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Computational Geometry in a Curved World ! 

David  P. D o b k i n  2 and Diane  L. Souvaine  3 

Abstract. We extend the results of straight-edged computational geometry into the curved world by 
defining a pair of new geometric objects, the splinegon and the splinehedron, as curved generalizations 
of the polygon and polyhedron. We identify three distinct techniques for extending polygon algorithms 
to splinegons: the carrier polygon approach, the bounding polygon approach, and the direct approach. 
By these methods, large groups of algorithms for polygons can be extended as a class to encompass 
these new objects. In general, if the original polygon algorithm has time complexity O(f(n)), the 
comparable splinegon algorithm has time complexity at worst O(Kf(n)) where K represents a 
constant number of calls to members of a set of primitive procedures on individual curved edges. 
These techniques also apply to splinehedra. In addition to presenting the general methods, we state 
and prove a series of specific theorems. Problem areas include convex hull computation, diameter 
computation, intersection detection and computation, kernel computation, monotonicity testing, and 
monotone decomposition, among others. 

Key Words. Computational geometry, Splinegon, Curve algorithm, Convexity, Monotonicity, Inter- 
section, Kernel, diameter decomposition. 

I.  Introduct ion-- the  Need for Algorithms on Curvilinear Objects.  As the name 
of the field suggests, computational geometry concerns the algorithmic aspects 
of geometric problems. As such, the span of the field should include algorithms 
for reasonable objects definable in reasonable geometries. Until recently, the 
majority of the results obtained have been restricted to a small class of geometric 
objects: points, lines, line segments, polygons, planes, and polyhedra. Despite 
the extensive body of algorithms and algorithmic techniques for objects defined 
with straight edges and flat faces, few of its results apply directly to problems of 
the real world. Solid modeling systems build objects by patching together surface 
patches that are defined via bicubic splines or quadratic splines [Re]. Motion- 
planning problems that need to be solved for the advancement of robotics typically 
involve motion of curved objects through barriers having curved shapes [HK]. 
Modern font design systems rely upon conic and cubic spline curves [Pal, [Pr], 
[Kn]. Numerous applications need efficient algorithms for processing curved 
objects directly [Sm], [Fo]. 

Prior to the second author's doctoral dissertation [So], written under the 
supervision of the first author, few algorithms treated curved objects, other than 
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circles and spheres, directly [SV], [HMRT].  Instead, the way to tackle arbitrary 
real objects has been to approximate them first as polygons or polyhedra of  a 
sufficient number of  vertices for the particular application. This process is gen- 
erally quite unsatisfactory [Sm], [Fo]. This paper presents the main core of  the 
results from [So]. Two additional papers contain other aspects of  that work, as 
well as some further research in the area [DSV], [DS2]. 

This paper contains a set of  recipes that can be used to determine if a result 
in the linear convex world can apply in the curvilinear world and if so to determine 
the best method of  translating the result. We supplement this with numerous 
applications to existing algorithms, demonstrating that curved objects can indeed 
be processed efficiently. Furthermore, as new algorithms are developed for straight 
objects, it will often be possible to state them for curved objects with no extra 
machinery. These contributions should aid both producers and consumers of 
geometric algorithms. 

We begin by stating the definition of a new geometric object, the splinegon, 
which is general enough to describe almost every closed curve and structured 
enough to allow large groups of  algorithms for polygons to be extended as a 
class to encompass these new objects. We identify three general methods for 
translating groups of  algorithms for linear objects to algorithms for splinegons: 
the carrier polygon approach, the bounding polygon approach, and the direct 
approach. In general, if the original polygon algorithm has time complexity 
O( f (n ) ) ,  the comparable splinegon algorithm has time complexity at worst 
O (Kf (n ) )  where K represents a constant number of  calls to a series of primitive 
procedures on individual curved edges. 

2. The Splinegon and Its Properties. The extension of algorithms designed for 
the world of  straight-edged objects into the world of curved objects requires the 
definition of  a new abstract object which can mediate between these two worlds. 
We call this new object a splinegon. First, we give a formal definition of  the object 
as a curved extension of  a straight-edged polygon, and then we describe the 
process of  structuring an arbitrary curved object as a splinegon, choosing vertices 
which relate the splinegon to an inferred polygon. We also isolate the few curved 
objects which cannot be formulated as splinegons. 

A splinegon S can be formed from a polygon P on n vertices, v~, v2 . . . .  , v,, 
by replacing each line segment vivi+~ with a curved edge ei which also joins vi 
and v~+~ and which satisfies the following condition: the region S-seg~ bounded 
by the curve e~ and the line segment v~v~+~ must be convex. 4 The new edge need 
not be smooth; a sufficient condition is that there exists a left-hand and a 
right-hand derivative at each point p on the splinegon. If  $-seg~ c S, then we say 
that the edge e; is concave-in. Otherwise, we say that the edge ei is concave-out. 
The polygon P is called the carrier polygon of  the splinegon S. 

Splinegons can be categorized much as polygons are. If  the only edge intersec- 
tions are those between two adjacent edges at their common vertex, then the 

4 Subscripts are always interpreted modulo n. 
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Fig. 1. (a) A simple splinegon with a simple carrier polygon; (b) a nonsimple splinegon; (c) a 
monotone splinegon in the x-direction with a nonsimple carrier polygon; and (d) a star-shaped 
splinegon and its kernel. 

splinegon is said to be simple. I f  other edge intersections exist, then the splinegon 
is called nonsimple. A splinegon may be classified as a monotone splinegon in 
some distinguished direction f if it satisfies the following criterion: let m (resp. 
M )  represent the point on the splinegon having the smallest (resp. largest) 
component  in the ~ direction; the points m and M split the splinegon into two 
monotone  chains of  splinegon edges such that in traversing either chain from m 
to M the ~ component  strictly increases. A star-shaped splinegon contains at least 
one point w in its interior so that each line segment from w to a point on the 
boundary  of  the splinegon lies within the splinegon. The collection of all such 
points w is called the kernel of  the splinegon. The carrier polygons for splinegons 
in these four  categories may or may not be simple (see Figure 1). 

A convex splinegon S encloses a convex region. Clearly, any sequence of  three 
or more points selected in order along the boundary  of  S defines a legitimate 
carrier polygon P. The convexity of  S guarantees the convexity of  P. We define 
a triangle to be a simple splinegon of three vertices. Since we have made no 
restriction that edges of  splinegons be smooth, any arbitrary convex polygon of  
n vertices may be considered a splinegonal triangle. Although in the polygonal 
world a triangle is necessarily convex, a splinegonal triangle has no suc h restriction 
(see Figure 2). 

We can now categorize the set of  planar curves definable as splinegons: 
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Fig. 2. (a) A convex splinegon, (b) a convex triangle, and (c) a nonconvex triangle. 
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THEOREM 1. Any closed planar curve S can be considered a splinegon provided 
that the following two conditions are satisfied: S has only a finite number of  inflection 
points; and any infinite line 1 intersects S in at most a finite number of  points or 
line segments. I f  either condition is not met, no splinegon is possible. 

PROOF. TO determine a carrier polygon for a curve S, we begin by tracing about 
the curve in counterclockwise order, inserting all inflection points as vertices of  
a tentative carrier polygon P. We now describe two methods for choosing addi- 
tional vertices for the carrier polygon within each tentative ei. 

The first method requires less computat ion,  but adds more vertices than 
necessary and yields an unwieldy carrier polygon, with overlapping, collinear 
edges. Trace S in counterclockwise order, moving from vertex to vertex. At every 
edge ei, add as a vertex of  P each single point and the endpoints of  any line 

( ) 
segments of  the intersection of  the line l)ivi+ 1 with e~. Add all new vertices to P 
in the order in which they are encountered on tracing e~ from v~ to vi+ 1 (see 
Figure 3(a)). 

t 

~ [ i l  (a) (b) 
Fig. 3. An edge ei of S when its carder  polygon P contains only inflection points. (a) The vertices 
added by method 1. (b) The vertices added by method 2. 
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The second method requires more computation, but adds fewer vertices and 
�9 

yields a more manageable carrier polygon�9 Let l;1 (resp. ,~-2) represent the line 
tangent to e~ at vi (resp. Vi+l). Trace S in counterclockwise order, moving from 
vertex to vertex. Stop at each edge e~. If  the line 1~1 intersects e~ in a single point 
(rather than a line segment) other than v~, insert the first such point encountered 
on tracing ei from v~ to v~+~ into the vertex list for P, making it the next vertex 
to be visited and splitting the current edge into two pieces. Repeat this process, 
tracing the curve in clockwise order and testing each edge e~ for intersection with 
li2 (see Figure 3(b)). 

Both methods terminate, provided that there are a finite number of inflection 
points and intersection points�9 If  either condition is not met, no splinegon can 
be produced. [] 

It is possible to define planar curved objects which are not splinegons. For 
example, the following three segments define a closed curve which contains an 
infinite number of  inflection points, all lying on the x-axis: 

y=xsin(1/x) for x ~ (0, 2/7r]; 

y=2/zr for x ~ (0, 2/7r]; 

x = 0  for y c  [0, 2 /~ ] .  

The following four segments define a closed curve which intersects any line 
through the origin in an infinite number of  distinct points: 

r=l/O for 0 c [27r, + ~ ) ;  

r = 1 / (0+Tr)  for 0 e [2~-, +co); 

0 = 0  for r~[1/37r, 1/2rr]; 

(r, 0) = (0, 0). 

Neither of  these two objects, however, arises in practice�9 Real-world planar curved 
objects can be Iconstituted as splinegons. 

For a closed planar curve $, either method of  determining a carrier polygon 
produces a splinegon with far fewer vertices, in general, than any polygon which 
would adequately approximate the curve. Primitive procedures on splinegons, 
however, are more complicated than those on polygons�9 Determining the intersec- 
tion of two line segments, for example, is a well-understood, and often imple- 
mented, process requiring constant time. 5 The complexity of  determining the 
intersection of two curved segments depends on the complexity of the curves 
themselves. Consequently, our analyses of  algorithm complexity are given both 
in terms of  operations and calls to oracles for primitive procedures. We include 
here three-dimensional versions of  the oracles which will be used in Section 7. 

5 As Forrest [Fo] and others remind us, however, in a world where round-off error exists, even line 
segment intersection is not a solved problem. We ignore such questions here. The interested reader 
is referred to [DSi]. 
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Compute the intersection of  two curved edges (faces) or the 
maximum and minimum separation between them. 
Compute the intersection of  a line with a curved edge (face). 
Given a curved edge (face) and either a direction or a point, 
report both the point and the direction of  a line (plane) that 
supports the edge (face) at that point. 
Determine the line (plane) which supports a pair of  curved 
edges (faces). 
Compute the intersection of  a plane with a curved edge (face). 
Compute the area (volume) bounded by a curved edge (face) 
and by the corresponding edge (face) of the carrier polygon 
(polyhedron). 

The complexity of  each primitive procedure would be a constant in any domain 
where we restricted splinegon edges. 

3. The Carrier Polygon Approach. The carrier polygon approach is particularly 
useful for processing convex splinegons. Algorithms for convex polygons often 
exploit a pair of  key properties: 

(a) Given any point x on the boundary of a planar convex object S, there exists 
a supporting line I through x which divides the plane into two half-planes: a 
closed half-plane containing all of S; and an open half-plane containing no 
point of  S. If  S is a polygon of  n vertices, then the set of  n lines formed by 
extending each of  the n edges of S is sufficient to supply a supporting line 
for S at each point on its boundary. 

(b) Given any direction in the plane, there exists a pair of lines ml and m2 in 
that direction such that both rnl and rn2 are supporting lines for S and the 
region bounded by ml and m2 completely contains S. If  S is a polygon of  n 
vertices, then the intersection of each of ml and m2 with S must include at 
least one of  the n vertices. 

Direct extension of these algorithms to splinegons requires an excessive number 
of  operations on curved edges. Indeed, an uncountable number of  lines are 
required to provide a line of support at each boundary point of a convex splinegon. 
Thus, in applying property (a), the line of support at a given point x would have 
to be computed individually. Likewise, an uncountable number of  points are 
necessary to provide a boundary point of  the splinegon lying on each possible 
supporting line. Thus, in applying property (b) to splinegons, finding a point of  
S lying on each of  m~ and m2 would require calculations using curved edges. 

Focusing on the carrier polygon avoids many of the direct manipulations of  
the curved edges. For each convex splinegon S, the carrier polygon P is itself 
convex, P ___ S and S = P u (t..Ji S-segi). The line defined by two adjacent vertices, 
r ) 
v~v~+~, divides the plane into two half-planes: the "outside" half-plane contains 
the convex region S-seg~; the "inside" half-plane contains a splinegon Si = 
S - S - s e g ~  which is supported by vivi+~ along an edge. Each S-seg~ lies within a 
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VI+2 

Fig. 4. A convex splinegon S divided into S~ and S-seg. 

( ) <--.-----------..~ 

triangle S-tri~ defined by v~vi§ v~_iv~ and vHv~§ (see Figure 4) .  6 P u ((_J~ S-tri~) 
forms a star-shaped polygon whose kernel is 19. 

OBSERVATION 1 (Carrier Polygons). The carrier polygon imposes sufficient 
structure on a convex splinegon that polygon algorithms can be extended to 
splinegons with the only modification being ad hoc procedures to allow for all 
possible behavior of S-seg~ and its bounding triangle S-tri~. Only infrequently 
will an examination of the precise behavior of ei be necessary. Although the 
carrier polygon has particular use with convex polygons, if it is simple, then it 
also aids in processing monotone splinegons. 

This observation enables us to adapt the algorithms of [CD] and [DK1] to 
process splinegons as well as to develop an original algorithm for point inclusion 
both for convex polygons and for convex splinegons. 

THEOREM 2. The intersection of a line with a convex splinegon of N vertices can 
be computed in O(B1 +log N )  operations (see Figure 5). 

S S 

(a) (b) 

Fig. 5. Examples of  Theorem 2. 

r 

(c) 

6 Note that S-tri i may be unbounded.  
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PROOF. TO compute the intersection of a line l with a convex splinegon S, first 
run the Chazel le-Dobkin polygon algorithm [CD] on the carrier polygon P. I f  
there is no intersection, that algorithm will report the vertex v~ of the polygon 
which is closest to I. Although l does not intersect P, it may still intersect one of 
S-segi_l or S-segi. (The convexity of S dictates that l cannot intersect both.) 
Consequently, we use oracle B~ to test l against e~_~ and eg. In the case that the 
intersection of l with P consists of  a single vertex v~, again I may also intersect 
either S-seg~_~ or S-seg~. Testing the line against both ei_l and ei is sufficient to 
determine the splinegon-line intersection. I f  the polygon algorithm reports the 
intersection as v~v~+l, an entire edge of P, or as vgvj, a diagonal of  P, then the 
intersection of l and S also consists exactly of  that segment. I f  the polygon 
algorithm reports the intersection as a line segment with endpoints on two different 
edges of  the carrier polygon, vgvi+~ and v~vj§ testing the line against the corre- 
sponding curved edges e~ and ej determines the endpoints of  the segment forming 
the splinegon-line intersection. After running the polygon algorithm in O(log N )  
time, the subsequent special cases each require at most two calls to oracle B~. 
Thus the entire process requires O(B~ + log N )  time, using asymptotically fewer 
oracle calls than simple operations. [] 

Chazelle and Dobkin [CD] show that the inclusion of a point in a convex 
polygon of N vertices can be decided in O(log N )  operations by their algorithm 
for computing the intersection of a line with a convex polygon. In recent years, 
however, the hierarchical searching method has emerged as a potent tool in the 
field of  computat ional  geometry [Ki], [DK2],  [DS1]. The following dichotomy 
makes the convex splinegon an abstract object ideally suited for hierarchical 
processing. An algorithm for an N-sided polygon requires many iterations when 
N is large, but primitive operations on edges require only constant time. I f  an 
N-sided convex polygon is viewed as a splinegonal triangle, primitive operations 
on the "edges"  require time proportional  to N, but each algorithm has a constant 
number  of  iterations. 

THEOREM 3. The inclusion of  a point in a convex polygon of  N vertices can be 
decided in O(log N)  operations using the hierarchical method. 

PROOF. Various proofs of  this theorem exist (see, e.g., pp. 85-86 of [Me]). We 
include the proof  here for completeness. 

Given a convex polygon P on N vertices, v~, v2 . . . . .  vN, we develop a hierarchy 
of splinegons all having the same boundary as P, but having carrier polygons of  
fewer vertices. We assume for ease of explanation that N = 3(2 k) for some k. We 
recast P as a triangular splinegon S k with a carrier polygon pk whose three 
vertices v k, v2 k, v k are all original vertices of  P. The vertices v k are chosen so 
that N / 3  - 1 of  P ' s  original vertices lie in the interior of  each of the three "curved"  
edges of  S k. 

To create a splinegon S i-1 from a splinegon S i in the hierarchy, insert each 
vertex vj of  S ~ as a vertex of S ~ 1. In addition, insert the median original vertex 
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Fig. 6. (a) A sample polygon P on 12 vertices; (b) a splinegon $1; and (c) a splinegon S 2. 

i S i. i lying in the interior of  each edge ej of  After performing this process k mj 
times, we achieve a splinegon S O which is identical to its carrier polygon pO and 
to the original polygon P (see Figure 6). 

To test whether a point x lies within the convex polygon P, we begin by 
determining in constant time whether x lies within the straight-line triangle pk. 
I f  it does, we are done. I f  not, then x must lie outside of  at least one of  the lines 
~ .  I f  x lies outside of  two of  the lines, then by convexity it cannot belong 

to P, as we discussed above. Suppose that x lies outside of  the line v~v~.+l. Then 
we can determine whether x lies in the carrier polygon pk-1 by testing whether 

. k k k which is identical to the triangle x belongs to the triangle ~v jmjv j§  
A k-I k-I  k-1 v2j v2j+lv2j+2 defined by three adjacent vertices of  pk-1. 

At each stage in the algorithm, we either determine that x belongs to some 
carrier polygon Pi, or that x lies outside of  P, or select a triangular test which 
will determine whether x belongs to p~-l. I f  we proceed through k stages without 
terminating, we know an index j such that x belongs to the original polygon P 
if and only if x belongs to the triangle A vj vj+l vj+2. At each stage in the algorithm, 
the point is tested for inclusion in a triangle. The first such test reduces the size 
of  the problem by at least two-thirds. Each subsequent test divides the problem 
in half. [] 

COROLLARY. The inclusion of a point in a convex splinegon of N vertices can be 
decided in O( BI + log N )  operations using the hierarchical method. 

PROOF. Given a convex splinegon S has P as its carrier polygon, define a 
hierarchy of  splinegons all having the same boundary  as S, but with vertices 
chosen as described above. In this case, the lowest-level splinegon S O is identically 
equal to S, and its carrier polygon pO is exactly P. At the final stage of the 
algorithm, we know an index j such that x belongs to the original carrier polygon 
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Fig. 7. (a) A splinegon S on 12 vertices; (b) Sl; and (c) S 2. 
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P if and only if x belongs to the triangle Avjvj+~vj+2. If x lies outside both v~vj+l 
( �9 ( ) 

and Vj+lVj+2, then x does not belong to S. If  x lies outside just vjvj+l, then 
x belongs to S if and only if it belongs to S-seg~. Similarly, if x lies outside 
just ~j+~vj+~, then x belongs to S if and only if it belongs to  S-seg~+~ (see 
Figure 7). [] 

THEOREM 4. The intersection o f  two convex splinegons o f  at most N vertices can 
be detected in O(A] + BI + C~ log N )  operations. 

PROOF. Given the problem of detecting the intersection of two convex splinegons 
P and Q of at most N vertices each, we assume that each splinegon is given as 
a list of vertices in a random access memory with each vertex pointing to a 
description of  the curve which adjoins it to its neighbor. Otherwise, no sublinear 
algorithm is possible [CD]. We do no preprocessing of this description. The 
output should consist either of a point in the intersection or of a line which 
supports one of the splinegons and separates it from the other. 

Our algorithm employs the binary search strategy used in the polygonal 
algorithm due to Dobkin and Kirkpatrick [DK1]. First, we split P (resp. Q) at 
the points having maximum and minimum y-coordinate into a left semi-infinite 
splinegon PL (resp. QL) and a right semi-infinite splinegon PR (resp. QR). The 
splinegons P and Q intersect if and only if PL intersects QR and PR also intersects 
QL. Thus, we need an algorithm for detecting the intersection of a left semi-infinite 
splinegon L with a right semi-infinite splinegon R. If L (resp. R) has n (resp. 
m) vertices 1], 12 , . . . ,  I, (resp. rl, r 2 , . . . ,  rm), let i =  [m/2]  and j = In/2] .  R i 
(resp. L;) represents the line defined by the pair of vertices ri, r H  (resp. lj, !;+1). 
An examination of the relative positioning of ri, r;+l, /j, /j+l, Ri and Lj allows 
the removal of  half of the vertices of at least one splinegon from further consider- 
ation. After O(log n) iterations, one splinegon is reduced to three vertices. Split 



Computational Geometry in a Curved World 431 

that splinegon into two splinegons of two vertices each and compare each in turn 
against the second splinegon using the original strategy. In some instances, it 
will be necessary to add a single curved operation to guarantee the removal of 
half of the vertices of the larger splinegon. Nonetheless, in each case, O(log n) 
iterations will reduce the second splinegon to three vertices, and then any 
intersection can be detected using brute force. For details, see [So]. A sequel to 
this paper includes further details and complete implementation [DS2]. [] 

4. Bounding Polygon Approach. In standard form, a splinegon S is given as a 
circular list of N vertices, which completely defines its carrier polygon P, and a 
pointer from each vertex to a description of  the edge joining that vertex to its 
neighbor. We now define a second polygon Q of  O(N) vertices called the bounding 
polygon of the splinegon S. Q contains all of the vertices of S, which are called 
fixed vertices of S. In addition, for each edge ei of S which is not a line segment, 
the vertex list for Q contains a pseudovertex e* of S between the fixed vertices 
vi and vi+l, e* represents the point of intersection of the ray tangent to ei at v~ 
with the ray tangent to e~ at v~+1.7 An edge of Q which joins two fixed vertices is 
called a fixed edge. An edge joining a fixed vertex with a pseudovertex is called 
a pseudoedge. A pseudoedge vie* (resp. e*vi+~) is considered loose if its only 
intersection with the curved edge e~ is at the vertex v~ (resp. v~§ If  ~ (resp. 
e ~ )  intersects ei in a line segment, then the edge is considered tight. 

The bounding polygon provides a useful tool for extending numerous 
algorithms on simple polygons to splinegons, particularly those algorithms which 
are vertex-based. The efficacy of the bounding polygon is due in large part to 
the fact that for many calculations on polygons, or on splinegons, attention need 
be given only to vertices at reflex angles, interior angles measuring more than 
180 ~ In general, an edge ei of S can be viewed as a polygonal chain of an 
arbitrary number of vertices leading from v~ to V~+l whose first edge lies (either 
loosely or tightly) on v~-~e~, whose last edge lies (either loosely or tightly) on 
ei v H .  A splinegon whose edges are all concave-in has reflex angles only at fixed 
vertices, and the adjacent edges of the bounding polygon accurately determine 
the angle at a fixed vertex. A curved edge which is concave-out corresponds to 
a polygonal chain composed entirely of reflex angles. The associated pseudovertex 
and the adjacent pseudoedges give a good approximation. During the execution 
of a polygon algorithm on the bounding polygon, processing of a pseudovertex 
e* can include evaluation and insertion of  pertinent information about the 
associated curve ei. 

7 For some splinegon edges the two tangent rays might not intersect in the plane. The rays would 
intersect, however, if S were embedded on the surface of a sphere. We can allow the point e~* to 
represent the corresponding point on the projective plane at infinity (see Figure 8(a)). Alternately, 
such a splinegon edge can be broken into at most three pieces by the insertion of two new fixed 
vertices so that for each new edge the tangent rays will intersect at a point with finite coordinates 
(see Figure 8(b)). The bounding polygon Q of a simple splinegon S of N vertices has at most 2N 
vertices if we allow points at infinity, or at most 6N vertices otherwise. For the sake of clarity, we 
assume that all pseudovertices have finite coordinates. 
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Fig. 8. A pair of splinegons and their bounding polygons: (a) has an infinite pseudovertex, whereas 
(b) does not. In (b), v6e* 6 is a tight pseudoedge since it contains the line segment v6x; all other 
pseudoedges are loose. 

The splinegon shares several characteristic properties with its bounding poly- 
gon, as we shall prove below. A convex splinegon S with carrier polygon P is 
contained within its convex bounding polygon Q. (Remember that the polygon 
defined by P w (Ug S-trig) is star-shaped rather than convex.) A splinegon S is 
monotone if its bounding polygon Q is monotone. Moreover, if S is monotone 
in a direction Y for which Q is not, then f must be orthogonal to some loose 
pseudoedge of Q. A splinegon has a kernel only if the bounding polygon has a 
kernel. 

Simplicity, however, is not a shared property. The bounding polygon of a 
simple polygon need not be simple. Moreover, a nonsimple splinegon may have 
a simple bounding polygon. Nonetheless, algorithms on simple polygons may 
extend to simple splinegons using the bounding polygon technique, whether or 
not the bounding polygon is simple. For example, as demonstrated below, we 
may compute the convex hull of a simple splinegon using a bounding polygon 
which, if computed explicitly, would not be simple. 

Computing the bounding polygon explicitly often provides a useful approxima- 
tion for the splinegon. Unfortunately, the specifications of the polygon Q are 
not readily available from the given description of the splinegon S. Computing 
each edge of Q costs 0(C1) time. As a consequence, we postpone computing 
the actual coordinates of a pseudovertex until necessary. In some instances, it 
may be possible to compute the coordinates of only a small subset of the 
pseudovertices. In the convex hull algorithm given below, none of the coordinates 
for any e* are ever computed. Instead the entry of e* merely points to a description 
of the edge ei. In such an instance, we are using the polygon in a topological 
sense, rather than a strict one [Km]. 
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The bounding polygon provides an alternative tool for expressing the splinegon 
itself. It allows a vertex-based polygon algorithm to be extended to splinegons 
with its structure intact. It also allows the creators of new algorithms to write 
them in a general format which encompasses splinegons, but with the more 
restricted polygon algorithm clearly visible within. In either case, separate pro- 
cedures exist for the processing of fixed vertices and for the processing of 
pseudovertices. 

To summarize: 

OBSERVATION 2 (Bounding Polygons). When the carrier polygon itself is 
insufficient, it may often be enhanced by adding further structure based solely 
on the local structure of  the splinegon. This structure results in a bounding 
polygon with fixed vertices corresponding to vertices of  the splinegon and 
pseudovertices corresponding to edges of  the splinegon. Insofar as possible, 
computations involving the polygon in the linear case now involve the bounding 
polygon with only local attention to the splinegon's curved edges. 

LEMMA 1. A convex splinegon has a convex bounding polygon. 

PROOF. Suppose a given convex splinegon S has a nonconvex bounding polygon 
Q. Then there exists a reflex angle either at a fixed vertex v~ or at a pseudovertex 
e~*. But all edges of a convex splinegon are concave-in, and thus all pseudoverti- 
ces are convex. Suppose that Q has a reflex angle at v~. But then there exist 
points xi and x~ ~ lying on ei and e~_~, respectively, which are each arbitrarily 
close to v~ such that the interior angle/-xHvix~ is also reflex. But then S is not 
convex. [] 

THEOREM 5. The diameter of  a convex splinegon of  N vertices can be computed 
in O((A~ + C~)N) time. 

PROOF. The diameter of  a convex polygon is realized by a pair of  antipodal 
vertices. Shamos's algorithm for finding the diameter [Sh] determines all such 
vertex pairs, computes all of  the distances, and keeps the maximum. The diameter 
of a convex splinegon is also realized by a pair of  antipodal points, but although 
those points will lie on the boundary of  the splinegon, they may not be vertices. 
To find the diameter of  a convex splinegon S of N vertices, we apply a modified 
version of  the Shamos algorithm to the bounding polygon, which by Lemma 1 
is convex and contains S. After determining all antipodal vertex pairs for the 
bounding polygon, any pseudovertex can be replaced by the appropriate point 
on its corresponding edge to yield the pairs of antipodal points on the splinegon 
itself. 

To run this algorithm, the entire bounding polygon must be computed, using 
O(C1 N)  time. Next, each edge of the bounding polygon is oriented as a vector 
a n d  translated in turn to the origin: pseudoedges become vectors of  the form 

~: ) 2, 
vie~ and ei vi+l; and fixed edges become vectors of the form viv~+l. Due to the 
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Fig. 9. A splinegon and its bounding polygon and the corresponding vertex sectors. 

convexity of  S, these vectors will be in nondecreasing order of  polar angle. 8 The 
inclusive sector from a vector whose head is a fixed vertex v~ to a vector whose 
tail is v~ corresponds to that fixed vertex. I f  the two vectors have the same 
direction, then the fixed vertex will correspond to a sector consisting of  a single 
ray. The sector strictly between a vector whose head is a pseudovertex e* and a 
vector whose tail is e* corresponds to that pseudovertex. A pseudovertex e* was 
added to the bounding polygon only if the edge e~ was not straight. Thus, each 
pseudovertex corresponds to a nonempty open sector (see Figure 9). 

Pick a line l passing through the origin, and in time O(log N )  determine the 
two sectors in which it lies. To find all O ( N )  antipodal pairs, rotate the line l 
counterclockwise. An antipodal pair changes only when l enters a new sector. 
Divide the vertex pairs reported into three groups: pairs having two fixed vertices; 
pairs with one fixed vertex and one pseudovertex; and pairs having two pseudover- 
tices. The first group can be processed as in the original algorithm by computing 
the distance between the two vertices. The next two groups require the use of  
oracle A~. For the second group, determine the point on that curved edge 
associated with the pseudovertex which lies at maximum distance from the fixed 
vertex. For the last group, determine the pair of  points, one per curved edge, 
at maximum distance from each other. It is easy to see that the maximum 
distance over the three groups is the diameter. Thus, the entire algorithm runs in 
O((AI  + C~)N)  time. [] 

LEMMA 2. If all edges o f  the bounding polygon Q associated with a splinegon S 
are tight, then S is monotone in a direction ~ i f  and only i f  Q is monotone in the 
same direction. I f  S is monotone in a direction ~ for  which Q is not, then ~ is 
orthogonal to some loose pseudoedge o f  Q. 

s If the boundary of S is smooth at a vertex v,, then the vectors e*~_lv , and vie.* , have the same 
orientation. 
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Fig. 10. (a) A convex polygonal chain inscribed in a triangle; and (b) a curved edge inscribed in a 
triangle. 

