
Algorithmica (1987) 2:315-336 Algorithmica
�9 1987 Spdnger-Vedag New York Inc.

The Longest Common Subsequence Problem Revisited

A. Apos to l i co 1 and C. Guerra I

Abstract. This paper re-examines, in a unified framework, two classic approaches to the problem
of finding a longest common subsequence (LCS) of two strings, and proposes faster implementations
for both. Let I be the length of an LCS between two strings of length m and n -> m, respectively,
and let s be the alphabet size. The first revised strategy follows the paradigm of a previous
O(In) time algorithm by Hirschberg. The new version can be implemented in time
O(lm. rain{log s, log m, log(2n/m)}) , which is profitable when the input strings differ considerably
in size (a looser bound for both versions is O(mn)) . The second strategy improves on the Hunt-
Szymanski algorithm, This latter takes time O((r+ n) log n), where r < - mn is the total number of
matches between the two input strings. Such a performance is quite good (O(n log n)) when r - n,
but it degrades to O(mn log n) in the worst case. On the other hand the variation presented here is
never worse than linear-time in the product ran. The exact time bound derived for this second
algorithm is O (m log n + d log(2mn/d)) , where d <- r is the number of dominant matches (elsewhere
referred to as minimal candidates) between the two strings. Both algorithms require an O(ri log s~
preprocessing that is nearly standard for the LCS problem, and they make use of simple and handy
auxiliary data structures.

Key Words. Design and analysis of algorithms, Longest common subsequence, Dictionary, Finger-
tree, Characteristic tree, Dynamic programming, Efficient merging of linear lists.

1. Preliminaries. We consider strings c~,/3, % . . . o f symbols on an alphabet
= (o,1, t r2 , . . . , o,~) o f size s. A string is identified by writing a = a ~ a 2 " " am,

with a i 6 Z (i = 1 , 2 , . . . , m). The length of a is m. A string 3"=c~c2" �9 �9 ct is a
subsequence of a if there is a mapping F : [1, 2 , . . . , l] ~ [1, 2 , . . . , m] such that
F(i) = k only if ci = ak and F is mono tone and strictly increasing. Thus 3, can
be obta ined f rom a by deleting a certain number o f (not necessarily consecutive)
symbols.

Let a = a l a 2 " ' " am and / 3 = b l b 2 " ' " bn be two strings on E with m<-n. We
say that 3' is a common subsequence of a and /3 iff 3' is a subsequence o f ce and
also a subsequence of /3 . The longest common subsequence (LCS) problem for
input strings a and /3 consists o f finding a c o m m o n subsequence 3' o f a and /3
o f maximal length. Note that 3' is not unique in general.

A dynamic p rogramming strategy to compute the LCS of a a n d / 3 in O(mn)
t ime and space is readily set up [8], [17]. Consider the integer matrix
L [0 . . . m, 0 . �9 �9 n], initially filled with zeros. The following code t ransforms L
in such a way that L[i , j] (1 < - i - < m, 1 <-j<- n) contains the length o f an LCS
between c~i= a la2" ' " ai and /3j = bib2" '" bj:

t Department of Computer Sciences, Purdue University, West Lafayette, IN 47907, USA.

Received March, 1985; revised November, 1985 and October, 1986. Communicated by David P.
Dobkin.

316 A. Apostolico and C. Guerra

for i = 1 to m do
for j = 1 to n do if a~=bj then L [i , j] = L [i - l , j - 1] + l

else L[i, j] = M a x { L[i, j - 1], L[i - 1,j]}.

The correctness of this strategy rests on the fact that the final entries of L must
observe the following, easy to check, relations:

L[i - 1,j] -< L[i, j] <- L[i - 1,j] + 1;

L[i, j - 1] -< L[i , j] <- L [i , j - 1] + 1;

L[i - 1,j - 1] -< L[i , j] <- L [i - 1,j - 1] + 1.

It is also easy to show that an LCS can be retrieved, from the L-matrix in final
form, in O (n) time. This suggests that the L-matrix may be highly redundant.
More efficient algorithms try to limit the computat ion only to those entries of
the matrix which convey essential information. In order to be more precise, we
need a few additional definitions.

