
Algorithmica (1990) 5:421-457 Algorithmica
�9 1990 Springer-Verlag New York Inc.

Computational Geometry in a Curved World !

David P. D o b k i n 2 and Diane L. Souvaine 3

Abstract. We extend the results of straight-edged computational geometry into the curved world by
defining a pair of new geometric objects, the splinegon and the splinehedron, as curved generalizations
of the polygon and polyhedron. We identify three distinct techniques for extending polygon algorithms
to splinegons: the carrier polygon approach, the bounding polygon approach, and the direct approach.
By these methods, large groups of algorithms for polygons can be extended as a class to encompass
these new objects. In general, if the original polygon algorithm has time complexity O(f(n)), the
comparable splinegon algorithm has time complexity at worst O(Kf(n)) where K represents a
constant number of calls to members of a set of primitive procedures on individual curved edges.
These techniques also apply to splinehedra. In addition to presenting the general methods, we state
and prove a series of specific theorems. Problem areas include convex hull computation, diameter
computation, intersection detection and computation, kernel computation, monotonicity testing, and
monotone decomposition, among others.

Key Words. Computational geometry, Splinegon, Curve algorithm, Convexity, Monotonicity, Inter-
section, Kernel, diameter decomposition.

I. Introduct ion-- the Need for Algorithms on Curvilinear Objects. As the name
of the field suggests, computational geometry concerns the algorithmic aspects
of geometric problems. As such, the span of the field should include algorithms
for reasonable objects definable in reasonable geometries. Until recently, the
majority of the results obtained have been restricted to a small class of geometric
objects: points, lines, line segments, polygons, planes, and polyhedra. Despite
the extensive body of algorithms and algorithmic techniques for objects defined
with straight edges and flat faces, few of its results apply directly to problems of
the real world. Solid modeling systems build objects by patching together surface
patches that are defined via bicubic splines or quadratic splines [Re]. Motion-
planning problems that need to be solved for the advancement of robotics typically
involve motion of curved objects through barriers having curved shapes [HK].
Modern font design systems rely upon conic and cubic spline curves [Pal, [Pr],
[Kn]. Numerous applications need efficient algorithms for processing curved
objects directly [Sm], [Fo].

Prior to the second author's doctoral dissertation [So], written under the
supervision of the first author, few algorithms treated curved objects, other than

1 This research was partially supported by National Science Foundation Grants MCS 83-03926,
DCR85-05517, and CCR87-00917.
z Department of Computer Science, Princeton University, Princeton, NJ 08544, USA.
3 Department of Computer Science, Rutgers University, New Brunswick, NJ 08903, USA. This author's
research was also partially supported by an Exxon Foundation Fellowship, by a Henry Rutgers
Research Fellowship, and by National Science Foundation Grant CCR88-03549.

Received October 29, 1987; revised August 12, 1988. Communicated by Bernard Chazelle.

422 D.P. Dobkin and D. L. Souvaine

circles and spheres, directly [SV], [HMRT]. Instead, the way to tackle arbitrary
real objects has been to approximate them first as polygons or polyhedra of a
sufficient number of vertices for the particular application. This process is gen-
erally quite unsatisfactory [Sm], [Fo]. This paper presents the main core of the
results from [So]. Two additional papers contain other aspects of that work, as
well as some further research in the area [DSV], [DS2].

This paper contains a set of recipes that can be used to determine if a result
in the linear convex world can apply in the curvilinear world and if so to determine
the best method of translating the result. We supplement this with numerous
applications to existing algorithms, demonstrating that curved objects can indeed
be processed efficiently. Furthermore, as new algorithms are developed for straight
objects, it will often be possible to state them for curved objects with no extra
machinery. These contributions should aid both producers and consumers of
geometric algorithms.

We begin by stating the definition of a new geometric object, the splinegon,
which is general enough to describe almost every closed curve and structured
enough to allow large groups of algorithms for polygons to be extended as a
class to encompass these new objects. We identify three general methods for
translating groups of algorithms for linear objects to algorithms for splinegons:
the carrier polygon approach, the bounding polygon approach, and the direct
approach. In general, if the original polygon algorithm has time complexity
O(f (n)) , the comparable splinegon algorithm has time complexity at worst
O (Kf (n)) where K represents a constant number of calls to a series of primitive
procedures on individual curved edges.

2. The Splinegon and Its Properties. The extension of algorithms designed for
the world of straight-edged objects into the world of curved objects requires the
definition of a new abstract object which can mediate between these two worlds.
We call this new object a splinegon. First, we give a formal definition of the object
as a curved extension of a straight-edged polygon, and then we describe the
process of structuring an arbitrary curved object as a splinegon, choosing vertices
which relate the splinegon to an inferred polygon. We also isolate the few curved
objects which cannot be formulated as splinegons.

A splinegon S can be formed from a polygon P on n vertices, v~, v2 , v,,
by replacing each line segment vivi+~ with a curved edge ei which also joins vi
and v~+~ and which satisfies the following condition: the region S-seg~ bounded
by the curve e~ and the line segment v~v~+~ must be convex. 4 The new edge need
not be smooth; a sufficient condition is that there exists a left-hand and a
right-hand derivative at each point p on the splinegon. If $-seg~ c S, then we say
that the edge e; is concave-in. Otherwise, we say that the edge ei is concave-out.
The polygon P is called the carrier polygon of the splinegon S.

Splinegons can be categorized much as polygons are. If the only edge intersec-
tions are those between two adjacent edges at their common vertex, then the

4 Subscripts are always interpreted modulo n.

Computational Geometry in a Curved World 423

S-seg 3 - ~ . . . " ~ e g 2

.-" t / " ' - \ v 2
V4 s ' "

(a)

v5 i 6 P

(b) ~
V2

v5 S
v6 . . " Ker (S)

V3 1,, 1

(c) (d)

Fig. 1. (a) A simple splinegon with a simple carrier polygon; (b) a nonsimple splinegon; (c) a
monotone splinegon in the x-direction with a nonsimple carrier polygon; and (d) a star-shaped
splinegon and its kernel.

splinegon is said to be simple. I f other edge intersections exist, then the splinegon
is called nonsimple. A splinegon may be classified as a monotone splinegon in
some distinguished direction f if it satisfies the following criterion: let m (resp.
M) represent the point on the splinegon having the smallest (resp. largest)
component in the ~ direction; the points m and M split the splinegon into two
monotone chains of splinegon edges such that in traversing either chain from m
to M the ~ component strictly increases. A star-shaped splinegon contains at least
one point w in its interior so that each line segment from w to a point on the
boundary of the splinegon lies within the splinegon. The collection of all such
points w is called the kernel of the splinegon. The carrier polygons for splinegons
in these four categories may or may not be simple (see Figure 1).

A convex splinegon S encloses a convex region. Clearly, any sequence of three
or more points selected in order along the boundary of S defines a legitimate
carrier polygon P. The convexity of S guarantees the convexity of P. We define
a triangle to be a simple splinegon of three vertices. Since we have made no
restriction that edges of splinegons be smooth, any arbitrary convex polygon of
n vertices may be considered a splinegonal triangle. Although in the polygonal
world a triangle is necessarily convex, a splinegonal triangle has no suc h restriction
(see Figure 2).

We can now categorize the set of planar curves definable as splinegons:

424 D.P . Dobkin and D. L. Souvaine

V5

V1

Y2

s

V3

(a) (b) (c)

V3

V3

Fig. 2. (a) A convex splinegon, (b) a convex triangle, and (c) a nonconvex triangle.

112

THEOREM 1. Any closed planar curve S can be considered a splinegon provided
that the following two conditions are satisfied: S has only a finite number of inflection
points; and any infinite line 1 intersects S in at most a finite number of points or
line segments. I f either condition is not met, no splinegon is possible.

PROOF. TO determine a carrier polygon for a curve S, we begin by tracing about
the curve in counterclockwise order, inserting all inflection points as vertices of
a tentative carrier polygon P. We now describe two methods for choosing addi-
tional vertices for the carrier polygon within each tentative ei.

The first method requires less computat ion, but adds more vertices than
necessary and yields an unwieldy carrier polygon, with overlapping, collinear
edges. Trace S in counterclockwise order, moving from vertex to vertex. At every
edge ei, add as a vertex of P each single point and the endpoints of any line

()
segments of the intersection of the line l)ivi+ 1 with e~. Add all new vertices to P
in the order in which they are encountered on tracing e~ from v~ to vi+ 1 (see
Figure 3(a)).

t

~ [i l (a) (b)
Fig. 3. An edge ei of S when its carder polygon P contains only inflection points. (a) The vertices
added by method 1. (b) The vertices added by method 2.

Computational Geometry in a Curved World 425

The second method requires more computation, but adds fewer vertices and
�9

yields a more manageable carrier polygon�9 Let l;1 (resp. ,~-2) represent the line
tangent to e~ at vi (resp. Vi+l). Trace S in counterclockwise order, moving from
vertex to vertex. Stop at each edge e~. If the line 1~1 intersects e~ in a single point
(rather than a line segment) other than v~, insert the first such point encountered
on tracing ei from v~ to v~+~ into the vertex list for P, making it the next vertex
to be visited and splitting the current edge into two pieces. Repeat this process,
tracing the curve in clockwise order and testing each edge e~ for intersection with
li2 (see Figure 3(b)).

Both methods terminate, provided that there are a finite number of inflection
points and intersection points�9 If either condition is not met, no splinegon can
be produced. []

It is possible to define planar curved objects which are not splinegons. For
example, the following three segments define a closed curve which contains an
infinite number of inflection points, all lying on the x-axis:

y=xsin(1/x) for x ~ (0, 2/7r];

y=2/zr for x ~ (0, 2/7r];

x = 0 for y c [0, 2 /~] .

The following four segments define a closed curve which intersects any line
through the origin in an infinite number of distinct points:

r=l/O for 0 c [27r, + ~) ;

r = 1 / (0+Tr) for 0 e [2~-, +co);

0 = 0 for r~[1/37r, 1/2rr];

(r, 0) = (0, 0).

Neither of these two objects, however, arises in practice�9 Real-world planar curved
objects can be Iconstituted as splinegons.

For a closed planar curve $, either method of determining a carrier polygon
produces a splinegon with far fewer vertices, in general, than any polygon which
would adequately approximate the curve. Primitive procedures on splinegons,
however, are more complicated than those on polygons�9 Determining the intersec-
tion of two line segments, for example, is a well-understood, and often imple-
mented, process requiring constant time. 5 The complexity of determining the
intersection of two curved segments depends on the complexity of the curves
themselves. Consequently, our analyses of algorithm complexity are given both
in terms of operations and calls to oracles for primitive procedures. We include
here three-dimensional versions of the oracles which will be used in Section 7.

5 As Forrest [Fo] and others remind us, however, in a world where round-off error exists, even line
segment intersection is not a solved problem. We ignore such questions here. The interested reader
is referred to [DSi].

426 D.P. Dobkin and D. L. Souvaine

A1 (A2)

Bl (B2)
C1 (C2)

D1 (D2)

El (/72)
F1 (F2)

Compute the intersection of two curved edges (faces) or the
maximum and minimum separation between them.
Compute the intersection of a line with a curved edge (face).
Given a curved edge (face) and either a direction or a point,
report both the point and the direction of a line (plane) that
supports the edge (face) at that point.
Determine the line (plane) which supports a pair of curved
edges (faces).
Compute the intersection of a plane with a curved edge (face).
Compute the area (volume) bounded by a curved edge (face)
and by the corresponding edge (face) of the carrier polygon
(polyhedron).

The complexity of each primitive procedure would be a constant in any domain
where we restricted splinegon edges.

3. The Carrier Polygon Approach. The carrier polygon approach is particularly
useful for processing convex splinegons. Algorithms for convex polygons often
exploit a pair of key properties:

(a) Given any point x on the boundary of a planar convex object S, there exists
a supporting line I through x which divides the plane into two half-planes: a
closed half-plane containing all of S; and an open half-plane containing no
point of S. If S is a polygon of n vertices, then the set of n lines formed by
extending each of the n edges of S is sufficient to supply a supporting line
for S at each point on its boundary.

(b) Given any direction in the plane, there exists a pair of lines ml and m2 in
that direction such that both rnl and rn2 are supporting lines for S and the
region bounded by ml and m2 completely contains S. If S is a polygon of n
vertices, then the intersection of each of ml and m2 with S must include at
least one of the n vertices.

Direct extension of these algorithms to splinegons requires an excessive number
of operations on curved edges. Indeed, an uncountable number of lines are
required to provide a line of support at each boundary point of a convex splinegon.
Thus, in applying property (a), the line of support at a given point x would have
to be computed individually. Likewise, an uncountable number of points are
necessary to provide a boundary point of the splinegon lying on each possible
supporting line. Thus, in applying property (b) to splinegons, finding a point of
S lying on each of m~ and m2 would require calculations using curved edges.

Focusing on the carrier polygon avoids many of the direct manipulations of
the curved edges. For each convex splinegon S, the carrier polygon P is itself
convex, P ___ S and S = P u (t..Ji S-segi). The line defined by two adjacent vertices,
r)
v~v~+~, divides the plane into two half-planes: the "outside" half-plane contains
the convex region S-seg~; the "inside" half-plane contains a splinegon Si =
S - S - s e g ~ which is supported by vivi+~ along an edge. Each S-seg~ lies within a

Computat ional Geometry in a Curved World 427

VI+2

Fig. 4. A convex splinegon S divided into S~ and S-seg.

() <--.-----------..~

triangle S-tri~ defined by v~vi§ v~_iv~ and vHv~§ (see Figure 4) . 6 P u ((_J~ S-tri~)
forms a star-shaped polygon whose kernel is 19.

OBSERVATION 1 (Carrier Polygons). The carrier polygon imposes sufficient
structure on a convex splinegon that polygon algorithms can be extended to
splinegons with the only modification being ad hoc procedures to allow for all
possible behavior of S-seg~ and its bounding triangle S-tri~. Only infrequently
will an examination of the precise behavior of ei be necessary. Although the
carrier polygon has particular use with convex polygons, if it is simple, then it
also aids in processing monotone splinegons.

This observation enables us to adapt the algorithms of [CD] and [DK1] to
process splinegons as well as to develop an original algorithm for point inclusion
both for convex polygons and for convex splinegons.

THEOREM 2. The intersection of a line with a convex splinegon of N vertices can
be computed in O(B1 +log N) operations (see Figure 5).

S S

(a) (b)

Fig. 5. Examples of Theorem 2.

r

(c)

6 Note that S-tri i may be unbounded.

428 D.P. Dobkin and D. L. Souvaine

PROOF. TO compute the intersection of a line l with a convex splinegon S, first
run the Chazel le-Dobkin polygon algorithm [CD] on the carrier polygon P. I f
there is no intersection, that algorithm will report the vertex v~ of the polygon
which is closest to I. Although l does not intersect P, it may still intersect one of
S-segi_l or S-segi. (The convexity of S dictates that l cannot intersect both.)
Consequently, we use oracle B~ to test l against e~_~ and eg. In the case that the
intersection of l with P consists of a single vertex v~, again I may also intersect
either S-seg~_~ or S-seg~. Testing the line against both ei_l and ei is sufficient to
determine the splinegon-line intersection. I f the polygon algorithm reports the
intersection as v~v~+l, an entire edge of P, or as vgvj, a diagonal of P, then the
intersection of l and S also consists exactly of that segment. I f the polygon
algorithm reports the intersection as a line segment with endpoints on two different
edges of the carrier polygon, vgvi+~ and v~vj§ testing the line against the corre-
sponding curved edges e~ and ej determines the endpoints of the segment forming
the splinegon-line intersection. After running the polygon algorithm in O(log N)
time, the subsequent special cases each require at most two calls to oracle B~.
Thus the entire process requires O(B~ + log N) time, using asymptotically fewer
oracle calls than simple operations. []

Chazelle and Dobkin [CD] show that the inclusion of a point in a convex
polygon of N vertices can be decided in O(log N) operations by their algorithm
for computing the intersection of a line with a convex polygon. In recent years,
however, the hierarchical searching method has emerged as a potent tool in the
field of computat ional geometry [Ki], [DK2], [DS1]. The following dichotomy
makes the convex splinegon an abstract object ideally suited for hierarchical
processing. An algorithm for an N-sided polygon requires many iterations when
N is large, but primitive operations on edges require only constant time. I f an
N-sided convex polygon is viewed as a splinegonal triangle, primitive operations
on the "edges" require time proportional to N, but each algorithm has a constant
number of iterations.

THEOREM 3. The inclusion of a point in a convex polygon of N vertices can be
decided in O(log N) operations using the hierarchical method.

PROOF. Various proofs of this theorem exist (see, e.g., pp. 85-86 of [Me]). We
include the proof here for completeness.

Given a convex polygon P on N vertices, v~, v2 vN, we develop a hierarchy
of splinegons all having the same boundary as P, but having carrier polygons of
fewer vertices. We assume for ease of explanation that N = 3(2 k) for some k. We
recast P as a triangular splinegon S k with a carrier polygon pk whose three
vertices v k, v2 k, v k are all original vertices of P. The vertices v k are chosen so
that N / 3 - 1 of P ' s original vertices lie in the interior of each of the three "curved"
edges of S k.

To create a splinegon S i-1 from a splinegon S i in the hierarchy, insert each
vertex vj of S ~ as a vertex of S ~ 1. In addition, insert the median original vertex

Computational Geometry in a Curved World 429

P _ I 1:51 V 2
. m ~ 4 1

.,' ',. \

m6 1 1713 1

2 2

m l ~ m21

T V21 f l ml
S1/" S 2

(a) (b) (c)

Fig. 6. (a) A sample polygon P on 12 vertices; (b) a splinegon $1; and (c) a splinegon S 2.

i S i. i lying in the interior of each edge ej of After performing this process k mj
times, we achieve a splinegon S O which is identical to its carrier polygon pO and
to the original polygon P (see Figure 6).

To test whether a point x lies within the convex polygon P, we begin by
determining in constant time whether x lies within the straight-line triangle pk.
I f it does, we are done. I f not, then x must lie outside of at least one of the lines
~ . I f x lies outside of two of the lines, then by convexity it cannot belong

to P, as we discussed above. Suppose that x lies outside of the line v~v~.+l. Then
we can determine whether x lies in the carrier polygon pk-1 by testing whether

. k k k which is identical to the triangle x belongs to the triangle ~v jmjv j§
A k-I k-I k-1 v2j v2j+lv2j+2 defined by three adjacent vertices of pk-1.

At each stage in the algorithm, we either determine that x belongs to some
carrier polygon Pi, or that x lies outside of P, or select a triangular test which
will determine whether x belongs to p~-l. I f we proceed through k stages without
terminating, we know an index j such that x belongs to the original polygon P
if and only if x belongs to the triangle A vj vj+l vj+2. At each stage in the algorithm,
the point is tested for inclusion in a triangle. The first such test reduces the size
of the problem by at least two-thirds. Each subsequent test divides the problem
in half. []

COROLLARY. The inclusion of a point in a convex splinegon of N vertices can be
decided in O(BI + log N) operations using the hierarchical method.

PROOF. Given a convex splinegon S has P as its carrier polygon, define a
hierarchy of splinegons all having the same boundary as S, but with vertices
chosen as described above. In this case, the lowest-level splinegon S O is identically
equal to S, and its carrier polygon pO is exactly P. At the final stage of the
algorithm, we know an index j such that x belongs to the original carrier polygon

430 D.P. Dobkin and D. L. Souvaine

J
(a)

V 5 I

m ~ m

,/
I I I

i i
i i

, ,f i i

. ,, ~ s l _,/, ~
(b)

V 3 2

~41 2

t
t

t

31 t

S 2 _ . J 1

(c)

Fig. 7. (a) A splinegon S on 12 vertices; (b) Sl; and (c) S 2.

()

P if and only if x belongs to the triangle Avjvj+~vj+2. If x lies outside both v~vj+l
(�9 ()

and Vj+lVj+2, then x does not belong to S. If x lies outside just vjvj+l, then
x belongs to S if and only if it belongs to S-seg~. Similarly, if x lies outside
just ~j+~vj+~, then x belongs to S if and only if it belongs to S-seg~+~ (see
Figure 7). []

THEOREM 4. The intersection o f two convex splinegons o f at most N vertices can
be detected in O(A] + BI + C~ log N) operations.

PROOF. Given the problem of detecting the intersection of two convex splinegons
P and Q of at most N vertices each, we assume that each splinegon is given as
a list of vertices in a random access memory with each vertex pointing to a
description of the curve which adjoins it to its neighbor. Otherwise, no sublinear
algorithm is possible [CD]. We do no preprocessing of this description. The
output should consist either of a point in the intersection or of a line which
supports one of the splinegons and separates it from the other.

Our algorithm employs the binary search strategy used in the polygonal
algorithm due to Dobkin and Kirkpatrick [DK1]. First, we split P (resp. Q) at
the points having maximum and minimum y-coordinate into a left semi-infinite
splinegon PL (resp. QL) and a right semi-infinite splinegon PR (resp. QR). The
splinegons P and Q intersect if and only if PL intersects QR and PR also intersects
QL. Thus, we need an algorithm for detecting the intersection of a left semi-infinite
splinegon L with a right semi-infinite splinegon R. If L (resp. R) has n (resp.
m) vertices 1], 12 , . . . , I, (resp. rl, r 2 , . . . , rm), let i = [m/2] and j = In/2] . R i
(resp. L;) represents the line defined by the pair of vertices ri, r H (resp. lj, !;+1).
An examination of the relative positioning of ri, r;+l, /j, /j+l, Ri and Lj allows
the removal of half of the vertices of at least one splinegon from further consider-
ation. After O(log n) iterations, one splinegon is reduced to three vertices. Split

Computational Geometry in a Curved World 431

that splinegon into two splinegons of two vertices each and compare each in turn
against the second splinegon using the original strategy. In some instances, it
will be necessary to add a single curved operation to guarantee the removal of
half of the vertices of the larger splinegon. Nonetheless, in each case, O(log n)
iterations will reduce the second splinegon to three vertices, and then any
intersection can be detected using brute force. For details, see [So]. A sequel to
this paper includes further details and complete implementation [DS2]. []

4. Bounding Polygon Approach. In standard form, a splinegon S is given as a
circular list of N vertices, which completely defines its carrier polygon P, and a
pointer from each vertex to a description of the edge joining that vertex to its
neighbor. We now define a second polygon Q of O(N) vertices called the bounding
polygon of the splinegon S. Q contains all of the vertices of S, which are called
fixed vertices of S. In addition, for each edge ei of S which is not a line segment,
the vertex list for Q contains a pseudovertex e* of S between the fixed vertices
vi and vi+l, e* represents the point of intersection of the ray tangent to ei at v~
with the ray tangent to e~ at v~+1.7 An edge of Q which joins two fixed vertices is
called a fixed edge. An edge joining a fixed vertex with a pseudovertex is called
a pseudoedge. A pseudoedge vie* (resp. e*vi+~) is considered loose if its only
intersection with the curved edge e~ is at the vertex v~ (resp. v~§ If ~ (resp.
e ~) intersects ei in a line segment, then the edge is considered tight.

The bounding polygon provides a useful tool for extending numerous
algorithms on simple polygons to splinegons, particularly those algorithms which
are vertex-based. The efficacy of the bounding polygon is due in large part to
the fact that for many calculations on polygons, or on splinegons, attention need
be given only to vertices at reflex angles, interior angles measuring more than
180 ~ In general, an edge ei of S can be viewed as a polygonal chain of an
arbitrary number of vertices leading from v~ to V~+l whose first edge lies (either
loosely or tightly) on v~-~e~, whose last edge lies (either loosely or tightly) on
ei v H . A splinegon whose edges are all concave-in has reflex angles only at fixed
vertices, and the adjacent edges of the bounding polygon accurately determine
the angle at a fixed vertex. A curved edge which is concave-out corresponds to
a polygonal chain composed entirely of reflex angles. The associated pseudovertex
and the adjacent pseudoedges give a good approximation. During the execution
of a polygon algorithm on the bounding polygon, processing of a pseudovertex
e* can include evaluation and insertion of pertinent information about the
associated curve ei.

7 For some splinegon edges the two tangent rays might not intersect in the plane. The rays would
intersect, however, if S were embedded on the surface of a sphere. We can allow the point e~* to
represent the corresponding point on the projective plane at infinity (see Figure 8(a)). Alternately,
such a splinegon edge can be broken into at most three pieces by the insertion of two new fixed
vertices so that for each new edge the tangent rays will intersect at a point with finite coordinates
(see Figure 8(b)). The bounding polygon Q of a simple splinegon S of N vertices has at most 2N
vertices if we allow points at infinity, or at most 6N vertices otherwise. For the sake of clarity, we
assume that all pseudovertices have finite coordinates.

432 D.P. Dobkin and D. L. Souvaine

e3* e4

/ i
e ~ , \ S._..A\ I e6.L S

""~ v4 �9 y ?vl e~_ /
/ e , /

/ ~__._ ----I ~2
~ . _ _ _ _ - - ' - V I L - - - "

e4* el*

(a) (b)

Fig. 8. A pair of splinegons and their bounding polygons: (a) has an infinite pseudovertex, whereas
(b) does not. In (b), v6e* 6 is a tight pseudoedge since it contains the line segment v6x; all other
pseudoedges are loose.

The splinegon shares several characteristic properties with its bounding poly-
gon, as we shall prove below. A convex splinegon S with carrier polygon P is
contained within its convex bounding polygon Q. (Remember that the polygon
defined by P w (Ug S-trig) is star-shaped rather than convex.) A splinegon S is
monotone if its bounding polygon Q is monotone. Moreover, if S is monotone
in a direction Y for which Q is not, then f must be orthogonal to some loose
pseudoedge of Q. A splinegon has a kernel only if the bounding polygon has a
kernel.

Simplicity, however, is not a shared property. The bounding polygon of a
simple polygon need not be simple. Moreover, a nonsimple splinegon may have
a simple bounding polygon. Nonetheless, algorithms on simple polygons may
extend to simple splinegons using the bounding polygon technique, whether or
not the bounding polygon is simple. For example, as demonstrated below, we
may compute the convex hull of a simple splinegon using a bounding polygon
which, if computed explicitly, would not be simple.

Computing the bounding polygon explicitly often provides a useful approxima-
tion for the splinegon. Unfortunately, the specifications of the polygon Q are
not readily available from the given description of the splinegon S. Computing
each edge of Q costs 0(C1) time. As a consequence, we postpone computing
the actual coordinates of a pseudovertex until necessary. In some instances, it
may be possible to compute the coordinates of only a small subset of the
pseudovertices. In the convex hull algorithm given below, none of the coordinates
for any e* are ever computed. Instead the entry of e* merely points to a description
of the edge ei. In such an instance, we are using the polygon in a topological
sense, rather than a strict one [Km].

Computational Geometry in a Curved World 433

The bounding polygon provides an alternative tool for expressing the splinegon
itself. It allows a vertex-based polygon algorithm to be extended to splinegons
with its structure intact. It also allows the creators of new algorithms to write
them in a general format which encompasses splinegons, but with the more
restricted polygon algorithm clearly visible within. In either case, separate pro-
cedures exist for the processing of fixed vertices and for the processing of
pseudovertices.

To summarize:

OBSERVATION 2 (Bounding Polygons). When the carrier polygon itself is
insufficient, it may often be enhanced by adding further structure based solely
on the local structure of the splinegon. This structure results in a bounding
polygon with fixed vertices corresponding to vertices of the splinegon and
pseudovertices corresponding to edges of the splinegon. Insofar as possible,
computations involving the polygon in the linear case now involve the bounding
polygon with only local attention to the splinegon's curved edges.

LEMMA 1. A convex splinegon has a convex bounding polygon.

PROOF. Suppose a given convex splinegon S has a nonconvex bounding polygon
Q. Then there exists a reflex angle either at a fixed vertex v~ or at a pseudovertex
e~*. But all edges of a convex splinegon are concave-in, and thus all pseudoverti-
ces are convex. Suppose that Q has a reflex angle at v~. But then there exist
points xi and x~ ~ lying on ei and e~_~, respectively, which are each arbitrarily
close to v~ such that the interior angle/-xHvix~ is also reflex. But then S is not
convex. []

THEOREM 5. The diameter of a convex splinegon of N vertices can be computed
in O((A~ + C~)N) time.

PROOF. The diameter of a convex polygon is realized by a pair of antipodal
vertices. Shamos's algorithm for finding the diameter [Sh] determines all such
vertex pairs, computes all of the distances, and keeps the maximum. The diameter
of a convex splinegon is also realized by a pair of antipodal points, but although
those points will lie on the boundary of the splinegon, they may not be vertices.
To find the diameter of a convex splinegon S of N vertices, we apply a modified
version of the Shamos algorithm to the bounding polygon, which by Lemma 1
is convex and contains S. After determining all antipodal vertex pairs for the
bounding polygon, any pseudovertex can be replaced by the appropriate point
on its corresponding edge to yield the pairs of antipodal points on the splinegon
itself.

To run this algorithm, the entire bounding polygon must be computed, using
O(C1 N) time. Next, each edge of the bounding polygon is oriented as a vector
a n d translated in turn to the origin: pseudoedges become vectors of the form

~:) 2,
vie~ and ei vi+l; and fixed edges become vectors of the form viv~+l. Due to the

434 D.P. Dobkin and D. L. Souvaine

e2*

V3 ",.

V2

v4

e *~' 4 "

.... :el*
V l

e V 2

)

v 2 e 2 ~ el*

e2* �9 .. ,~
t e 4 , X ~ = vie 1

e 4 v l

e2 * v ,)
v 4 e 4 V3V4

Fig. 9. A splinegon and its bounding polygon and the corresponding vertex sectors.

convexity of S, these vectors will be in nondecreasing order of polar angle. 8 The
inclusive sector from a vector whose head is a fixed vertex v~ to a vector whose
tail is v~ corresponds to that fixed vertex. I f the two vectors have the same
direction, then the fixed vertex will correspond to a sector consisting of a single
ray. The sector strictly between a vector whose head is a pseudovertex e* and a
vector whose tail is e* corresponds to that pseudovertex. A pseudovertex e* was
added to the bounding polygon only if the edge e~ was not straight. Thus, each
pseudovertex corresponds to a nonempty open sector (see Figure 9).

Pick a line l passing through the origin, and in time O(log N) determine the
two sectors in which it lies. To find all O (N) antipodal pairs, rotate the line l
counterclockwise. An antipodal pair changes only when l enters a new sector.
Divide the vertex pairs reported into three groups: pairs having two fixed vertices;
pairs with one fixed vertex and one pseudovertex; and pairs having two pseudover-
tices. The first group can be processed as in the original algorithm by computing
the distance between the two vertices. The next two groups require the use of
oracle A~. For the second group, determine the point on that curved edge
associated with the pseudovertex which lies at maximum distance from the fixed
vertex. For the last group, determine the pair of points, one per curved edge,
at maximum distance from each other. It is easy to see that the maximum
distance over the three groups is the diameter. Thus, the entire algorithm runs in
O((AI + C~)N) time. []

LEMMA 2. If all edges o f the bounding polygon Q associated with a splinegon S
are tight, then S is monotone in a direction ~ i f and only i f Q is monotone in the
same direction. I f S is monotone in a direction ~ for which Q is not, then ~ is
orthogonal to some loose pseudoedge o f Q.

s If the boundary of S is smooth at a vertex v,, then the vectors e*~_lv , and vie.* , have the same
orientation.

Computational Geometry in a Curved World 435

W W

J

V 2 V 1 1~2 ~1

(a) (b)

Fig. 10. (a) A convex polygonal chain inscribed in a triangle; and (b) a curved edge inscribed in a
triangle.

PROOF. A splinegon, like a polygon, is monotone in a direction s if it can be
decomposed into two chains monotone in directions ~. A monotone chain can
be traversed from one endpoint to the other with the ~ component strictly
increasing. Thus, a straight edge or line is monotone in every direction except
its orthogonal. A chain consisting of two edges is monotone in every direction
which has an orthogonal lying in the interior of the convex angle defined by the
two edges. But to determine if a polygonal chain is monotone, it is not necessary
to examine every edge. Suppose that the points Vl, Pl, P2, �9 - - , Pn, v2 form a convex
polygonal chain M and that the points vl, w, v2 form a triangle such that pl lies
on the line segment VlW and p, lies on v2w. Then the chain M and the chain H
defined by v~, w, v2 are both monotone in the direction s if and only if a ray
originating at w and orthogonal to ~ lies in the interior of l-vlwv2 (see Figure
10(a)). Similarly, a splinegon edge el extending from Vl to v2 for which VlW
and v2w are tight pseudoedges is monotone in a direction ~ if and only
if H is monotone. I f the pseudoedge vxw (resp. v2w) is loose, however, then
in general the monotonici ty of el coincides with the monotonicity of H. But e~
is monotone in the direction orthogonal to v~w (resp. v2w), and H is not (see
Figure 10(b)). []

THEOREM 6. The directions in which a simple splinegon of N vertices is monotone
can all be determined in O(C I N) time.

PROOF. According to Lemma 2, the monotonicity of a simple splinegon can be
determined by deciding the monotonicity of the bounding polygon and then
paying special attention to the loose pseudoedges. The Preparata-Supowit
algorithm [PS] for the polygonal case uses an approach similar to the Shamos
diameter algorithm [Sh]. Each edge of the polygon is oriented as a vector,
translated in turn to the origin. By noting whenever a sector has been swept over
more than once in moving from one vector to the next, they isolate the directions
of monotonicity. We use the Preparata-Supowit [PS] method, but integrate the
special procedures for loose pseudoedges into the main algorithm by mak ing the
following modification. Instead of processing all of the directions from vie7 to

436 D, P. Dobkin and D. L. Souvaine

)
e*vH, inclusive, as a group, process the directions between the two vectors as
a group and process the vectors vie* and e*vi+l separately according to whether
the corresponding edges were tight or loose. Orient all edges of the bounding
polygon as vectors. Assign each fixed edge a key of 1. If pseudoedge ~ (resp.
e*vi+~) is tight, associate with it a key of 1; otherwise, assign it a key of 0. We
calculate the edges of the bounding polygon, one by one, and enqueue the vectors
as translated to the origin, onto the queue L. After enqueuing all of the vectors,
push a second copy of the first. Creating the queue L costs O(G N) time.

We process the list of at most 2 N + 1 vectors one by one, retaining the significant
information in a new list M of vectors ordered by polar angle. Pop the first vector
from L and insert it into the empty list M along with its key and with three tags
all initialized to 0: the forward, the backward, and the self. These tags may assume
values in the set {0, 1, 2}. If a tag having a value of 2 is "incremented," it retains
the value 2. The last vector inserted into M is called the current vector.

If the top vector of L describes the same polar angle as does the current vector,
compare their keys. If both vectors have the same key, delete the top vector.
Otherwise keep as the current vector whichever one has the larger key and delete
the other. Consider the angle from the current vector to the top vector. If it
belongs to the interval (0, ~') (resp. (- ~ , 0)) , we shall move forward (resp.
backward) through M in order to insert the top vector. Begin by incrementing
the forward (resp. backward) tag on the current vector. Increment the self tag
only if the current vector has a key of 1 or if this move does not represent a
change in direction. Then move forward (resp. backward) through M, increment-
ing all three tags on every vector and deleting any vector having three identical
tags, until locating the position for the new vector. Pop it from L and insert it
into M, making the backward (forward) tag match the forward (backward) tag
of the vector preceding it, and the forward (backward) and self tags match the
backward (forward) tag of the vector ahead of it (see Figure 11).

Each vector is inserted into M once, requiring constant time. Each subsequent
time it is processed, all three of its tags are incremented using constant time. But
when all three tags on a vector equal 2, the vector is deleted. As each of the

>
) 8. 8" , ,

el*v2 S:0
F : I

S :0 S :1 B :2 " S,.~2
....'"".. B: I B: I ~ : ~

~1 e *V 3

4 S:I
......:" ~ B: I

t" i ":
S:0 S:0
B :0 B :0

(a) (b) (c)
Fig. 11. (a) A splinegon S and its bounding polygon Q. (b) M after three insertions. (e) M after
four insertions.

Computat ional Geometry in a Curved World 437

O(N) vectors will be processed at most three times, the cost of creating the list
M is at most O(N).

At the termination of the above algorithm, we have the partition of the polar
range [0, 2zr) by O(N) vectors, each labeled with either a 1 or a 2, into O(N)
sectors which can be identified as a 1 or a 2 by the forward and backward tags
on the vectors bounding it. Pick a pair of rays rl, r2 which form a straight angle
at the origin. In O(log N) time, determine whether rl (r2) contains a vector in
M or lies in a sector between two vectors and assign it the appropriate label.
Rotate r 1 and r2 in tandem counterclockwise around the origin, changing the
labels whenever either intersects a new vector or enters a new sector and recording
every polar-angle interval in which both rays are assigned a 1. Since the labels
change at most O(N) times, there are at most O(N) intervals reported. Thus
this process requires O(N) time. Whenever both rays are assigned a 1, T is
monotonic in the direction normal to the two rays. I f there is no angle at which
both rays are assigned a 1, then T is not monotone. []

LEMMA 3. The kernel of a splinegon S is equal to the intersection of S and the
visible regions defined by the edges of its bounding polygon Q.

PROOF. For a point within a splinegon to be visible from an edge e~ which is
concave-out, the point must lie within the wedge at the pseudovertex e* defined
by the extension of the rays v~e* and V~+le~ (see Figure 12(a)). Thus, a concave-out
curved edge from v~ to v~+~ defines the same visible region as would the pair of
straight pseudoedges v~e*~ and e*vi. If the edge is concave in, then a visible point

. . . . ~

must he within the convex region defined by the rays e*v~ and e*v~+l and by the
curved edge e~ from v~ to v~+l (see Figure 12(b)). Thus, a concave-in curved edge
from v~ to v~+~ defines a somewhat smaller visible region than that determined
by the pair of straight pseudoedges v~e~f and e* v;. That smaller region, however,
is exactly equal to the intersection of the splinegon S with region determined by
the pseudoedges. []

LEMMA 4. Given a simple splinegon S, at most one connected component of a
particular curved edge e~ can lie on the boundary of the kernel of S.

�9 " i

" , 7

J

Z : . ,

,.: . .'.,
.,.: . ".,,

" " 'A
(a)

e i
e l

t

/ � 9 e i ",,

V I + I , , . ?Vi

�9 . i

I t" . "~x

t i

(b)

Fig. 12. (a) The region visible from an edge e, which is concave-out. (b) The region visible from an
edge e~ which is concave-in.

438 D.P. Dobkin and D. L. Souvaine

! i l l" , ii ~/i~I~'i~q

K . , f l ' ' ~ _ - - r - , ' /

(a)

. , - ' " '

i " ' � 8 4 -1

i.~ ', -- --~, .v~
...i"Vi+l k t t

?q "'... .--J
V

(b)

Fig. 13. Examples for Lemma 4.

PROOF. Suppose that eil and ei2 are two distinct segments of ei, in counterclock-
wise order, both of which belong to the boundary of the kernel of S. The two
segments are joined by a convex chain of straight edges. Let k~kj+l represent the
straight edge which immediately follows ei~. The line ~ m u s t contain some
vertex q of the bounding polygon Q lying on a chain of edges which extends in
counterclockwise order from vi+~ to v;.

)
(1) Suppose that kj+~kj contains q (see Figure 13(a)). Then some chain of edges

must join vi to q. At best, q lies nearly at the point at infinity and a single
<)

edge connects vi and q. Thus v~q is nearly parallel to)c:kj+~. Even so, the
edge v~q prevents e , from participating in the boundary of K.

(2) Suppose instead that kjk:+] contains q (see Figure 13(b)). Then some chain
of edges joins v;+l to q. But for that chain of edges to permit e~l to participate �9 - - --------~ _ _
in the boundary of K, q must he to the left of k~vi+~. Then, however, k/kj+~
prevents e~2 from participating in the boundary of K. []

THEOREM 7. The kernel of a simple splinegon P of N vertices can be determined
in O((B1 + C1)N) time�9

PROOF. To compute the kernel of a simple polygon of N vertices, Lee and
Preparata [LP] developed a vertex-based algorithm which runs in O(N) time,
making a single pass around the polygon while maintaining a tentative kernel K
based on the vertices seen thus far. We review this algorithm here and then give
the modifications so that it will work for splinegons. By Lemma 3, this involves
running the original algorithm on the bounding polygon, but providing special
processing for pseudovertices, and the adjacent pseudoedges, associated with
concave-in splinegon edges. In particular, in the modified algorithm, whenever
it becomes clear that a curved edge may not contribute to the boundary of the
kernel, it is marked vacuous. Otherwise, the edge is marked potent. By Lemma
4, at most one piece of a particular curved edge ei can lie on the boundary of

Computational Geometry in a Curved World 439

the kernel of S. Thus, for each potent ei, we maintain pointers delimiting the
portion of the tentative kernel K where a segment of ei may belong.

The Lee-Preparata algorithm assumes that the first vertex vl of the polygon P
is reflex, for if no vertex were reflex, the polygon would be convex and thus serve
as its own kernel. It also assumes that the vertices are numbered in counterclock-
wise order around the boundary of P. The algorithm begins with the first vertex
and then moves from vertex to vertex. Upon reaching a vertex vi, the following
information is available:

(1) A doubly linked list of vertices which describes the boundary of the convex
region K which is visible to all edges from vN to v~. If K is unbounded, the
list is linear, and the vertices at the list tail and at the list head are both
points in the projective plane at infinity associated with a particular direction.
If K is bounded, then the list is circular and all of its vertices are finite.

(2) A pair of vertices F and L from K at maximum distance from v~ such that
v~F and v~L both support K and such that the clockwise wedge from viF ->
to ~ contains K. If K is bounded, then F and L always represent finite
points in the plane. If K is unbounded, however, F (resp. L) may represent
the point at infinity at the tail (resp. head) of K ' s list.

The computation to be performed at a vertex v~ depends upon whether that vertex
is reflex or convex. We describe the reflex case below, but omit the details for
the convex case as they are exactly symmetric and thus can be easily inferred.

Suppose that v~ is reflex and that F lies on or to the left o f ~ . Then trace
the boundary of K from F to L in the counterclockwise direction. Stop upon

>

finding a point k' where vi+lv~ intersects the boundary of K. If no such point is
found, then the kernel of P is null, so the algorithm halts. Otherwise, insert k'
in the appropriate position as a vertex of K.

Next, trace the boundary of K in the clockwise direction from k' until reaching
a second point k" of the intersection of K and v~+iv~. If we reach a point at
infinity at the list tail without discovering a point k", then let k" be the point at

)

infinity having direction v~+l v~. In either case, insert k" in the appropriate position
as a vertex of K, and set F = k". Delete all vertices of K between k' and k" in
clockwise order (see Figure 14).

Suppose that vi is reflex and that F lies to the right of ~ . In this case, K
remains unchanged.

In all cases, whether v~ is reflex or convex, before proceeding to the next vertex
v~+~, the algorithm performs a final update on both L and F. 9 Trace the boundary
of K counterclockwise beginning with L (resp. F) until finding a vertex kj such
that either kj+~ lies to the left of (resp. on or to the right of) v~+~k~ or such that
kj is the point at infinity at the list head. Set L = kj (resp. F = kj).

Lee and Preparata show that the algorithm runs in linear time since all but
two of the edges traced in attempting to revise K are always removed, since F

9 In general, whenever one of F or L is set to k" above, this final update will leave that value
unchanged. The exception is the special case where v, is convex and the line segment v,v~+ 1 contains
both k' and k". In this instance, L must be revised a second time.

440 D.P. Dobkin and D. L. Souvaine

(a)

ViA

L•l;i. I
(b)

L ' ~

(c)

/ ,

V / - 1

(o)

Fig. 14. (a) vi is reflex and F lies on or to the left of v,+~ vi. (b) v~ is convex and L lies on or to the
�9 ~ . o ------------> right of vlv~+ 1 . (c) vi is reflex and F hes to the right of vi+~vi. (d) v~ is convex and L lies to the left

-)

of v,v,+~.

and L move a round K only in a counterc lockwise direction, and since, for each
Vi+l for which there exists a p c K, Y,j=1 aj <3~-, where % represents the interior
angle of the tr iangle Apvjv~+l at p.

We make the fol lowing three modif icat ions to the L e e - P r e p a r a t a algori thm:

(1) U p o n reaching a fixed vertex vi which precedes a convex pseudover tex
e*, stop after revising K but before making final revisions to F and L. Per form
the fol lowing compu ta t ion before continuing. Suppose that the current value of

)

L is k~. Test kj in constant t ime to de termine whether it lies to the right o f viv~+l.

I f not, then mark the curved edge ei in the representa t ion of S as vacuous , for
in no way can it par t ic ipate in defining the kernel o f S (see Figure 15(a)). I f it
does, then test kj in O(B~) t ime to de termine whether it lies ei ther on or to the
right o f e~. I f this second test fails, then mark the curved edge e~ in S as po ten t
and assign it a pointer to the edge kjkj+~ in K. Also mark the edge kjkj+l in K
as the tail edge for e~. The curved edge ei may or may not par t ic ipate in defining
the kernel o f S, but a search beginning at kj and moving in the counterc lockwise
direct ion will yield the answer (see Figure 15(b)). I f the second test succeeds,
trace the b o u n d a r y of K in the clockwise direct ion f rom kj until d iscovering an

)

edge kmk,,,+j which intersects either e~ or v~v~+~. I f no such edge exists, then the
kernel o f S is null and we halt (see Figure 15(c)). I f the repor ted edge crosses

)

v~v~+~ but does not cross e~, then mark ei in S as vacuous (see Figure 15(d)). I f

Computational Geometry in a Curved World 441

" : : - K - ~ vi " L=k ei* .,r.- i

, e i

v

K,./'km
F

(d)

(c)

/

(e)

ei

Yi

Fig. 15. The five possible scenarios after revising K at a fixed vertex which precedes a convex
pseudovertex.

the reported edge does cross ei, then mark ei in S as potent, and mark k,,km+l
in Q as the tail edge for e~ (see Figure 15(e)). In either of these last two cases,
delete all vertices of K strictly between kj and k,,+l in the clockwise direction.
If ei is vacuous, then these edges would have been deleted anyway in the processing
of pseudovertex e*. If ei is potent, then e~ prevents these edges from contributing
to the boundary of the kernel of S.

(2) When reaching a fixed vertex V~+l after having just processed a convex
pseudovertex e*, determine whether e~ in S has been marked potent. If so,
perform the following computation before proceeding with the algorithm. Sup-
pose that the current value of F is kj. Since ei has been marked potent, kj must
lie to the right o f ~ Test kj in O(BI) time to determine whether it lies either
on or to the right of ei.

(a) If not, then add an extra pointer in the representation of the curved edge e~
in S to the edge kj_lkj in K, and label the edge kj_lkj as the head edge for
e~. The curved edge e~ may or may not participate in defining the kernel of
S, but a search beginning at the tail edge, moving in the counterclockwise
direction, and ending at the head edge will yield the answer (see Figure 16(a)).

442 D .P . Dobkin and D. L. Souvaine

(a)

�9 c - - - - v/

Fig. 16. The two possible scenarios after processing a pseudovertex associated with a potent curved
edge of S.

(b) If so, trace the boundary of K in the counterclockwise direction from kj
until discovering an edge kmkm+l which intersects ei. Such an edge must
exist. Add a pointer from ei in S to the edge kmkm+l and also mark kmkm+l
in Q as the head edge for ei (see Figure 16(b)). In this case, delete all vertices
of K strictly between kj and km in the counterclockwise direction. The curved
edge ei prevents these edges from contributing to the boundary of the kernel
of S.

(3) Next, we must guarantee that, as K is repeatedly revised, labels and pointers
to tail edges and head edges of potent curved edges are updated. Also, edges
which become vacuous must be so identified. The only instances in which these
updates must be made are those in which the deleted edges of K include some
portion of either one or both of the tail edge ktkt+l and head edge khkh+~ for
some curved edge e~.

(a) Suppose the deleted portion runs in the counterclockwise direction from a
point k', which lies between kh+l and k,, and ends at a point k", which lies
between kh+~ and k'. In other words, the tail edge and the head edge and
all intervening edges are all deleted. In this case, mark the curved edge e~ as
vacuous (see Figure 17(a)).

(b) Suppose the deleted portion runs in the counterclockwise direction from a
point k', which lies between k,+l and kh, and ends at a point k", which lies
between k,+l and k'. In other words, both the tail edge and the head edge
are deleted, but some of the intervening edges remain. Test k'k" for intersec-
tion with e~. If the entire segment lies to the right of e~, then the kernel of S
is null. Otherwise, mark k'k" both as the new head edge and as the new tail
edge. Adjust the pointers at e~ (see Figure 17(b)).

Use as many of the following as pertain, if and only if neither of the above cases
apply.

Computational Geometry in a Curved World 443

kh kt+l
v i n y l . . "

(a)

.,.~'~ ~IL,,.

V i ~ kt
(e)

(b)

(d) (e)

Fig. 17. Examples of preserving accurate labels for curved edges and their tail and head edges.

(c) Suppose the deleted portion runs in the counterclockwise (resp. clockwise)
direction from a point k', which lies between k, and kt+~ (resp. kh and kh§
In other words, the interior part of the tail edge (resp. head edge) is deleted.
In this case, mark k,k' (resp. k'kh+l), the remaining portion, as the new tail
(resp. head) edge for ei. Update the pointer at ei (see Figure 17(c)).

(d) Suppose the deleted portion runs in the clockwise (resp. counterclockwise)
direction from a point k', which lies between k, and k,§ (resp. kh and kh+~),
to a point k". In other words, the exterior part of tail edge (resp. head edge)
is deleted. Test the point k' to determine whether it lies to the right of ei. If
so, then mark k'k" as the new tail (resp. head) edge. If not, then mark k'k,+~
(resp. k'kh) as the new tail (resp. head) edge. Update the pointer at e~ (see
Figure 17(d)).

(e) Suppose the deleted portion runs from a point k' through both k, and k,+l
(resp. kh and kh+O, and ends at a point k". In other words, the entire tail
(resp. head) edge is deleted. Mark k'k" as the new tail (resp. head) edge and
update the pointer at e~ (see Figure 17(e)).

These three routines provide the basis for the theorem. Determining the bound-
ing polygon requires O(CI N) time. The entire Lee-Preparata algorithm runs in
O(N) time. If no tracing is done, then modification (1) requires constant time.
If n edges are traced, then n - 1 edges are deleted. Thus the tracing and the
deleting may be charged to those edges, and only O(B~) time needs be charged
to each call to modification (1). The same argument applies to modification (2).
Whenever the original algorithm revises K by deleting all vertices in a particular

444 D.P. Dobkin and D. L. Souvaine

direction between k' and k", it explicitly traces all of the intervening edges. Thus
the information about the relative positioning of head and tail edges required by
modification (3) can be computed at the same time and all marks and pointers
may be updated, incurring at most a constant charge per edge. When the main
algorithm is complete, we perform one final trace around K. We test the edges
between each tail-head pair for intersection with the respective curved edge,
and update K accordingly. This single pass around K and S requires O(B~N)
time. []

In the next algorithm the structure of the bounding polygon is used more than
the polygon itself. In fact, neither the pseudoedges nor the pseudovertices are
ever explicitly determined, for the approximation they would provide for curved
edges is not sufficiently accurate to decide which edges participate in the convex
hull. The vertex list for the bounding polygon, however, does contain an entry
for each nonstraight edge of the splinegon. Thus we apply the original Graham-
Yao polygon algorithm [GY] to the bounding polygon and yield the convex hull
of the splinegon merely by adding special procedures for processing those vertices
which were really pointers to curves rather than vertices:

THEOREM 8. The convex hull of a simple splinegon of N vertices can be computed
in time and space O((BI + C~ + D~)N).

PROOF. The Graham-Yao algorithm assumes that the vertices Vl, v 2 , . . . , Vm,
Vm+l, .. -, VN of the- simple polygon P are given in clockwise order around the
boundary, that vl is the vertex of minimum x-coordinate, and that vm is the
vertex of maximum x-coordinate. Define the path along P from v~ to vj as a
pocket of P if no vertex along the path lies to the left of the directed line segment

)

vivj; call ~ the top of the pocket; say that a vertex lies inside (resp. outside)
the pocket if it lies (resp. does not lie) in the closed region bounded by the pocket
and its top. Graham and Yao characterize the task of finding the convex hull of
P as that of identifying a circular list of vertices such that each consecutive pair
delimits a pocket of P and such that the pocket tops and the vertices form a
convex polygon (see Figure 18(a)). The set of vertices of the convex hull must
include both vl and vm and may not include any vertex lying inside a pocket of
P, except for its endpoints. Thus the convex hull problem can be divided into
two symmetric pieces: compute the top hull (resp. bottom hull) of P, which
corresponds to the left hull of the oriented chain vl, v 2 , . . . , vm-~, ~)m (resp. Vm,
V m + l ~ �9 �9 �9 ~ V N , V l) .

The left hull algorithm maintains a stack Q of candidate hull vertices, where
qo (resp. q,) represents the bottom (resp. top) element of the stack, with the
invariants that qo, q~ , . - . , q, always form a convex polygon and, for 2 - - - i - < t,
qJ-~, qi always delimit a pocket of P. To find the top hull of P, the algorithm
begins by setting q0 = vm, ql = v~, and q2 to be the first vertex lying to the left of
the directed line segment ~ After pushing a vertex vi onto the stack, the
algorithm moves from vertex to vertex along the chain, searching for the first
vertex x outside the current convex polygon. If v~§ lies to the left of q,_~q,, then
x is v;+~. Otherwise, the algorithm tests whether v~+l belongs to the pocket with

Computational Geometry in a Curved World 445

qt=ei*
V4 qt=vi

V11 V$
(a) (e) (e)

qt=ei qt=vl

v ie2 / \ "'"" .

e4*gs*
(b) (d) (tO

Fig. 18. (a) and (b) The convex hull of a simple polygon and a simple splinegon. (c) The polygon
pocket test. (d)-(f) The splinegon pocket test for convex, reflex, and fixed qt.

endpoints q, i and q,. I f so (resp. not), then x will be the first successor of/)i+1
to lie to the left of q,-lq, (resp. q,qo). Before inserting x into the stack, as many
vertices are popped from the stack as necessary so that x lies to the right of the
new q,_lq~. The algorithm uses linear time and space, as each vertex not rejected
outright is inserted into the stack exactly once and deleted at most once. At
termination, the path from q, to qo along P also forms a pocket, and thus Q
describes the top hull of P.

The splinegon algorithm is nearly identical to the polygon algorithm, but it
must consider both the fixed vertices and the pseudovertices of the bounding
polygon. In this application, however, we never compute the coordinates of the
pseudovertices explicitly; each pseudovertex merely points to a description of
the corresponding curved edge. Thus, we need to define what we mean by the
directed line segment ~ where at least one of v and w is a pseudovertex:

)
(1) vie* represents the directed line segment of maximum length which extends

from vi to a point y on e~>and which supports ej so that each point of ej lies
on or to the right of vie*.)

(2) e'v: represents the directed line segment of maximum length which extends
from a point x on ei to v~ and which supports ei at x so that each point of
ei lies on or to the right of e~ vj.

(3) e ' e * represents the directed line segment which extends from a point x on
ei to a point y on ej and which supports ei at x and ej at y so that each point
of either ei or ej lies on or to the right of e*e f .

Next, we augment our definitions of what it means for a vertex x to lie to the
left of vw:

(1) e* lies to the left o f ~ w if any portion of ej lies to the left o f~w.

446 D.P. Dobkin and D. L. Souvaine

(2) If v-~ej (resp. ej w) intersects ej only at Vj+l, we shall consider vj+l to lie to
the left of the respective directed line segment.

Given these augmented definitions, the convex hull of a simple splinegon P can
now be identified by a circular subsequence of the vertices of the bounding
polygon Q such that each consecutive pair delimits a pocket and such that a
convex splinegon is formed by the pocket tops, the fixed vertices, and the portions
of those edges identified by pseudovertices which join adjacent pocket tops (see
Figure 18(b)).

As in the polygon case, the circular list of' vertices is determined by two
applications of the left hull algorithm. However, we must first insert the points
of minimum and maximum x-coordinate as fixed vertices and renumber the
vertices accordingly. We must also define the test to determine whether a vertex

)

v immediately succeeding q, and lying on or to the right of q,-lq, lies inside a
pocket delimited by q,_l and q,. In the polygon case, the pocket test is simple:
for q, = vi, vi+~ is v and it lies inside (resp. outside) the pocket if it does (resp.
does not) lie to the left of the directed line segment ~ (see Figure 18(c)). In
the splinegon case, we have multiple cases. If q, is a reflex pseudovertex, then v
belongs to the pocket (see Figure 18(d)). If q, is a convex pseudovertex, then v
does not belong to the pocket (see Figure 18(e)). If q, is a fixed vertex v , let w
represent whichever of v~_~ and v~+~ lies closest to the line l containing q,_~q~,.
Find the intersection with both eg_l and ei of the line passing through w parallel
to /. The intersection either consists of one component from each edge, or of
both w and a second point from one edge and one component from the other.
In the latter case, discard w. Now, if the one component from e~ is to the left
(resp. right) of the one component from ei_l, then v does (resp. does not) belong
to the pocket (see Figure 18(f)).

As modified, the Graham-Yao algorithm will provide a list of vertices describing
the left hull of each half of the splinegon. That list will include both fixed vertices
and pseudovertices. A single transversal of that final list can determine which
portion of each of the curved edges associated with a listed pseudovertex actually
lies on the convex hull. Then the convex hull is formed by linking fixed vertices
and curved segments with straight segments. []

We note that Sch/iffer and Van Wyk [SV] have achieved the same result by a
different approach, as we describe in the next section.

5. Direct Approach. In the previous two sections we have presented two distinct
methods for extending polygon algorithms. The carrier polygon approach
primarily applies to extensions of algorithms on convex polygons. The bounding
polygon approach has particular application in the extension of vertex-based
algorithms. In general, however, edge-based algorithms need neither the artifice
of focusing on the carrier polygon nor the artifice of focusing on the bounding
polygon. Where the original algorithm considered the line segment from vi to
vi+~, the revised algorithm considers the curved edge e~ which joins vi to vi+t.

Computational Geometry in a Curved World 447

All that is needed is a revised procedure for processing the individual edges
which accounts for the greater freedom enjoyed by curves.

Straight polygon edges enjoy many properties which curved splinegon edges
do not. Two edges of a polygon intersect at most in a single point, or perhaps a
single line segment, whereas two splinegon edges may intersect arbitrarily often.
A line supporting two edges of a polygon passes through at least one vertex of
each edge, whereas a line supporting two splinegon edges may contain just one
interior point from each edge. A polygon edge is always monotone in every
direction but one. Some splinegon edges are not monotone in any direction,
although every splinegon edge can be divided into at most three pieces such that
each piece is monotone in the chosen direction. Two nonhorizontal polygon
edges intersect in their interiors if and only if, when the endpoints are ordered
by y-coordinate, the edges intersect the horizontal lines through the middle two
endpoints in different order. For y-monotone splinegon edges, this test establishes
the parity of the number of crossings, but nothing more. If both endpoints of a
polygon edge lie in the interior of a convex object, the entire edge lies in the
interior of that object. If both endpoints of a splinegon edge lie in the interior
of a convex object, the edge may still intersect the boundary of the object and
part of the edge may lie outside.

OBSERVATION 3 (The Direct Approach). Edge-based polygon algorithms can
be extended directly to splinegons, provided that those assumptions about the
behavior of edges which apply only to straight line segments are removed,
additional tests are inserted to accommodate the more general edges, and
splinegon edges are split into monotone pieces as necessary.

THEOREM 9. The intersection of two convex splinegons of at most N vertices each
can be computed in O (A 1 N + Cl log N + B~) time.

PROOF. We extend the method of [Sh] to compute the intersection of the two
convex splinegons P and Q, each of at most N vertices. First, we use the result
of Theorem 4 to locate a point x in the intersection of P and Q, provided one
exists. Let x be the origin of a polar coordinate system, and draw rays from x
through each of the vertices of P, dividing the plane into sectors. Pick a vertex
of Q and determine in which sector of P it lies. Scan around Q ohce, testing
each edge of Q for intersection with the relevant edges of P. Since no backtrack-
ing is done, all intersection points can be determined in O(A~N) time. The
intersection consists of chains taken alternately from splinegons P and Q with
the intersection points in between. For further details, see either [So] or
[DS2]. []

THEOREM 10 [TV]. The internal horizontal vertex visibility information for a
simple splinegon can be computed in O (N log log N + (B I + CI)N) time.

PROOF. Tarjan and Van Wyk [TV] give an O (N log log N)-time algorithm for
computing the internal horizontal vertex visibility information for a simple

448 D.P. Dobkin and D, L. Souvaine

polygon of N vertices. The horizontal line segments which join a vertex to its
visible edge or edges define a partition of the polygon into trapezoids. As they
note, their algorithm extends directly to splinegons. To do so, first add additional
vertices to guarantee that each splinegon edge is monotone in the y-direction,
using 0(C1 N) time, and adding at most 2N new vertices. Once this modification
has been made, the algorithm runs unchanged except for the fact that it computes
the intersection of horizontal lines with curved edges rather than straight edges,
an O(B~)-time process, and reports "trapezoids" bounded by a pair of horizontal
line segments and a pair of y-monotone curved edges. []

THEOREM 11 [TV]. A splinegon of N vertices can be tested for simplicity in
O(N log log N + (A1 + B~ + C1)N) time.

PROOF. By using their O(Nloglog N)-time algorithm to compute both the
internal and the external horizontal vertex visibility information for a polygon,
Tarjan and Van Wyk can detect whether a polygon is simple in O(N) additional
time. They note that the algorithm extends directly to splinegons. The splinegon
version requires a final stage: if the splinegon still appears to be simple after
running the original algorithm, test the pair of curved side-edges from each of
the trapezoids reported in either iteration of visibility testing for intersection; if
no intersections are found, the splinegon is indeed simple. This revised algorithm
runs in O(N log log N + (A 1 + B1 + q) N) time. []

THEOREM 12 [DSV]. A simple splinegon of N vertices can be decomposed into
the union of monotone pieces with simple carriers in O(N log log N + (Ba + CI)N)
time. The total number of vertices in the decomposition is O(N).

PROOF. See [DSV]. []

THEOREM 13 [DSV]. The boundary intersection and~or the area intersection of
two N-sided simple splinegons can be detected in 0 (N log log N + (A 1 + B1 + C1) N)
time.

PROOF. See [DSV]. []

THEOREM 14 [SV]. The convex hull of a simple splinegon of N vertices can be
computed in linear time and space.

PROOF. To extend the algorithm of Graham and Yao [GY] to compute the
convex hull of piecewise-smooth Jordan curves, a subset of the simple splinegons,
Sch~iffer and Van Wyk [SV] first revised the Graham-Yao vertex-based algorithm
to run as an edge-based algorithm. Thus, instead of maintaining a stack of vertices
which belong to the convex hull, the Sch~iffer-Van Wyk algorithm maintains a
stack of edges which participate in the convex hull. The main calculation on
edges in the revised algorithm consists of computing a half-plane of desired

Computational Geometry in a Curved World 449

orientation which contains both edges and whose bounding line supports both
edges. All half-planes possessing the final two properties have bounding lines
defined by endpoints of the edges. In the curved world, however, determining
the desired half-plane will require computing tangents to curves. Nonetheless,
this algorithm is extended directly to piecewise-smooth Jordan curves by adapting
the procedures for processing edges. See [SV] for details. []

6. Limitations of Splinegons. In the previous sections we have described
numerous problems where the algorithms for straight-edged polygons can be
extended to work for splinegons. Unfortunately, some things explicitly cannot
be done. Many geometric algorithms begin by decomposing simple polygons into
a disjoint set of monotone pieces, convex pieces, or triangles without adding any
new vertices. Fournier and Montuno [FM] show that polygon decomposition
into the union of convex polygons, of star-shaped polygons, of monotone poly-
gons, and of triangles are all linear-time equivalent to solving the all vertex-edge
horizontal visibility problem. As discussed in the previous section, Tarjan and
Van Wyk [TV] have recently demonstrated that all horizontal-visibility informa-
tion can be computed in time O(N log log N). Thus, decomposition of a simple
polygon into convex polygons, star-shaped polygons, monotone polygons, and
triangles can all be accomplished in O(N log log N) time.

In general, however, splinegons do not have the same flexibility. As described
in previous sections, we can determine whether a given simple splinegon is convex,
star-shaped, or monotone in O(N) time. The splinegon extensions of the Tarjan-
Van Wyk algorithms allow us either to decide whether a given splinegon is simple
or decompose a simple splinegon into the union of monotone pieces all having
simple carriers in O (N log log N) time. Decomposition of splinegons into convex
pieces, however, is problematic. Some splinegons are inherently nonconvex.
For example, a splinegon with a single edge which is concave-out can never
be decomposed as a union of convex pieces. The only efficient solution
is to decompose the original splinegon into the union of monotone pieces,
and then decompose each one into the union and difference of a collection
of convex pieces [see DSV]. The decomposition will be expressed in the form
[._Jj (UiA,j-[.J i B0), where j ranges over the number of monotone splinegons
and the A's and B's describe the decomposition of each individual monotone
splinegon. As a linear number of vertices may be added in the process, the size
of the minimum decomposition does not depend solely on the number of reflex
angles. Algorithms dependent on convex decompositions have been designed to
handle unions well. In many, difference can be easily accommodated. The
restricted ordering of the union and difference operations, however, raises ques-
tions about the usefulness of this decomposition.

Triangulation is even more problematic. Dividing an N-sided convex polygon
P into triangles is a simple linear-time procedure. By convexity, any diagonal,
an open line segment joining two nonadjacent vertices, lies in the interior of P.
Any collection of N - 2 nonintersecting diagonals divides P into triangles.
Triangulating a convex splinegon S is equally easy. Any collection of diagonals

450 D.P. Dobkin and D. L. Souvaine

\

/
/

y

\
(a) (b) (c) (d)

Fig. 19. The triangulation of trapezoids.

which triangulates P also triangulates S, and each triangle in the decomposition
is convex.

Triangulation of simple splinegons, however, is complicated. Many splinegons
cannot be triangulated without the addition of Steiner points. For example, the
splinegonal trapezoid depicted in Figure 19(a) can never be triangulated merely
by adding straight edges between existing vertices. Nor will curved edges without
inflection points between existing vertices suffice. The minimum-size triangulation
results from stretching copies of the two longer curved edges toward each other
until they touch at a point. Insert that point and the resulting four curved edges.

If triangulation requires the creation of new curved edges, then its usefulness
becomes questionable. Each splinegon, however, can be triangulated using a
linear number of line segments and a linear number of new vertices. Computing
horizontal visibility information yields a decomposition of an arbitrary splinegon
into a linear number of trapezoids. No vertex produces more than two new
vertices in the trapezoidal decomposition. A trapezoid whose side-edges are both
concave-in is convex and can be triangulated by adding either diagonal; no new
vertex is necessary (see Figure 19(b)). If one side-edge is concave-in and one is
concave-out, determine the point on the concave-out edge which is closest to the
line segment defined by the vertices of the concave-in edge; add line segments
from those vertices to the new point (see Figure 19(c)). If both side-edges are
concave-out, add the points of minimum separation on the two curved edges as
vertices. Find a line supporting one of the side-edges at its new vertex, and add
the portion of that line which connects the top and bottom edge of the trapezoid.
Add the two points of contact with the trapezoid as vertices; finally, triangulate
the interior polygon formed by the new vertices (see Figure 19(d)). At most four
vertices are added to triangulate any trapezoid.

In polygon algorithms, triangulation has two major selling points: all regions
can be triangulated without adding any new vertices; triangles are always convex.
A splinegon can also be triangulated efficiently, but the triangles may not be
convex, and a linear number of new vertices may be required. The lack of
convexity and the potential size of the new decomposition may prevent the
efficient extension of polygon algorithms dependent on triangulation.

Computational Geometry in a Curved World 451

A prime example of a polygon algorithm dependent on triangulation is Kirk-
patrick's optimal algorithm for planar point location [Ki]. ~~ He begins by triangu-
lating every region of the given planar subdivision. A hierarchy is then established
by removing an independent set of vertices and retriangulating. The efficiency of
the algorithm depends on the fact that the number of vertices constantly decreases,
and, for each v.ertex discarded, the number of triangles decreases by two. In the
splinegon case, even allowing curved triangulations, there is no such guarantee.
First, new vertices may be required to triangulate the original planar subdivision,
an acceptable one-time charge. But, as vertices are discarded, we can still get
arbitrarily complicated new regions to triangulate. The retriangulation might well
add more vertices than had been discarded.

Triangulation and convex decomposition represent a class of algorithms which
may not extend profitably to splinegons. In the graphics world the extension of
polygon edges form a convex decomposition of the plane. From any viewing
point within one convex region, the same edges are visible. The list of visible
edges need be updated only when the viewing point crosses a boundary. One
technique used in motion planning entails unfolding polyhedral objects until
they are planar. A straight path can be chosen in the plane, and then wrapped
back along the surface of the polyhedron. Duality transformations which map
lines to points, or planes to points have become an increasingly powerful tool
within computational geometry. None of these methods extend easily into the
curved world.

Does the existence of methods which do not extend to the splinegon world
mean that there are a class of problems which require asymptotically more time
in the splinegon world than they do in the polygonal world? Not necessarily.
There is some indication that alternative methods can be substituted which allow
the asymptotic complexity to remain unchanged. Edelsbrunner et al. [EGS] and
Sarnak and Tarjan [ST] have provided optimal algorithms for planar point
location which do in fact extend to splinegons. Not only do these algorithms
equal the Lipton-Tarjan algorithm and the Kirkpatrick algorithm in time and
space complexity, but they surpass the older algorithms in practicality. The
Edelsbrunner et al. result depends on monotone pieces rather than triangles
lEGS]. The monotone decomposition of splinegons is efficient and clean. Con-
sequently, their algorithm extends directly to splinegons, as they expect. The
Sarnak-Tarjan algorithm depends solely on the monotonicity of the individual
edges [ST].

It is hard to assess the degree to which alternative methods can compensate
for those methods which extend poorly from the straight world to the curved
world. It may be that monotone decomposition, for example, can make up for
whatever power convex decomposition and triangulation will lack and thus will
emerge as an increasingly powerful tool in the polygonal world as well as in the
splinegonal world. Further study is needed.

1o Lipton and Tarjan developed an optimal algorithm for this problem some years earlier [LT1],
[LT2]. A significant theoretical achievement, their algorithm is much harder to implement than
Kirkpatrick's.

452 D.P. Dobkin and D. L. Souvaine

7. Higher-Dimensional Extensions. The extension of the development above to
three dimensions raises interesting mathematical questions. The basic question
is how to characterize three-dimensional curved objects. This question is not fully
resolved since two reasonable alternatives are possible, and yet neither accommo-
dates the full spectrum of real-world three-dimensional objects. This section
presents these two definitions of a splinehedron S as a modification of a carrier
polyhedron P. We discuss the effect of the choice of definition both on the range
of objects accommodated and on the applicability of each of the approaches
used in two dimensions, and sketch one concrete result using the first model.

We begin by defining a splinehedron as a modification of a carrier polyhedron
P in which each face of P is replaced by a curved surface bounded by the same
vertices and edges. The ith face f of S together with the corresponding face Pi
of P must enclose a convex region S-segi. A convex splinehedron both encloses
a convex region and has a convex carrier polyhedron.

This splinehedron model limits us to objects whose curved faces join in straight
line segments but is attractive in that it allows direct extension of the three main
splinegonal methods into the three-dimensional world. The carrier polyhedron
approach still works. Given a convex splinehedron S, the plane defined by the
ith face Pi of the carrier polyhedron P divides space into two half-spaces. The
"outside" half-space contains the convex region S-segi, and the "inside" half-
space contains the convex splinehedron S~ = S-S-segi . S~ can be considered a
convex polyhedron which is supported by the given plane along a face. Further-
more, the convexity of S dictates that S-seg~ is enclosed in the solid defined by
the "outside" half-space determined by pi of P and by the "inside" half-spaces
determined by the faces adjacent to p~. Consequently, without any direct manipu-
lation of curved faces, the behavior of S can be reasonably approximated.

This splinehedron model readily accommodates the bounding polyhedron
approach. Given an arbitrary splinehedron S, we create a bounding polyhedron
Q. Q contains all of the original vertices and all of the original edges of S, the
fixed edges and fixed vertices. For each triangular f a ce f of S which is not planar,
let f~* represent the point of intersection of the three planes each of which supports
f along an edge. 1~ As in the two-dimensional case, this point may have finite
coordinates, or may represent a point at infinity. The pyramid defined by Pi and
the pseudovertex f~* contains S-seg~. Insert the pseudovertex f * into Q along
with pseudoedges joining it to each of the fixed vertices of f . A face bounded
only by fixed edges is called a fixed face. Otherwise, it is a pseudoface.
A pseudoface is considered loose if its only intersection with the curved face it
supports is the fixed edge. If the intersection has positive area, the pseudoface
is considered tight.

A face-based polyhedron algorithm can be extended to a face-based splinehe-
dron algorithm in this model using the direct approach. A face of the splinehedron

1~ l f f has more than three vertices, then the tangent planes defined by its edges may not intersect
in a single point. This irregularity does not present a problem. We still insert a single pseudovertex
f/* into Q, but f,* will represent the collection of vertices defined by the intersection of the tangent
planes as well as the line segments which connect them.

Computational Geometry in a Curved World 453

resembles a face of a polyhedron in that it is bounded by a collection of vertices
and line segments. In extending a polyhedron algorithm, however, all assumptions
based on the flatness of the faces (e.g., the monotonicity of faces, that the
intersection of two faces consists of a single component) must be updated.

Although each of the carrier polyhedron, bounding polyhedron, and direct
approaches applies to this model, our only example uses the carrier polyhedron
approach:

THEOREM 15. The intersection of two preprocessed convex splinehedra of at most
Nvertices each can be detected in O((A2 + B1) log N + (C2 + E2) log 2 N) operations.

PROOF. The algorithm for detecting the intersection of two splinehedra follows
that of the polyhedron algorithm of [DK1]. Each splinehedron will be represented
as a sequence of parallel splinegonal cross-sections, one per vertex, and all their
connecting faces and edges. Each cross-section of the splinehedron forms a
splinegon having the corresponding cross-section of the carrier polyhedron as a
carrier polygon. Each pair of adjacent splinegonal cross sections and all of their
connecting edges and faces describe a splinedrum whose side faces are curved
patches. The carrier polygons for these adjacent splinegonal cross sections
together with their connecting edges and faces describe a carrier drum for the
splinedrum (see Figure 20). Thus a splinehedron can be viewed as a sequence
of splinedrums. Each splinedrum can be specified by a circular list of its side-
edges, pointers to the description of the individual curved side-faces, and the
planes containing the top and bottom faces. The algorithm centers around
detecting the intersection of the two middle splinedrums. In each instance in
which the two splinedrums do not intersect, half of one splinehedron may be
removed from future consideration. See either [So] or [DS2] for details. []

In the model described above, a splinehedron is defined from its carrier
polyhedron: the vertex list and the edge list remain unchanged; each face entry
is modified to contain an equation of the surface in which the face lies. Under
this definition, adjacent curved faces must join together at a straight line segment--

Fig. 20. A splinedrum defined on two adjacent splinegonal cross sections and its carrier drum defined
on two adjacent polygonal cross sections.

454 D.P. Dobkin and D. L. Souvaine

not what happens in practice! Our second model allows each edge entry to be
modified to include an equation of the planar curve which joins its two vertex-
endpoints and which separates the two faces. 12 The ith face of the splinehedron
S together with the corresponding face of the carrier polyhedron P and each
plane defined by a curved edge of S and the corresponding straight edge of P
bound a convex region S-segi.

Allowing each face of P to be replaced by a curved surface containing the
vertices of the original face but having curved edges more adequately reflects the
real world. This model, however, dramatically alters the efficacy of the three
methods of polyhedron extension. A splinehedron in this model still has a carrier
polyhedron, but it no longer approximates the splinehedron as welt as it did in
the restricted model. Given a convex splinehedron S, the plane defined by the
ith face Pi of its carrier polyhedron P divides space into two half-spaces. The
"outside" half-space contains the convex region S-se&, but also some portion of
each of the adjacent S-seg's and possibly some part of an unlimited number of
other neighboring S-seg's. The "inside" half-space contains the remainder, a
convex splinehedron which cannot be defined explicitly without specific calcula-
tions for each instance of S and i. In addition, the solid defined by the "outside"
half-space determined by pi of P and by the "inside" half-spaces determined by
the faces adjacent to Pi no longer contains S-se&. W h en ev e r f represents a curved
face all of whose edges are curved, then each of those edges as well as a
neighboring region will be excluded from the solid.

The bounding polyhedron approach is even more problematical. A bounding
polyhedron should contain all of the original vertices of a splinehedron as well
as a collection of pseudovertices which approximate the faces. The previous
method of defining the bounding polyhedron is no longer valid. Once edges are
defined as curves, there no longer exists a single plane which supports a face
along an entire edge, approximating the face in the neighborhood of that edge.
Only one alternative method seems promising. For each triangular face f of S
which is not a planar polygon, let f * represent the point of intersection of the
three planes each of which is tangent to f at a vertex. The pseudovertices of the
form f * only form a subset of the new vertices which must be inserted into Q.
Neighboring pyramids will intersect each other forming numerous new vertices
and edges. The bounding polyhedron defined in this fashion could have as many
vertices as the sum of the number of faces of S with three times the number of
vertices.

The direct approach is also adversely affected, but not to the same extent.
A face of a splinehedron under this model has a smaller resemblance to a face
of a polyhedron. Not only is the face not flat, it also does not have a planar
boundary, let alone a piecewise-straight planar boundary. The modifications
which must be made to a polyhedron algorithm become far more complicated.

See [DS2] for a description of the effect of the alternative model on intersection
detection.

12 We restrict an edge to being a planar curve because a nonplanar edge would dramatically complicate
the model.

Computational Geometry in a Curved World 455

8. Conclusion. We give here a series of observations which provide an algorith-
mic basis for extending linear algorithms into curved space. These observations,
though simply stated, give rise to powerful results in the computational geometry
of curved objects.

To recapitulate:

OBSERVATION 1 (Carrier Polygons). The carrier polygon imposes sufficient
structure on a convex splinegon that polygon algorithms can be extended to
splinegons with the only modification being ad hoc procedures to allow for all
possible behavior of S-segi and its bounding triangle S-trij. Only infrequently
will an examination of the precise behavior of e~ be necessary. Although
the carrier polygon seems to be most useful for convex polygons, it can
also be an important tool in processing monotone splinegons, but only if it is
simple.

OBSERVATION 2 (Bounding Polygons). When the carrier polygon itself is
insufficient, it may often be enhanced by adding further structure based solely
on the local structure of the splinegon. This structure results in a bounding
polygon with fixed vertices corresponding to vertices of the splinegon and
pseudovertices corresponding to edges of the splinegon. Insofar as possible,
computations involving the polygon in the linear case now involve the bounding
polygon with only local attention to the splinegon's curved edges.

OBSERVATION 3 (The Direct Approach). Edge-based polygon algorithms can
be extended directly to splinegons, provided that those assumptions about the
behavior of edges which apply only to straight line segments are removed,
additional tests are inserted to accommodate the more general edges, and
splinegon edges are split into monotone pieces as necessary.

We have presented three strategies for generalizing straight-line algorithms to
apply to curved objects. The results listed in Table 1 demonstrate the efficacy of
these approaches and suggest a broader applicability. Numerous other extant
algorithms for polygons could be generalized by carefully applying the techniques
given here, and we encourage readers of this paper to do so. In the future,
however, we hope that developers of new algorithms for computational geometry
problems will apply these strategies at the outset in order to state their results as
generally as possible.

Despite the efficacy of these techniques, we conjecture that there are other
two-dimensional problems of geometry for which none of the approaches we
describe is sufficient. Furthermore, many issues in three-dimensional curved
geometry remain unresolved. Additional research is necessary. There also remain
the open problems of finding techniques to realize the splinegon oracles. These
would be particularly interesting for specific cases of curves (e.g., piecewise
cubic, or polynomial in degree d). Recent work by Bajaj and Kim addresses this
issue [BK].

456 D.P. Dobkin and D. L. Souvaine

Table 1

Problem Approach Time complexity

Intersection detection of a line with a
convex splinegon Carrier

Intersection detection of two convex
splinegons Carrier

Intersection detection of convex splinegon
and splinedrum Carrier

Intersection detection of two convex
splinedrums Carrier

Intersection detection of two convex
splinehedra Carrier

Testing point inclusion for a convex
polygon using hierarchy Carrier

Testing point inclusion for a convex
splinegon Carrier

Area computation for an arbitrary
splinegon Carrier

Diameter computation for a convex
splinegon Bounding

Monotonicity determination for a simple
splinegon Bounding

Kernel computation for a simple splinegon Bounding
Convex hull computation for a simple

splinegon Bounding
Intersection computation for a convex

splinegon Direct
Horizontal visibility computation for a

simple splinegon [TV] Direct
Simplicity testing for an arbitrary splinegon

[TV] Direct
Monotone decomposition of a simple

splinegon [DSV] Direct
Intersection detection for two simple

splinegons [DSV] Direct

O(B 1 +log N)

O(A l + B 1 + C l log N)

0((C1+E2) log N + A1+ Bi + E~)

O(C 2 log N + A2)

O((A 2 + B 1) log N + (C 2 -~" E2) log 2 N)

O(log N)

O(B~ +log N)

O(F,N)

O((A, + CI)N)

O(CIN)
O((BI +C1)N)

O((B l+ C I + D~)N)

O(A 1N + C 1 log N + B l)

O(N log log N + (B 1 + C1)N)

O(N log log N + (A~ + B, + C~) N)

O(N log log N + (B~ + C1)N)

O(N log log N + (A~ + B, + C1) N)

Acknowledgment. W e a r e i n d e b t e d b o t h to C h r i s V a n W y k a n d to a n a n o n y m o u s

r e f e r e e fo r t h e i r c a r e f u l r e a d i n g o f t h i s p a p e r a n d t h e i r n u m e r o u s c o n s t r u c t i v e

s u g g e s t i o n s .

References

[BK]

[CD]

[DK1]

[DK2]

Bajaj, C., and Kim, M.-S., Algorithms for planar geometric models, Proceedings of the
15th ICALP, Tampere, Finland, LICS 317, Springer-Verlag, Berlin, 1988.
Chazelle, B., and Dobkin, D., Intersection of convex objects in two and three dimensions,
Journal of the Association for Computing Machinery, 34, 1987, t-27. A preliminary version
of this paper, entitled "Detection is easier than computation," appeared in the Proceedings
of the ACM Symposium on Theory of Computing, Los Angeles, CA, May 1980, pp. 146-153.
Dobkin, D., and Kirkpatrick, D., Fast detection of polyhedral intersections, Theoretical
Computer Science, 27, 1983, 241-253.
Dobkin, D., and Kirkpatrick, D., A linear algorithm for determining the separation of
convex polyhedra, Journal of Algorithms, 6, 1985, 381-392.

Computational Geometry in a Curved World 457

[DSi]

[DS1]

[DS2]

[DSV]

[EGS]

[Fo]

[FM]

[GY]

[HMRT]

[HK]

[Km]
[rd]

[Kn]

[LP]

[LT1]

[LT2]

[Me]

[Pal
[Pr]
[PS]

[Re]

[ST]

[sv]

[Sh]

[Sm]

[So]

[TV]

Dobkin, D., and Silver, D., Recipes for geometry and numerical analysis--part I: an
empirical study, Proceedings of the ACM Symposium on Computational Geometry, Urbana,
IL, 1988, pp. 93-105.
Dobkin, D., and Souvaine, D., Computational geometry--a user's guide, in Advances in
Robotics 1: Algorithmic and Geometric Aspects of Robotics (J. T. Schwartz and C. K. Yap,
eds.), Erlbaum, Hillsdale, N J, 1987, pp. 43-93.
Dobkin, D., and Souvaine, D., Detecting and computing the intersection of convex objects,
submitted for publication.
Dobkin, D., Souvaine, D., and Van Wyk, C., Decomposition and intersection of simple
splinegons, Algorithmica, 3, 1988, 473-486.
Edelsbrunner, H., Guibas, L. J., and Stolfi, J., Optimal point location in a monotone
subdivision, DEC System Research Report, October, 1984.
Forrest, A. R., Invited talk on computational geometry and software engineering, ACM
Symposium on Computational Geometry, Yorktown Heights, NY, June, 1986.
Fournier, A., and Montuno, D. Y., Triangulating simple polygons and equivalent problems,
A C M Transactions on Graphics, 3, 1984, 153-174.
Graham, R. L., and Yao, F. F., Finding the convex hull of a simple polygon, Journal of
Algorithms, 4, 1983, 324-331.
Hoffman, K., Mehlhorn, K., Rosensthiehl, P., and Tarjan, R., Sorting Jordan sequences
in linear time using level-linked search trees, Information and Control, 68, 1986, 170-184.
Hopcroft, J., and Kraft, D., The challenge of robotics, in Advances in Robotics 1: Algorith-
mic and Geometry Aspects of Robotics (J. T. Schwartz and C. K. Yap, eds.), Erlbaum,
Hillsdale, N J, 1987, pp. 7-42.
Kim, M., private communication, November 17, 1987.
Kirkpatrick, D., Optimal search in planar subdivisions, SIAM Journal on Computing, 12,
1983, 28-35.
Knuth, D., Computers and Typesetting, Vol. C: The METAFONTbook, Addison-Wesley,
Reading, MA, 1986.
Lee, D. T., and Preparata, F., An optimal algorithm for finding the kernel of a polygon,
Journal of the Association for Computing Machinery, 26, 1979, 415-421.
Lipton, R., and Tarjan, R., A separator theorem for planar graphs, SIAM Journal of
Applied Mathematics, 36, 1979, 177-189. A preliminary version of this paper was presented
at the Waterloo Conference on Theoretical Computer Science, Waterloo, Ontario, August,
1977.
Lipton, R., and Tarjan, R., Applications of a planar separator theorem, Proceedings of
the IEEE FOCS Conference, Providence, RI, October 1977, pp. 162-170.
Mehlhorn, K., Multi-dimensional Searching and Computational Geometry, Springer-Verlag,
Berlin, 1984.
Pavlidis, T., Curve fitting with conic splines, A C M Transactions on Graphics, 2, 1985, 1-31.
Pratt, V., Techniques for conic splines, Computer Graphics, 19, 1985, 151-159.
Preparata, F., and Supowit, K., Testing a simple polygon for monotonicity, Information
Processing Letters, 12, 1981, 161-164.
Requicha, A., Representations for rigid solids: theory, methods and systems, Computing
Surveys, 12, 1980, 437-464.
Sarnak, N., and Tarjan, R. E., Planar point location using persistent search trees, Communi-
cations of the ACM, 29, 1986, 669-679.
Sch~iffer, A. A., and Van Wyk, C. J., Cdnvex hulls of piecewise-smooth Jordan curves,
Journal of Algorithms, 8, 1987, 66-94.
Shamos, M., Geometric complexity, Proceedings of the ACM Symposium on Theory of
Computing, Albuquerque, NM, May, 1975, pp. 224-233.
Smith, A. R., Invited talk on the complexity of images in the movies, ACM Symposium
on Computational Geometry, Yorktown Heights, NY, June, 1986.
Souvaine, D. L., Computational Geometry in a Curved World, Ph.D. Thesis, Princeton
University, October, 1986.
Tarjan, R. E., and Van Wyk, C. J., An O(n log log n)-time algorithm for triangulating
simple polygons, SIAM Journal of Computing, 17, 1988, 143-178.