PROOF. A splinegon, like a polygon, is monotone in a direction s if it can be 
decomposed into two chains monotone in directions ~. A monotone chain can 
be traversed from one endpoint  to the other with the ~ component  strictly 
increasing. Thus, a straight edge or line is monotone in every direction except 
its orthogonal.  A chain consisting of  two edges is monotone in every direction 
which has an orthogonal lying in the interior of  the convex angle defined by the 
two edges. But to determine if a polygonal chain is monotone,  it is not necessary 
to examine every edge. Suppose that the points Vl, Pl, P2, �9 - - ,  Pn, v2 form a convex 
polygonal chain M and that the points vl, w, v2 form a triangle such that pl lies 
on the line segment VlW and p,  lies on v2w. Then the chain M and the chain H 
defined by v~, w, v2 are both monotone in the direction s if  and only if a ray 
originating at w and orthogonal to ~ lies in the interior of  l-vlwv2 (see Figure 
10(a)). Similarly, a splinegon edge el extending from Vl to v2 for which VlW 
and v2w are tight pseudoedges is monotone  in a direction ~ if and only 
if H is monotone.  I f  the pseudoedge vxw (resp. v2w) is loose, however, then 
in general the monotonici ty of  el coincides with the monotonicity of  H. But e~ 
is monotone  in the direction orthogonal to v~w (resp. v2w), and H is not (see 
Figure 10(b)). [] 

THEOREM 6. The directions in which a simple splinegon of  N vertices is monotone 
can all be determined in O( C I N )  time. 

PROOF. According to Lemma 2, the monotonicity of  a simple splinegon can be 
determined by deciding the monotonicity of  the bounding polygon and then 
paying special attention to the loose pseudoedges. The Preparata-Supowit  
algorithm [PS] for the polygonal case uses an approach similar to the Shamos 
diameter algorithm [Sh]. Each edge of the polygon is oriented as a vector, 
translated in turn to the origin. By noting whenever a sector has been swept over 
more than once in moving from one vector to the next, they isolate the directions 
of  monotonicity. We use the Preparata-Supowit  [PS] method, but integrate the 
special procedures for loose pseudoedges into the main algorithm by mak ing the  
following modification. Instead of  processing all of  the directions from vie7 to 
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) 
e*vH, inclusive, as a group, process the directions between the two vectors as 
a group and process the vectors vie* and e*vi+l separately according to whether 
the corresponding edges were tight or loose. Orient all edges of  the bounding 
polygon as vectors. Assign each fixed edge a key of 1. If pseudoedge ~ (resp. 
e*vi+~) is tight, associate with it a key of 1; otherwise, assign it a key of 0. We 
calculate the edges of the bounding polygon, one by one, and enqueue the vectors 
as translated to the origin, onto the queue L. After enqueuing all of the vectors, 
push a second copy of  the first. Creating the queue L costs O(G N) time. 

We process the list of at most 2 N + 1 vectors one by one, retaining the significant 
information in a new list M of vectors ordered by polar angle. Pop the first vector 
from L and insert it into the empty list M along with its key and with three tags 
all initialized to 0: the forward, the backward, and the self. These tags may assume 
values in the set {0, 1, 2}. If  a tag having a value of 2 is "incremented," it retains 
the value 2. The last vector inserted into M is called the current vector. 

If the top vector of L describes the same polar angle as does the current vector, 
compare their keys. If  both vectors have the same key, delete the top vector. 
Otherwise keep as the current vector whichever one has the larger key and delete 
the other. Consider the angle from the current vector to the top vector. If it 
belongs to the interval (0, ~') (resp. ( - ~ , 0 ) ) ,  we shall move forward (resp. 
backward) through M in order to insert the top vector. Begin by incrementing 
the forward (resp. backward) tag on the current vector. Increment the self tag 
only if the current vector has a key of 1 or if this move does not represent a 
change in direction. Then move forward (resp. backward) through M, increment- 
ing all three tags on every vector and deleting any vector having three identical 
tags, until locating the position for the new vector. Pop it from L and insert it 
into M, making the backward (forward) tag match the forward (backward) tag 
of  the vector preceding it, and the forward (backward) and self tags match the 
backward (forward) tag of the vector ahead of it (see Figure 11). 

Each vector is inserted into M once, requiring constant time. Each subsequent 
time it is processed, all three of  its tags are incremented using constant time. But 
when all three tags on a vector equal 2, the vector is deleted. As each of the 
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(a) (b) (c) 
Fig. 11. (a) A splinegon S and its bounding polygon Q. (b) M after three insertions. (e) M after 
four insertions. 
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O(N) vectors will be processed at most three times, the cost of  creating the list 
M is at most O(N). 

At the termination of the above algorithm, we have the partition of the polar 
range [0, 2zr) by O(N) vectors, each labeled with either a 1 or a 2, into O(N) 
sectors which can be identified as a 1 or a 2 by the forward and backward tags 
on the vectors bounding it. Pick a pair of  rays rl, r2 which form a straight angle 
at the origin. In O(log N )  time, determine whether rl (r2) contains a vector in 
M or lies in a sector between two vectors and assign it the appropriate  label. 
Rotate r 1 and r2 in tandem counterclockwise around the origin, changing the 
labels whenever either intersects a new vector or enters a new sector and recording 
every polar-angle interval in which both rays are assigned a 1. Since the labels 
change at most O(N) times, there are at most O(N) intervals reported. Thus 
this process requires O(N) time. Whenever both rays are assigned a 1, T is 
monotonic  in the direction normal to the two rays. I f  there is no angle at which 
both rays are assigned a 1, then T is not monotone.  [] 

LEMMA 3. The kernel of a splinegon S is equal to the intersection of S and the 
visible regions defined by the edges of its bounding polygon Q. 

PROOF. For a point within a splinegon to be visible from an edge e~ which is 
concave-out, the point must lie within the wedge at the pseudovertex e* defined 
by the extension of the rays v~e* and V~+le~ (see Figure 12(a)). Thus, a concave-out 
curved edge from v~ to v~+~ defines the same visible region as would the pair of 
straight pseudoedges v~e*~ and e*vi. If  the edge is concave in, then a visible point 

. . . .  ~ 

must he within the convex region defined by the rays e*v~ and e*v~+l and by the 
curved edge e~ from v~ to v~+l (see Figure 12(b)). Thus, a concave-in curved edge 
from v~ to v~+~ defines a somewhat  smaller visible region than that determined 
by the pair of  straight pseudoedges v~e~f and e* v;. That smaller region, however, 
is exactly equal to the intersection of the splinegon S with region determined by 
the pseudoedges. [] 

LEMMA 4. Given a simple splinegon S, at most one connected component of a 
particular curved edge e~ can lie on the boundary of the kernel of S. 
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Fig. 12. (a) The region visible from an edge e, which is concave-out.  (b) The region visible from an 
edge e~ which is concave-in. 
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Fig. 13. Examples for Lemma 4. 

PROOF. Suppose that eil and ei2 are two distinct segments of  ei, in counterclock- 
wise order, both of which belong to the boundary of the kernel of S. The two 
segments are joined by a convex chain of straight edges. Let k~kj+l represent the 
straight edge which immediately follows ei~. The line ~ m u s t  contain some 
vertex q of  the bounding polygon Q lying on a chain of edges which extends in 
counterclockwise order from vi+~ to v;. 

) 
(1) Suppose that kj+~kj contains q (see Figure 13(a)). Then some chain of edges 

must join vi to q. At best, q lies nearly at the point at infinity and a single 
< ) 

edge connects vi and q. Thus v~q is nearly parallel to )c:kj+~. Even so, the 
edge v~q prevents e ,  from participating in the boundary of  K. 

(2) Suppose instead that kjk:+] contains q (see Figure 13(b)). Then some chain 
of edges joins v;+l to q. But for that  chain of edges to permit e~l to participate �9 - -  --------~ _ _  
in the boundary of  K, q must he to the left of k~vi+~. Then, however, k/kj+~ 
prevents e~2 from participating in the boundary of K. [] 

THEOREM 7. The kernel of a simple splinegon P of N vertices can be determined 
in O((B1 + C1)N) time�9 

PROOF. To compute the kernel of a simple polygon of N vertices, Lee and 
Preparata [LP] developed a vertex-based algorithm which runs in O(N) time, 
making a single pass around the polygon while maintaining a tentative kernel K 
based on the vertices seen thus far. We review this algorithm here and then give 
the modifications so that it will work for splinegons. By Lemma 3, this involves 
running the original algorithm on the bounding polygon, but providing special 
processing for pseudovertices, and the adjacent pseudoedges, associated with 
concave-in splinegon edges. In particular, in the modified algorithm, whenever 
it becomes clear that a curved edge may not contribute to the boundary of the 
kernel, it is marked vacuous. Otherwise, the edge is marked potent. By Lemma 
4, at most one piece of a particular curved edge ei can lie on the boundary of 
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the kernel of S. Thus, for each potent ei, we maintain pointers delimiting the 
portion of  the tentative kernel K where a segment of ei may belong. 

The Lee-Preparata algorithm assumes that the first vertex vl of  the polygon P 
is reflex, for if no vertex were reflex, the polygon would be convex and thus serve 
as its own kernel. It also assumes that the vertices are numbered in counterclock- 
wise order around the boundary of P. The algorithm begins with the first vertex 
and then moves from vertex to vertex. Upon reaching a vertex vi, the following 
information is available: 

(1) A doubly linked list of vertices which describes the boundary of the convex 
region K which is visible to all edges from vN to v~. If  K is unbounded, the 
list is linear, and the vertices at the list tail and at the list head are both 
points in the projective plane at infinity associated with a particular direction. 
If  K is bounded, then the list is circular and all of its vertices are finite. 

(2) A pair of vertices F and L from K at maximum distance from v~ such that 
v~F and v~L both support K and such that the clockwise wedge from viF -> 
to ~ contains K. If  K is bounded, then F and L always represent finite 
points in the plane. If  K is unbounded, however, F (resp. L) may represent 
the point at infinity at the tail (resp. head) of K ' s  list. 

The computation to be performed at a vertex v~ depends upon whether that vertex 
is reflex or convex. We describe the reflex case below, but omit the details for 
the convex case as they are exactly symmetric and thus can be easily inferred. 

Suppose that v~ is reflex and that F lies on or to the left o f ~ .  Then trace 
the boundary of K from F to L in the counterclockwise direction. Stop upon 

> 

finding a point k' where vi+lv~ intersects the boundary of K. If  no such point is 
found, then the kernel of P is null, so the algorithm halts. Otherwise, insert k' 
in the appropriate position as a vertex of  K. 

Next, trace the boundary of K in the clockwise direction from k' until reaching 
a second point k" of the intersection of K and v~+iv~. If  we reach a point at 
infinity at the list tail without discovering a point k", then let k" be the point at 

) 

infinity having direction v~+l v~. In either case, insert k" in the appropriate position 
as a vertex of K, and set F = k". Delete all vertices of  K between k' and k" in 
clockwise order (see Figure 14). 

Suppose that vi is reflex and that F lies to the right of ~ .  In this case, K 
remains unchanged. 

In all cases, whether v~ is reflex or convex, before proceeding to the next vertex 
v~+~, the algorithm performs a final update on both L and F. 9 Trace the boundary 
of  K counterclockwise beginning with L (resp. F) until finding a vertex kj such 
that either kj+~ lies to the left of  (resp. on or to the right of) v~+~k~ or such that 
kj is the point at infinity at the list head. Set L = kj (resp. F = kj). 

Lee and Preparata show that the algorithm runs in linear time since all but 
two of the edges traced in attempting to revise K are always removed, since F 

9 In general, whenever one of F or L is set to k" above, this final update will leave that value 
unchanged. The exception is the special case where v, is convex and the line segment v,v~+ 1 contains 
both k' and k". In this instance, L must be revised a second time. 
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Fig. 14. (a) vi is reflex and F lies on or to the left of v,+~ vi. (b) v~ is convex and L lies on or to the 
�9 ~ . o ------------> right of vlv~+ 1 . (c) vi is reflex and F hes to the right of vi+~vi. (d) v~ is convex and L lies to the left 
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of v,v,+~. 

and L move  a round  K only in a counterc lockwise  direction, and since, for  each 
Vi+l for  which there exists a p c K, Y,j=1 aj <3~-,  where  % represents  the interior  
angle of  the tr iangle Apvjv~+l at p. 

We make  the fol lowing three modif icat ions to the L e e - P r e p a r a t a  algori thm: 

(1) U p o n  reaching a fixed vertex vi which precedes  a convex  pseudover tex  
e*, stop after  revising K but  before  making  final revisions to F and  L. Per form 
the fol lowing compu ta t ion  before  continuing.  Suppose  that  the current  value of  

) 

L is k~. Test  kj in constant  t ime to de termine  whether  it lies to the right o f  viv~+l. 

I f  not,  then mark  the curved edge ei in the representa t ion  of  S as vacuous ,  for  
in no way can it par t ic ipate  in defining the kernel  o f  S (see Figure 15(a)). I f  it 
does,  then test kj in O(B~)  t ime to de termine  whether  it lies ei ther on or to the 
right o f  e~. I f  this second test fails, then mark  the curved edge e~ in S as po ten t  
and assign it a pointer  to the edge kjkj+~ in K. Also mark  the edge kjkj+l in K 
as the tail edge for  e~. The  curved edge ei may  or may  not  par t ic ipate  in defining 
the kernel  o f  S, but  a search beginning at kj and  moving  in the counterc lockwise  
direct ion will yield the answer  (see Figure 15(b)). I f  the second test succeeds,  
trace the b o u n d a r y  of  K in the clockwise direct ion f rom kj until d iscovering an 

) 

edge kmk,,,+j which intersects either e~ or v~v~+~. I f  no such edge exists, then the 
kernel  o f  S is null and we halt  (see Figure 15(c)). I f  the repor ted  edge crosses 

) 

v~v~+~ but  does not  cross e~, then mark  ei in S as vacuous  (see Figure 15(d)). I f  
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Fig. 15. The five possible scenarios after revising K at a fixed vertex which precedes a convex 
pseudovertex. 

the reported edge does cross ei, then mark ei in S as potent, and mark k,,km+l 
in Q as the tail edge for e~ (see Figure 15(e)). In either of these last two cases, 
delete all vertices of K strictly between kj and k,,+l in the clockwise direction. 
If ei is vacuous, then these edges would have been deleted anyway in the processing 
of pseudovertex e*. If  ei is potent, then e~ prevents these edges from contributing 
to the boundary of the kernel of S. 

(2) When reaching a fixed vertex V~+l after having just processed a convex 
pseudovertex e*, determine whether e~ in S has been marked potent. If so, 
perform the following computation before proceeding with the algorithm. Sup- 
pose that the current value of F is kj. Since ei has been marked potent, kj must 
lie to the right o f ~  Test kj in O(BI) time to determine whether it lies either 
on or to the right of ei. 

(a) If not, then add an extra pointer in the representation of the curved edge e~ 
in S to the edge kj_lkj in K, and label the edge kj_lkj as the head edge for 
e~. The curved edge e~ may or may not participate in defining the kernel of  
S, but a search beginning at the tail edge, moving in the counterclockwise 
direction, and ending at the head edge will yield the answer (see Figure 16(a)). 



442 D .P .  Dobkin and D. L. Souvaine 
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Fig. 16. The two possible scenarios after processing a pseudovertex associated with a potent curved 
edge of  S. 

(b) If so, trace the boundary of K in the counterclockwise direction from kj 
until discovering an edge kmkm+l which intersects ei. Such an edge must 
exist. Add a pointer from ei in S to the edge kmkm+l and also mark kmkm+l 
in Q as the head edge for ei (see Figure 16(b)). In this case, delete all vertices 
of K strictly between kj and km in the counterclockwise direction. The curved 
edge ei prevents these edges from contributing to the boundary of the kernel 
of S. 

(3) Next, we must guarantee that, as K is repeatedly revised, labels and pointers 
to tail edges and head edges of potent curved edges are updated. Also, edges 
which become vacuous must be so identified. The only instances in which these 
updates must be made are those in which the deleted edges of K include some 
portion of either one or both of the tail edge ktkt+l and head edge khkh+~ for 
some curved edge e~. 

(a) Suppose the deleted portion runs in the counterclockwise direction from a 
point k', which lies between kh+l and k,, and ends at a point k", which lies 
between kh+~ and k'. In other words, the tail edge and the head edge and 
all intervening edges are all deleted. In this case, mark the curved edge e~ as 
vacuous (see Figure 17(a)). 

(b) Suppose the deleted portion runs in the counterclockwise direction from a 
point k', which lies between k,+l and kh, and ends at a point k", which lies 
between k,+l and k'. In other words, both the tail edge and the head edge 
are deleted, but some of the intervening edges remain. Test k'k" for intersec- 
tion with e~. If the entire segment lies to the right of e~, then the kernel of S 
is null. Otherwise, mark k'k" both as the new head edge and as the new tail 
edge. Adjust the pointers at e~ (see Figure 17(b)). 

Use as many of the following as pertain, if and only if neither of the above cases 
apply. 
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Fig. 17. Examples of preserving accurate labels for curved edges and their tail and head edges. 

(c) Suppose the deleted portion runs in the counterclockwise (resp. clockwise) 
direction from a point k', which lies between k, and kt+~ (resp. kh and kh§ 
In other words, the interior part of the tail edge (resp. head edge) is deleted. 
In this case, mark k,k' (resp. k'kh+l), the remaining portion, as the new tail 
(resp. head) edge for ei. Update the pointer at ei (see Figure 17(c)). 

(d) Suppose the deleted portion runs in the clockwise (resp. counterclockwise) 
direction from a point k', which lies between k, and k,§ (resp. kh and kh+~), 
to a point k". In other words, the exterior part of tail edge (resp. head edge) 
is deleted. Test the point k' to determine whether it lies to the right of ei. If  
so, then mark k'k" as the new tail (resp. head) edge. If not, then mark k'k,+~ 
(resp. k'kh) as the new tail (resp. head) edge. Update the pointer at e~ (see 
Figure 17(d)). 

(e) Suppose the deleted portion runs from a point k' through both k, and k,+l 
(resp. kh and kh+O, and ends at a point k". In other words, the entire tail 
(resp. head) edge is deleted. Mark k'k" as the new tail (resp. head) edge and 
update the pointer at e~ (see Figure 17(e)). 

These three routines provide the basis for the theorem. Determining the bound- 
ing polygon requires O(CI N) time. The entire Lee-Preparata algorithm runs in 
O(N) time. If  no tracing is done, then modification (1) requires constant time. 
If n edges are traced, then n - 1  edges are deleted. Thus the tracing and the 
deleting may be charged to those edges, and only O(B~) time needs be charged 
to each call to modification (1). The same argument applies to modification (2). 
Whenever the original algorithm revises K by deleting all vertices in a particular 
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direction between k' and k", it explicitly traces all of  the intervening edges. Thus 
the information about the relative positioning of  head and tail edges required by 
modification (3) can be computed at the same time and all marks and pointers 
may be updated, incurring at most a constant charge per edge. When the main 
algorithm is complete, we perform one final trace around K. We test the edges 
between each tail-head pair for intersection with the respective curved edge, 
and update K accordingly. This single pass around K and S requires O(B~N) 
time. [] 

In the next algorithm the structure of the bounding polygon is used more than 
the polygon itself. In fact, neither the pseudoedges nor the pseudovertices are 
ever explicitly determined, for the approximation they would provide for curved 
edges is not sufficiently accurate to decide which edges participate in the convex 
hull. The vertex list for the bounding polygon, however, does contain an entry 
for each nonstraight edge of the splinegon. Thus we apply the original Graham- 
Yao polygon algorithm [GY] to the bounding polygon and yield the convex hull 
of the splinegon merely by adding special procedures for processing those vertices 
which were really pointers to curves rather than vertices: 

THEOREM 8. The convex hull of a simple splinegon of N vertices can be computed 
in time and space O((BI + C~ + D~)N). 

PROOF. The Graham-Yao algorithm assumes that the vertices Vl, v 2 , . . . ,  Vm, 
Vm+l, .. -, VN of the- simple polygon P are given in clockwise order around the 
boundary, that vl is the vertex of  minimum x-coordinate, and that vm is the 
vertex of maximum x-coordinate. Define the path along P from v~ to vj as a 
pocket of P if no vertex along the path lies to the left of the directed line segment 

) 

vivj; call ~ the top of  the pocket; say that a vertex lies inside (resp. outside) 
the pocket if it lies (resp. does not lie) in the closed region bounded by the pocket 
and its top. Graham and Yao characterize the task of finding the convex hull of 
P as that of identifying a circular list of vertices such that each consecutive pair 
delimits a pocket of P and such that the pocket tops and the vertices form a 
convex polygon (see Figure 18(a)). The set of vertices of the convex hull must 
include both vl and vm and may not include any vertex lying inside a pocket of 
P, except for its endpoints. Thus the convex hull problem can be divided into 
two symmetric pieces: compute the top hull (resp. bottom hull) of P, which 
corresponds to the left hull of the oriented chain vl, v 2 , . . . ,  vm-~, ~)m (resp. Vm, 
V m + l ~  �9 �9 �9 ~ V N ,  V l ) .  

The left hull algorithm maintains a stack Q of candidate hull vertices, where 
qo (resp. q,) represents the bottom (resp. top) element of the stack, with the 
invariants that qo, q~ , . - . ,  q, always form a convex polygon and, for 2 - - - i -  < t, 
qJ-~, qi always delimit a pocket of P. To find the top hull of P, the algorithm 
begins by setting q0 = vm, ql = v~, and q2 to be the first vertex lying to the left of  
the directed line segment ~ After pushing a vertex vi onto the stack, the 
algorithm moves from vertex to vertex along the chain, searching for the first 
vertex x outside the current convex polygon. If  v~§ lies to the left of q,_~q,, then 
x is v;+~. Otherwise, the algorithm tests whether v~+l belongs to the pocket with 
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Fig. 18. (a) and (b) The convex hull of a simple polygon and a simple splinegon. (c) The polygon 
pocket test. (d)-(f)  The splinegon pocket test for convex, reflex, and fixed qt. 

endpoints q, i and q,. I f  so (resp. not), then x will be the first successor of/)i+1 
to lie to the left of  q,-lq, (resp. q,qo). Before inserting x into the stack, as many 
vertices are popped  from the stack as necessary so that x lies to the right of  the 
new q,_lq~. The algorithm uses linear time and space, as each vertex not rejected 
outright is inserted into the stack exactly once and deleted at most once. At 
termination, the path from q, to qo along P also forms a pocket, and thus Q 
describes the top hull of  P. 

The splinegon algorithm is nearly identical to the polygon algorithm, but it 
must consider both the fixed vertices and the pseudovertices of  the bounding 
polygon. In this application, however, we never compute the coordinates of  the 
pseudovertices explicitly; each pseudovertex merely points to a description of 
the corresponding curved edge. Thus, we need to define what we mean by the 
directed line segment ~ where at least one of v and w is a pseudovertex: 

) 
(1) vie* represents the directed line segment of maximum length which extends 

from vi to a point y on e~>and which supports ej so that each point of  ej lies 
on or to the right of  vie*. ) 

(2) e'v: represents the directed line segment of  maximum length which extends 
from a point x on ei to v~ and which supports ei at x so that each point of 
ei lies on or to the right of  e~ vj. 

(3) e ' e *  represents the directed line segment which extends from a point x on 
ei to a point y on ej and which supports ei at x and ej at y so that each point 
of  either ei or ej lies on or to the right of  e*e f .  

Next, we augment our definitions of  what it means for a vertex x to lie to the 
left of  vw: 

(1) e* lies to the left o f ~ w  if any portion of  ej lies to the left o f~w.  
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(2) If v-~ej (resp. ej w) intersects ej only at Vj+l, we shall consider vj+l to lie to 
the left of the respective directed line segment. 

Given these augmented definitions, the convex hull of a simple splinegon P can 
now be identified by a circular subsequence of the vertices of the bounding 
polygon Q such that each consecutive pair delimits a pocket and such that a 
convex splinegon is formed by the pocket tops, the fixed vertices, and the portions 
of those edges identified by pseudovertices which join adjacent pocket tops (see 
Figure 18(b)). 

As in the polygon case, the circular list of' vertices is determined by two 
applications of the left hull algorithm. However, we must first insert the points 
of minimum and maximum x-coordinate as fixed vertices and renumber the 
vertices accordingly. We must also define the test to determine whether a vertex 

) 

v immediately succeeding q, and lying on or to the right of q,-lq, lies inside a 
pocket delimited by q,_l and q,. In the polygon case, the pocket test is simple: 
for q, = vi, vi+~ is v and it lies inside (resp. outside) the pocket if it does (resp. 
does not) lie to the left of the directed line segment ~ (see Figure 18(c)). In 
the splinegon case, we have multiple cases. If  q, is a reflex pseudovertex, then v 
belongs to the pocket (see Figure 18(d)). If  q, is a convex pseudovertex, then v 
does not belong to the pocket (see Figure 18(e)). If q, is a fixed vertex v ,  let w 
represent whichever of v~_~ and v~+~ lies closest to the line l containing q,_~q~,. 
Find the intersection with both eg_l and ei of the line passing through w parallel 
to /. The intersection either consists of one component from each edge, or of 
both w and a second point from one edge and one component from the other. 
In the latter case, discard w. Now, if the one component from e~ is to the left 
(resp. right) of the one component from ei_l, then v does (resp. does not) belong 
to the pocket (see Figure 18(f)). 

As modified, the Graham-Yao algorithm will provide a list of vertices describing 
the left hull of each half of the splinegon. That list will include both fixed vertices 
and pseudovertices. A single transversal of that final list can determine which 
portion of  each of the curved edges associated with a listed pseudovertex actually 
lies on the convex hull. Then the convex hull is formed by linking fixed vertices 
and curved segments with straight segments. [] 

We note that Sch/iffer and Van Wyk [SV] have achieved the same result by a 
different approach, as we describe in the next section. 

5. Direct Approach. In the previous two sections we have presented two distinct 
methods for extending polygon algorithms. The carrier polygon approach 
primarily applies to extensions of algorithms on convex polygons. The bounding 
polygon approach has particular application in the extension of  vertex-based 
algorithms. In general, however, edge-based algorithms need neither the artifice 
of  focusing on the carrier polygon nor the artifice of focusing on the bounding 
polygon. Where the original algorithm considered the line segment from vi to 
vi+~, the revised algorithm considers the curved edge e~ which joins vi to vi+t. 
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All that is needed is a revised procedure for processing the individual edges 
which accounts for the greater freedom enjoyed by curves. 

Straight polygon edges enjoy many properties which curved splinegon edges 
do not. Two edges of a polygon intersect at most in a single point, or perhaps a 
single line segment, whereas two splinegon edges may intersect arbitrarily often. 
A line supporting two edges of a polygon passes through at least one vertex of 
each edge, whereas a line supporting two splinegon edges may contain just one 
interior point from each edge. A polygon edge is always monotone in every 
direction but one. Some splinegon edges are not monotone in any direction, 
although every splinegon edge can be divided into at most three pieces such that 
each piece is monotone in the chosen direction. Two nonhorizontal polygon 
edges intersect in their interiors if and only if, when the endpoints are ordered 
by y-coordinate, the edges intersect the horizontal lines through the middle two 
endpoints in different order. For y-monotone splinegon edges, this test establishes 
the parity of the number of crossings, but nothing more. If both endpoints of a 
polygon edge lie in the interior of a convex object, the entire edge lies in the 
interior of that object. If both endpoints of a splinegon edge lie in the interior 
of a convex object, the edge may still intersect the boundary of the object and 
part of the edge may lie outside. 

OBSERVATION 3 (The Direct Approach). Edge-based polygon algorithms can 
be extended directly to splinegons, provided that those assumptions about the 
behavior of edges which apply only to straight line segments are removed, 
additional tests are inserted to accommodate the more general edges, and 
splinegon edges are split into monotone pieces as necessary. 

THEOREM 9. The intersection of  two convex splinegons of  at most N vertices each 
can be computed in O ( A 1 N  + Cl log N + B~) time. 

PROOF. We extend the method of [Sh] to compute the intersection of the two 
convex splinegons P and Q, each of at most N vertices. First, we use the result 
of Theorem 4 to locate a point x in the intersection of P and Q, provided one 
exists. Let x be the origin of a polar coordinate system, and draw rays from x 
through each of the vertices of P, dividing the plane into sectors. Pick a vertex 
of Q and determine in which sector of P it lies. Scan around Q ohce, testing 
each edge of Q for intersection with the relevant edges of P. Since no backtrack- 
ing is done, all intersection points can be determined in O(A~N)  time. The 
intersection consists of chains taken alternately from splinegons P and Q with 
the intersection points in between. For further details, see either [So] or 
[DS2]. [] 

THEOREM 10 [TV]. The internal horizontal vertex visibility information for a 
simple splinegon can be computed in O ( N  log log N + ( B I +  CI)N)  time. 

PROOF. Tarjan and Van Wyk [TV] give an O ( N  log log N)-time algorithm for 
computing the internal horizontal vertex visibility information for a simple 
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polygon of N vertices. The horizontal line segments which join a vertex to its 
visible edge or edges define a partition of the polygon into trapezoids. As they 
note, their algorithm extends directly to splinegons. To do so, first add additional 
vertices to guarantee that each splinegon edge is monotone in the y-direction, 
using 0(C1 N)  time, and adding at most 2N new vertices. Once this modification 
has been made, the algorithm runs unchanged except for the fact that it computes 
the intersection of horizontal lines with curved edges rather than straight edges, 
an O(B~)-time process, and reports "trapezoids" bounded by a pair of horizontal 
line segments and a pair of y-monotone curved edges. [] 

THEOREM 11 [TV]. A splinegon of N vertices can be tested for simplicity in 
O(N log log N +  (A1 + B~ + C1)N) time. 

PROOF. By using their O(Nloglog N)-time algorithm to compute both the 
internal and the external horizontal vertex visibility information for a polygon, 
Tarjan and Van Wyk can detect whether a polygon is simple in O(N)  additional 
time. They note that the algorithm extends directly to splinegons. The splinegon 
version requires a final stage: if the splinegon still appears to be simple after 
running the original algorithm, test the pair of curved side-edges from each of 
the trapezoids reported in either iteration of visibility testing for intersection; if 
no intersections are found, the splinegon is indeed simple. This revised algorithm 
runs in O(N log log N + (A 1 + B1 + q ) N )  time. [] 

THEOREM 12 [DSV]. A simple splinegon of N vertices can be decomposed into 
the union of monotone pieces with simple carriers in O( N log log N + (Ba + CI)N) 
time. The total number of vertices in the decomposition is O( N). 

PROOF. See [DSV]. [] 

THEOREM 13 [DSV]. The boundary intersection and~or the area intersection of 
two N-sided simple splinegons can be detected in 0 ( N log log N + (A 1 + B1 + C1) N) 
time. 

PROOF. See [DSV]. [] 

THEOREM 14 [SV]. The convex hull of a simple splinegon of N vertices can be 
computed in linear time and space. 

PROOF. To extend the algorithm of Graham and Yao [GY] to compute the 
convex hull of piecewise-smooth Jordan curves, a subset of the simple splinegons, 
Sch~iffer and Van Wyk [SV] first revised the Graham-Yao vertex-based algorithm 
to run as an edge-based algorithm. Thus, instead of maintaining a stack of vertices 
which belong to the convex hull, the Sch~iffer-Van Wyk algorithm maintains a 
stack of edges which participate in the convex hull. The main calculation on 
edges in the revised algorithm consists of computing a half-plane of desired 
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orientation which contains both edges and whose bounding line supports both 
edges. All half-planes possessing the final two properties have bounding lines 
defined by endpoints of the edges. In the curved world, however, determining 
the desired half-plane will require computing tangents to curves. Nonetheless, 
this algorithm is extended directly to piecewise-smooth Jordan curves by adapting 
the procedures for processing edges. See [SV] for details. [] 

6. Limitations of Splinegons. In the previous sections we have described 
numerous problems where the algorithms for straight-edged polygons can be 
extended to work for splinegons. Unfortunately, some things explicitly cannot 
be done. Many geometric algorithms begin by decomposing simple polygons into 
a disjoint set of monotone pieces, convex pieces, or triangles without adding any 
new vertices. Fournier and Montuno [FM] show that polygon decomposition 
into the union of convex polygons, of star-shaped polygons, of monotone poly- 
gons, and of triangles are all linear-time equivalent to solving the all vertex-edge 
horizontal visibility problem. As discussed in the previous section, Tarjan and 
Van Wyk [TV] have recently demonstrated that all horizontal-visibility informa- 
tion can be computed in time O(N log log N). Thus, decomposition of a simple 
polygon into convex polygons, star-shaped polygons, monotone polygons, and 
triangles can all be accomplished in O(N log log N) time. 

In general, however, splinegons do not have the same flexibility. As described 
in previous sections, we can determine whether a given simple splinegon is convex, 
star-shaped, or monotone in O(N) time. The splinegon extensions of the Tarjan- 
Van Wyk algorithms allow us either to decide whether a given splinegon is simple 
or decompose a simple splinegon into the union of monotone pieces all having 
simple carriers in O (N log log N) time. Decomposition of splinegons into convex 
pieces, however, is problematic. Some splinegons are inherently nonconvex. 
For example, a splinegon with a single edge which is concave-out can never 
be decomposed as a union of convex pieces. The only efficient solution 
is to decompose the original splinegon into the union of monotone pieces, 
and then decompose each one into the union and difference of a collection 
of convex pieces [see DSV]. The decomposition will be expressed in the form 
[._Jj (UiA,j-[ .J i  B0), where j ranges over the number of monotone splinegons 
and the A's and B's describe the decomposition of each individual monotone 
splinegon. As a linear number of vertices may be added in the process, the size 
of the minimum decomposition does not depend solely on the number of reflex 
angles. Algorithms dependent on convex decompositions have been designed to 
handle unions well. In many, difference can be easily accommodated. The 
restricted ordering of the union and difference operations, however, raises ques- 
tions about the usefulness of this decomposition. 

Triangulation is even more problematic. Dividing an N-sided convex polygon 
P into triangles is a simple linear-time procedure. By convexity, any diagonal, 
an open line segment joining two nonadjacent vertices, lies in the interior of P. 
Any collection of N - 2  nonintersecting diagonals divides P into triangles. 
Triangulating a convex splinegon S is equally easy. Any collection of diagonals 
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Fig. 19. The triangulation of trapezoids. 

which triangulates P also triangulates S, and each triangle in the decomposition 
is convex. 

Triangulation of simple splinegons, however, is complicated. Many splinegons 
cannot be triangulated without the addition of Steiner points. For example, the 
splinegonal trapezoid depicted in Figure 19(a) can never be triangulated merely 
by adding straight edges between existing vertices. Nor will curved edges without 
inflection points between existing vertices suffice. The minimum-size triangulation 
results from stretching copies of the two longer curved edges toward each other 
until they touch at a point. Insert that point and the resulting four curved edges. 

If  triangulation requires the creation of new curved edges, then its usefulness 
becomes questionable. Each splinegon, however, can be triangulated using a 
linear number of line segments and a linear number of new vertices. Computing 
horizontal visibility information yields a decomposition of an arbitrary splinegon 
into a linear number of trapezoids. No vertex produces more than two new 
vertices in the trapezoidal decomposition. A trapezoid whose side-edges are both 
concave-in is convex and can be triangulated by adding either diagonal; no new 
vertex is necessary (see Figure 19(b)). If one side-edge is concave-in and one is 
concave-out, determine the point on the concave-out edge which is closest to the 
line segment defined by the vertices of the concave-in edge; add line segments 
from those vertices to the new point (see Figure 19(c)). If both side-edges are 
concave-out, add the points of minimum separation on the two curved edges as 
vertices. Find a line supporting one of the side-edges at its new vertex, and add 
the portion of  that line which connects the top and bottom edge of the trapezoid. 
Add the two points of contact with the trapezoid as vertices; finally, triangulate 
the interior polygon formed by the new vertices (see Figure 19(d)). At most four 
vertices are added to triangulate any trapezoid. 

In polygon algorithms, triangulation has two major selling points: all regions 
can be triangulated without adding any new vertices; triangles are always convex. 
A splinegon can also be triangulated efficiently, but the triangles may not be 
convex, and a linear number of new vertices may be required. The lack of 
convexity and the potential size of the new decomposition may prevent the 
efficient extension of polygon algorithms dependent on triangulation. 
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A prime example of a polygon algorithm dependent on triangulation is Kirk- 
patrick's optimal algorithm for planar point location [Ki]. ~~ He begins by triangu- 
lating every region of the given planar subdivision. A hierarchy is then established 
by removing an independent set of vertices and retriangulating. The efficiency of 
the algorithm depends on the fact that the number of vertices constantly decreases, 
and, for each v.ertex discarded, the number of triangles decreases by two. In the 
splinegon case, even allowing curved triangulations, there is no such guarantee. 
First, new vertices may be required to triangulate the original planar subdivision, 
an acceptable one-time charge. But, as vertices are discarded, we can still get 
arbitrarily complicated new regions to triangulate. The retriangulation might well 
add more vertices than had been discarded. 

Triangulation and convex decomposition represent a class of algorithms which 
may not extend profitably to splinegons. In the graphics world the extension of 
polygon edges form a convex decomposition of the plane. From any viewing 
point within one convex region, the same edges are visible. The list of visible 
edges need be updated only when the viewing point crosses a boundary. One 
technique used in motion planning entails unfolding polyhedral objects until 
they are planar. A straight path can be chosen in the plane, and then wrapped 
back along the surface of the polyhedron. Duality transformations which map 
lines to points, or planes to points have become an increasingly powerful tool 
within computational geometry. None of these methods extend easily into the 
curved world. 

Does the existence of methods which do not extend to the splinegon world 
mean that there are a class of problems which require asymptotically more time 
in the splinegon world than they do in the polygonal world? Not necessarily. 
There is some indication that alternative methods can be substituted which allow 
the asymptotic complexity to remain unchanged. Edelsbrunner et al. [EGS] and 
Sarnak and Tarjan [ST] have provided optimal algorithms for planar point 
location which do in fact extend to splinegons. Not only do these algorithms 
equal the Lipton-Tarjan algorithm and the Kirkpatrick algorithm in time and 
space complexity, but they surpass the older algorithms in practicality. The 
Edelsbrunner et al. result depends on monotone pieces rather than triangles 
lEGS]. The monotone decomposition of splinegons is efficient and clean. Con- 
sequently, their algorithm extends directly to splinegons, as they expect. The 
Sarnak-Tarjan algorithm depends solely on the monotonicity of the individual 
edges [ST]. 

It is hard to assess the degree to which alternative methods can compensate 
for those methods which extend poorly from the straight world to the curved 
world. It may be that monotone decomposition, for example, can make up for 
whatever power convex decomposition and triangulation will lack and thus will 
emerge as an increasingly powerful tool in the polygonal world as well as in the 
splinegonal world. Further study is needed. 

1o Lipton and Tarjan developed an optimal algorithm for this problem some years earlier [LT1], 
[LT2]. A significant theoretical achievement, their algorithm is much harder to implement than 
Kirkpatrick's. 
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7. Higher-Dimensional Extensions. The extension of the development above to 
three dimensions raises interesting mathematical questions. The basic question 
is how to characterize three-dimensional curved objects. This question is not fully 
resolved since two reasonable alternatives are possible, and yet neither accommo- 
dates the full spectrum of real-world three-dimensional objects. This section 
presents these two definitions of a splinehedron S as a modification of a carrier 
polyhedron P. We discuss the effect of the choice of definition both on the range 
of objects accommodated and on the applicability of each of the approaches 
used in two dimensions, and sketch one concrete result using the first model. 

We begin by defining a splinehedron as a modification of a carrier polyhedron 
P in which each face of P is replaced by a curved surface bounded by the same 
vertices and edges. The ith face f of S together with the corresponding face Pi 
of P must enclose a convex region S-segi. A convex splinehedron both encloses 
a convex region and has a convex carrier polyhedron. 

This splinehedron model limits us to objects whose curved faces join in straight 
line segments but is attractive in that it allows direct extension of the three main 
splinegonal methods into the three-dimensional world. The carrier polyhedron 
approach still works. Given a convex splinehedron S, the plane defined by the 
ith face Pi of the carrier polyhedron P divides space into two half-spaces. The 
"outside" half-space contains the convex region S-segi, and the "inside" half- 
space contains the convex splinehedron S~ = S-S-segi .  S~ can be considered a 
convex polyhedron which is supported by the given plane along a face. Further- 
more, the convexity of S dictates that S-seg~ is enclosed in the solid defined by 
the "outside" half-space determined by pi of P and by the "inside" half-spaces 
determined by the faces adjacent to p~. Consequently, without any direct manipu- 
lation of curved faces, the behavior of S can be reasonably approximated. 

This splinehedron model readily accommodates the bounding polyhedron 
approach. Given an arbitrary splinehedron S, we create a bounding polyhedron 
Q. Q contains all of the original vertices and all of the original edges of S, the 
fixed edges and fixed vertices. For each triangular f a ce f  of S which is not planar, 
let f~* represent the point of intersection of the three planes each of which supports 
f along an edge. 1~ As in the two-dimensional case, this point may have finite 
coordinates, or may represent a point at infinity. The pyramid defined by Pi and 
the pseudovertex f~* contains S-seg~. Insert the pseudovertex f *  into Q along 
with pseudoedges joining it to each of the fixed vertices of f .  A face bounded 
only by fixed edges is called a fixed face. Otherwise, it is a pseudoface. 
A pseudoface is considered loose if its only intersection with the curved face it 
supports is the fixed edge. If the intersection has positive area, the pseudoface 
is considered tight. 

A face-based polyhedron algorithm can be extended to a face-based splinehe- 
dron algorithm in this model using the direct approach. A face of the splinehedron 

1~ l f f  has more than three vertices, then the tangent planes defined by its edges may not intersect 
in a single point. This irregularity does not present a problem. We still insert a single pseudovertex 
f/* into Q, but f,* will represent the collection of vertices defined by the intersection of the tangent 
planes as well as the line segments which connect them. 
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resembles a face of a polyhedron in that it is bounded by a collection of  vertices 
and line segments. In extending a polyhedron algorithm, however, all assumptions 
based on the flatness of  the faces (e.g., the monotonicity of faces, that the 
intersection of two faces consists of a single component) must be updated. 

Although each of  the carrier polyhedron, bounding polyhedron, and direct 
approaches applies to this model, our only example uses the carrier polyhedron 
approach: 

THEOREM 15. The intersection of  two preprocessed convex splinehedra of  at most 
Nvertices each can be detected in O((A2 + B1) log N + (C2 + E2) log 2 N )  operations. 

PROOF. The algorithm for detecting the intersection of two splinehedra follows 
that of the polyhedron algorithm of [DK1]. Each splinehedron will be represented 
as a sequence of  parallel splinegonal cross-sections, one per vertex, and all their 
connecting faces and edges. Each cross-section of the splinehedron forms a 
splinegon having the corresponding cross-section of the carrier polyhedron as a 
carrier polygon. Each pair of adjacent splinegonal cross sections and all of their 
connecting edges and faces describe a splinedrum whose side faces are curved 
patches. The carrier polygons for these adjacent splinegonal cross sections 
together with their connecting edges and faces describe a carrier drum for the 
splinedrum (see Figure 20). Thus a splinehedron can be viewed as a sequence 
of splinedrums. Each splinedrum can be specified by a circular list of its side- 
edges, pointers to the description of the individual curved side-faces, and the 
planes containing the top and bottom faces. The algorithm centers around 
detecting the intersection of  the two middle splinedrums. In each instance in 
which the two splinedrums do not intersect, half of one splinehedron may be 
removed from future consideration. See either [So] or [DS2] for details. [] 

In the model described above, a splinehedron is defined from its carrier 
polyhedron: the vertex list and the edge list remain unchanged; each face entry 
is modified to contain an equation of the surface in which the face lies. Under 
this definition, adjacent curved faces must join together at a straight line segment--  

Fig. 20. A splinedrum defined on two adjacent splinegonal cross sections and its carrier drum defined 
on two adjacent polygonal cross sections. 
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not what happens in practice! Our second model allows each edge entry to be 
modified to include an equation of the planar curve which joins its two vertex- 
endpoints and which separates the two faces. 12 The ith face of the splinehedron 
S together with the corresponding face of  the carrier polyhedron P and each 
plane defined by a curved edge of S and the corresponding straight edge of P 
bound a convex region S-segi. 

Allowing each face of P to be replaced by a curved surface containing the 
vertices of the original face but having curved edges more adequately reflects the 
real world. This model, however, dramatically alters the efficacy of  the three 
methods of  polyhedron extension. A splinehedron in this model still has a carrier 
polyhedron, but it no longer approximates the splinehedron as welt as it did in 
the restricted model. Given a convex splinehedron S, the plane defined by the 
ith face Pi of its carrier polyhedron P divides space into two half-spaces. The 
"outside" half-space contains the convex region S-se&, but also some portion of 
each of the adjacent S-seg's and possibly some part of an unlimited number of 
other neighboring S-seg's. The "inside" half-space contains the remainder, a 
convex splinehedron which cannot be defined explicitly without specific calcula- 
tions for each instance of S and i. In addition, the solid defined by the "outside" 
half-space determined by pi of P and by the "inside" half-spaces determined by 
the faces adjacent to Pi no longer contains S-se&. W h en ev e r f  represents a curved 
face all of  whose edges are curved, then each of those edges as well as a 
neighboring region will be excluded from the solid. 

The bounding polyhedron approach is even more problematical. A bounding 
polyhedron should contain all of  the original vertices of a splinehedron as well 
as a collection of pseudovertices which approximate the faces. The previous 
method of  defining the bounding polyhedron is no longer valid. Once edges are 
defined as curves, there no longer exists a single plane which supports a face 
along an entire edge, approximating the face in the neighborhood of that edge. 
Only one alternative method seems promising. For each triangular face f of S 
which is not a planar polygon, let f *  represent the point of intersection of the 
three planes each of which is tangent to f at a vertex. The pseudovertices of the 
form f *  only form a subset of the new vertices which must be inserted into Q. 
Neighboring pyramids will intersect each other forming numerous new vertices 
and edges. The bounding polyhedron defined in this fashion could have as many 
vertices as the sum of the number of faces of S with three times the number of 
vertices. 

The direct approach is also adversely affected, but not to the same extent. 
A face of a splinehedron under this model has a smaller resemblance to a face 
of a polyhedron. Not only is the face not flat, it also does not have a planar 
boundary, let alone a piecewise-straight planar boundary. The modifications 
which must be made to a polyhedron algorithm become far more complicated. 

See [DS2] for a description of the effect of the alternative model on intersection 
detection. 

12 We restrict an edge to being a planar curve because a nonplanar edge would dramatically complicate 
the model. 
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8. Conclusion. We give here a series of observations which provide an algorith- 
mic basis for extending linear algorithms into curved space. These observations, 
though simply stated, give rise to powerful results in the computational geometry 
of curved objects. 

To recapitulate: 

OBSERVATION 1 (Carrier Polygons). The carrier polygon imposes sufficient 
structure on a convex splinegon that polygon algorithms can be extended to 
splinegons with the only modification being ad hoc procedures to allow for all 
possible behavior of S-segi and its bounding triangle S-trij. Only infrequently 
will an examination of the precise behavior of e~ be necessary. Although 
the carrier polygon seems to be most useful for convex polygons, it can 
also be an important tool in processing monotone splinegons, but only if it is 
simple. 

OBSERVATION 2 (Bounding Polygons). When the carrier polygon itself is 
insufficient, it may often be enhanced by adding further structure based solely 
on the local structure of the splinegon. This structure results in a bounding 
polygon with fixed vertices corresponding to vertices of the splinegon and 
pseudovertices corresponding to edges of the splinegon. Insofar as possible, 
computations involving the polygon in the linear case now involve the bounding 
polygon with only local attention to the splinegon's curved edges. 

OBSERVATION 3 (The Direct Approach). Edge-based polygon algorithms can 
be extended directly to splinegons, provided that those assumptions about the 
behavior of edges which apply only to straight line segments are removed, 
additional tests are inserted to accommodate the more general edges, and 
splinegon edges are split into monotone pieces as necessary. 

We have presented three strategies for generalizing straight-line algorithms to 
apply to curved objects. The results listed in Table 1 demonstrate the efficacy of 
these approaches and suggest a broader applicability. Numerous other extant 
algorithms for polygons could be generalized by carefully applying the techniques 
given here, and we encourage readers of this paper to do so. In the future, 
however, we hope that developers of new algorithms for computational geometry 
problems will apply these strategies at the outset in order to state their results as 
generally as possible. 

Despite the efficacy of these techniques, we conjecture that there are other 
two-dimensional problems of geometry for which none of the approaches we 
describe is sufficient. Furthermore, many issues in three-dimensional curved 
geometry remain unresolved. Additional research is necessary. There also remain 
the open problems of finding techniques to realize the splinegon oracles. These 
would be particularly interesting for specific cases of curves (e.g., piecewise 
cubic, or polynomial in degree d). Recent work by Bajaj and Kim addresses this 
issue [BK]. 
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Table 1 

Problem Approach Time complexity 

Intersection detection of a line with a 
convex splinegon Carrier 

Intersection detection of two convex 
splinegons Carrier 

Intersection detection of convex splinegon 
and splinedrum Carrier 

Intersection detection of two convex 
splinedrums Carrier 

Intersection detection of two convex 
splinehedra Carrier 

Testing point inclusion for a convex 
polygon using hierarchy Carrier 

Testing point inclusion for a convex 
splinegon Carrier 

Area computation for an arbitrary 
splinegon Carrier 

Diameter computation for a convex 
splinegon Bounding 

Monotonicity determination for a simple 
splinegon Bounding 

Kernel computation for a simple splinegon Bounding 
Convex hull computation for a simple 

splinegon Bounding 
Intersection computation for a convex 

splinegon Direct 
Horizontal visibility computation for a 

simple splinegon [TV] Direct 
Simplicity testing for an arbitrary splinegon 

[TV] Direct 
Monotone decomposition of a simple 

splinegon [DSV] Direct 
Intersection detection for two simple 

splinegons [DSV] Direct 

O(B 1 +log N) 

O(A l + B 1 + C l log N) 

0((C1+E2) log N + A1+ Bi + E~) 

O( C 2 log N + A2) 

O((A 2 + B 1) log N + ( C 2 -~" E2) log 2 N) 

O(log N) 

O(B~ +log N) 

O(F,N)  

O((A, + CI)N) 

O(CIN)  
O((BI +C1)N) 

O((B l+ C I + D~)N) 

O( A 1N + C 1 log N + B l) 

O(N log log N + (B 1 + C1)N) 

O( N log log N + ( A~ + B, + C~) N) 

O(N  log log N + (B~ + C1)N ) 

O( N log log N + ( A~ + B, + C1) N)  
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