The ordered pair o f posi t ions i a n d j of L, denoted [i , j] , is a match iff ai = b i = o5
for some t, 1 <- t <- s. In the following, r wil ldenote the number of distinct matches
between a and/3. I f [i , j] is a match, and an LCS Yi3 of ai and/3j has length k,
then k is the rank of [i , j] . The match [i , j] is k -dominan t if it has rank k and
for any other pair [i ' , j '] of rank k either i ' > i and j ' < - j or i ' - < i and j ' > j . The
total number of dominant matches will be denoted by d. Let l be the length of
an LCS of a and/3. It is seen [9] that, for any k-< l, there must be at least one
k-dominant match, and that, moreover, there is at least one LCS 7 = c~c2 �9 �9 �9 c~
such that Ck corresponds to a k-dominant match (k = 1, 2 , . . . , l). Thus, computing
the k-dominant matches (k = 1, 2 , . . . , l) is all that is needed to solve the LCS
problem. For a large or a priori unknown alphabet, and within the decision tree
model of computat ion where comparisons are restricted to give outcomes in
[= , ~] , the worst-case time lower bound for the LCS problem is | [1]. The
related preprocessing charges O(n log s) time and O(n) space.

However, it is easy to see that once all k-dominant matches are available, then
O (m) time suffices to retrieve Y. Most known approaches to the LCS problem
require O(n + d) space. By contrast, the dynamic programming implementation
presented in [8] never takes more than | space, though never less than O (m n)
time.

As an illustration of the concepts introduced thus far, Figure 1 displays the
nontrivial portion of the final L-matrix for the strings a = abcdbb and /3 =
cbacbaaba$, where $ is a " joker" symbol not in E, but matching any symbol of
E. Entries that correspond to matches are encircled. Emboldened circles circum-
scribe dominant matches, and boundaries are traced to separate regions with
constant L-entry. For our convenience, we will henceforth speak of the L-matrix
of a and /3 referring to the slightly augmented version presented in Figure 1.
Notice that appending $ to/3 has the effect of transforming each instance of our
problem into a corresponding instance with r---m.

The Longest Common Subsequence Problem Revisited

c b a c b a a b a $

1 2 3 4 5 6 7 8 9 10

317

a 1

b 2

c 3

d 4

b 5

b 6

0 ~ O I 1 1 ~ 1O.) 1 (~ Q ,)

1 ~ 1 1 ~ 2 2 2 2 2 ~

1 1 1 _ [2 2 2 2 2 2 ~)

Fig. 1. The augmented L-matrix for the strings a = abcdbb and fl = cbacbaaba.

The remainder of this paper is organized as a self-contained excursion through
several solutions to the LCS problem, and the style of presentation is sometimes
deliberately semitutorial. In Section 2 we present a strategy which is reminiscent
of that in [1]: only, the direction according to which matching pairs are scanned
is inverted, and gain is achieved by exploiting some information on the structure
of 13 (the longer string). The simplest preprocessing of /3 which makes such
information available would require O(ns) time and space, an undesirable cost
that is curbed to O(n) in Section 3. Our first new algorithm is also presented in
that section, and it is shown there that it can be set up to run in
O(Im. min{iog s, log m, log(2n/m)}) time. In Section 4 we highlight that an
improved version of the Hunt-Szymanski strategy is unlikely to be obtainable
through the mere rescheduling of the primitive operations contained in Hirsch-
berg's strategy (the expert reader might want to skip this section). Thus, Section
5 is devoted to the dissection of the original algorithm in [11], which is then
reassembled in such a way that the sites of possible speed-ups are more apparent.
Section 6 introduces a data structure similar to those recently proposed for the
efficient merging of linear lists [6], [7], [14], but better fit to the special case of
our interest. Finally, we give a construction that uses such a structure to achieve
a time bound of O(m log n + d log(2mn/d)).

2. Hirschberg's Strategy Revisited. We start by outlining an alternate O(mn)
time algorithm for the LCS of a and/3. Also, this algorithm accepts an (m + 1) x
(n + 1) input L-matrix filled with zeros. The output is again the final L-matrix.
The k-dominant matches for each k are identified as follows: the dummy pair
[0, 0] is obviously a 0-dominant match. Suppose now that all the (k - 1)-dominant
matches are known. Then the k-dominant matches can be obtained by scanning

318 A, Apostolico and C. Guerra

the unexplored region of the L-matrix from right to left and top-down, until a
stream of matches is found occurring in some row i. The ieftmost such match is
the k-dominant match [i,j] with smallest/-value. The scan continues at the next
row and to the left of this match, and this process is repeated at successive rows
until all the (k - 1) s t region has been scanned (and identified). Notice that the
list of k-dominant matches, in the same order as they are produced, un-
ambiguously encodes the lower border of the kth region. The list (with no more
than m entries) produced at some stage suffices to guide the searches involved
at the subsequent stage, which highlights that l inear space is sufficient if one
wishes to compute only the length of 3,. (Elaborating on this idea, Hirschberg set
up an algorithm [8], different from that being discussed here, that takes linear
space though never less than quadratic time to retrieve y.)

The approach in [9] corresponds to an efficient implementation of the schedule
of operations which was just described. More precisely, the 0, 1, 2 , . . . , lth regions
of L are produced in succession, on the basis of the following criterion:

(1) The topmost and leftmost match in the unexplored region is a dominant
match.

(2) If [i,j] is a k-dominant match, then any other k-dominant match with i '> i
must lie to the left of [i,j], i.e. j '<j .

With some preprocessing on ~ and/3, Hirschberg's algorithm performs in time
O(nl+ n log s) and space O(d + n) [9]. Since the product of that preprocessing
is necessary to our algorithm as well, we now describe it in detail. For each
distinct symbol cr in a, the preprocessing consists of producing the following:

(A) A list o'-OCC of all positions of/3 (in increasing order) which correspond
to occurrences of 0 , 2 for each ~r c E. In our case, /3 is always replaced by
/35, whence the last entry of any cr-OCC list is always n + 1.

(B) The count N (~) of all distinct occurrences of or in/3. In the following we
will retain N(cr) exactly as defined here, i.e., without counting $ as an
occurrence of o-.

At most s such lists need to be produced, at a cost of O(n log s). The advantage
brought about by the tr-OCC lists is twofold (refer to [9] for details):

(1) The identification of each region can be carried out by traveling (right to
left) on such lists rather than on the rows of L, in such a way that each region
is identified in O(n + m) steps.

(2) If l = k, then this circumstance can be detected at once following the iden-
tification of the kth border, since in this case none of the tr-OCC lists features
nonjoker matches in the unexplored region of L.

The alternate strategy by Hunt and Szymanski [11] also makes use of the
o--OCC lists.

We now describe an algorithm similar to that of Hirschberg but characterized
with a bound of O(Im+ r+n log s), inclusive of preprocessing. This may be

2The tr-OCC lists can be easily allocated in O(n) space in such a way that each one of them is
accessible randomly.

The Longest Common Subsequence Problem Revisited 319

better than O(ln + n log s) when m < n and r is comparable to m. However, we
are only interested in it as a starting point for our discussion, since both its
description and evaluation are very simple.

We use an array of integers PEBBLE[1 �9 . . m], initialized to 1, the role of
which shall become apparent later. If ai = Crp, PEBBLE[i] either points to (the
location of) an entry j-< n of crp-OCC, and is said to be active, or it points to
(the location of) n + 1 and is inactive.

Our algorithm consists of I stages, stage k being defined as the set of operations
involved in identifying all the k-dominant matches. Let a match be k-internal
(k = 1, 2 , . . . , l) if its rank is larger than k. Then stage k, 1 -< k - l begins with all
active entries of PEBBLE pointing to (k - 1)-internal matches and ends with all
active entries of PEBBLE pointing to k-internal matches. During stage k the
pebbles, PEBBLE[k], PEBBLE[k+ 1] , . . . , PEBBLE[m], are considered in suc-
cession (indeed, no PEBBLE[i] with i < k can be active at stage k). The k-
dominant matches, detected are appended to the kth list in the array of lists
R A N K (through the concatenation operator "l["). The entire process terminates
as soon as there are no active pebbles left. In practice, one might profitably
substitute the for loop of Algorithm 1 below with a walk through the list of active
pebbles, thus gaining a considerable speed-up in some extreme cases. Since only
deletions would take place from such a list, its maintenance does not pose special
problems. However, the mere introduction of the list of active pebbles does not
lead to any improvement in the tirrie bound. Hence we elect to present the less
cluttered version below. Although it is not crucial to the general paradigm around
which Algorithm 1 is built, we prefer to resort from the beginning to an auxiliary
table called SYMB. This table will be necessary in some of the subsequent versions
of this algorithm, and it is defined as follows. SYMB[j] = k, if bj = trp and j is
the kth entry in gp-OCC. Thus the table S Y M B enables constant time access to
the entry in the cr-OCC list that corresponds to the symbol of/3 occurring at any
position. We stipulate that each time PEBBLE[i] is being handled by the
algorithm (i = 1, 2 , . . . , m), then SYMB[n + 1] takes the value N(ai). The table
S Y M B can be prepared in linear time from the g-OCC lists, quite easily, and
we will not spend time on it. Within Algorithm 1, S Y M B is used to speed up
the advancement of some PEBBLE[i'], if a~,=a~ for some i<i ' , and T, the
threshold, was not changed since row i.

ALGORITHM 1

0 for i = 1 to m do PEBBLE[i] = 1; (initialize pebbles)
1 k = 0
2 while there are active pebbles do (start stage k + 1)
3 begin T = n + l ; k = k + l ; R A N K [k] = A ;
4 for i = k to m do (advance pebbles)

begin
5 t = T;
6 if aI-OCC[PEBBLE[i]] < T then

(record a k-dominant match; update threshold)

320 A. Apostolico and C. Guerra

7 begin R A N K [k] = R A N K [k] II [i, ai-OCC[PEBBLE[i]]];
8 T = a,-OCC [PEBBLE [i]]

end;
(advance pebble, if appropriate)

9 i f as = bt
10 then PEBBLE[i] = SYMB[t] + 1
11 else while a~-OCC[PEBBLE [i]] < t

do PEBBLE[i] = PEBBLE[i] + 1
end;

end.

With each cr-OCC list visualized as stretched along each of the corresponding
rows of the L-matrix, Figure 2 depicts the positions occupied by the pebbles at
the beginning of each of the stages performed by Algorithm 1 on the input strings
of Figure 1. To illustrate the action of the algorithm, we trace its stage 1, which
produces the first boundary (consisting of all the 1-dominant matches). The
algorithm starts by assigning the value "10" to both T and t, i.e., the variables
which will be used to store the current and previous threshold, respectively (lines
3 and 5). Next, it compares the first occurrence of symbol a = al in fl (line 6).
Such test is passed (3 < 10), whence the first 1-d0minant match is detected and
appended to the list R A N K [l] (line 7). Moreover, T is updated to the new value
"3" (line 8). At this point, the algorithm tries to advance PEBBLE [1] onto a
1-internal match. By definition of $, as matches $. Moreover, in view of our
convention, the current value of SYMB[IO] is N (a) = 4. Thus line 10 is executed
following the test of line 9, with the effect of bringing PEBBLE [1] to its rightmost
position on a-OCC, and rendering it inactive. As Algorithm I proceeds to consider
a 2 : b , the test of line 6 prompts the detection and recording of a new 1-dominant
match on column 2 of the L-matrix. This is followed by the advancement of
PEBBLE[2] which is thus brought on column 5. PEBBLE[3] is subjected to a
similar treatment. In our example, the first three pebbles provide all the dominant
matches for the first stage. When PEBBLE[4] is considered, it does not pass the
test of line 6; line 11 has no effect and this pebble is left in its inactive status.
The last two pebbles are also left in their original position: We encourage the
reader to carry out the remainder of this example for himself, with the aid of
Figure 2.

In general, it is easy to check that Algorithm 1 maintains the following invariant
condition: whenever some pebble is being considered for the kth time, then there
can be no match of rank k on the same row and to the left of that pebble. In
other words, if such pebble is active, then the match which it points to must be
either a k-dominant match or a k-internal match. Unlike the algorithm in [9],
Algorithm 1 uses the following heuristic: matches whose ranks have already
been determined are not reconsidered at subsequent stages.

THEOREM 1. Algorithm 1 takes time O(lm + r).

PROOF. During stage k, m - k + 1 pebbles are considered in succession. Each
pebble is either advanced some position to the right or it is not moved. The

~eLongestCommonSubsequenceProblemRevisited

c b a c b a a b a $

1 2 3 4 5 6 7 8 9 1 0

321

c b a c b a a b a $

1 2 3 4 5 6 7 8 9 1 0

a 1

b 2

c 3

d 4

b 5

b 6

|

a 1 / * * * * @

0 - ; : -
c 3

, e d 4 _] * * O-
b 6 ~ * * *

stage 1 stage 2

c b a c b a a b a $

1 2 3 4 5 6 7 8 9 1 0

c b a c b a a b a $

1 2 3 4 5 6 7 8 9 1 0

a 1

b 2

d 4

b 5

b 6

_J* * * * @ a 1

�9 l * * @ b 2

i ~ 1 1 8 - ** __**~ d c 3 I 4 b 5

b 6

.

J
i

* * * @

, |

@
|

, |
t~---~7-

stage 3 stage 4

Fig. 2. Pebbling the L-matrix of Figure 1 through the four stages of Algorithm 1. The figure relative
to stage k (1---k-< 4) displays the initial positions of the pebbles for that stage. At this point, each
active pebble falls either on a k-dominant match or on a k-internal match.

number of advances on one row is bounded by the number of matches on that
row, thus the total number of advances is bounded by r. A pebble is considered
exactly once during each stage, thus the number of times a pebble can stay put
is bounded by l, which yields a total of Ira. []

We remark that the above strategy requires O (l m + r + n log s) inclusive of
preprocessing and O (d) (O (m)) space to find the LCS (the length of the LCS).
If r < lm and m is much smaller than n, this is better than the O (l n + n log s) in
[9]. When r is large compared with ml, the strongest cause of inefficiency becomes

322 A. Apostolico and C. