intersecting objects. Proc. 25th Ann.
IEEE Symp. Found. Comput. Sci. (1984), 387-392.
H. Edelsbrunner and F. Huber, Dissecting sets of points in two and three dimensions. Rep.
F 138, Inst. Inform. Process., Techn. Univ. Graz, Austria, 1984.
H. Edelsbrunner and H. A. Maurer, Finding extreme points in three dimensions and solving
the post-office problem in the plane. Inform. Process. Lett. 21 (1985), 39-47.
H. Edelsbrunner, J. O'Rourke and R. Seidel, Constructing arrangements of lines and hyper-
planes with applications. Proc. 24th Ann. IEEE Symp. Found. Comput. Sci. (1983), 83-91,
H. Edelsbrunner and R. Seidel, Voronoi diagrams and arrangements. Proc. Sympos. Comput.
Geom., Baltimore (1985), 251-262.
H. Edelsbrunner and G. Stoeckl, The number of extreme pairs of finite point-sets in Euclidean
spaces. Rep. F 142, Inst. Inform. Process., Techn. Univ. Graz, Austria, 1984.

Edge-Skeletons in Arrangements with Applications 109

[o]

[IIM]

[K]

[L]

[MO]

[M]
[PH]

[SH]

[vLW]

[YDE]

[EW] H. Edelsbrunner and E. Welzl, On the number of line separations of a finite set in the plane. J.
Combin. Theorv Ser. A 38 (1985), 15-29.

[ELSS] P. Erdoes, L. Lovasz, A. Simmons and E. G. Straus, Dissection graphs of planar point-sets. In:
A survey of combinatorial theory, J. N. Srivastava et al. (eds.), North Holland, 1973, 139-149.

[GK] I. G. Gowda and D. G. Kirkpatrick, Exploiting linear merging and extra storage in the
maintenance of fully dynamic geometric data structures. Proc. 18th Ann. Allerton Conf.
Commun., Contr., Comput. (1980), 1-10.
B. Gruenbaum, Arrangements and hyperplanes. Congr. Number. III, Louis. Conf. Combin.,
Graph Th., Comput. (1971), 41-106.
H. Imai, M. Iri and K. Murotal Voronoi diagram in the Laguerre metric and its applications.
S I A M J . Comput. 14 (1985), 93-105.
D. E. Knuth, Searching and sorting. The art of computer programming III. Addison-Wesley,
1973.
D. T. Lee, On k-nearest neighbour Voronoi diagram in the plane. [EEE Trans. Comput. C-31
(1982), 478-487.
H. A. Maurer and Th. Ottmann, Dynamic solutions of decomposable searching problems. In:
Discrete structures and algorithms, U. Pape, (ed.), Carl Hanser (1979), 17-24.
N. Megiddo, Partitioning with two lines in the plane. To appear in J. Algorithms.
F. P. Preparata and S. J. Hong, Convex hulls of finite sets of points in two and three
dimensions. Comm. ACM (1977), 87-93.
M. I. Shamos and D. Hoey, Closest-point problems. Proc. 16th Ann. IEEE Syrup. Found.
Comput. Sci. (1975), 151-162.
J. van Leeuwen and D. Wood, Dynamization of decomposable searching problems. Inform.
Pivcess. Lett. 10 (1980), 51-56.
F. F. Yao, D. P. Dobkin and H. Edelsbrunner, Manuscript, 1985.

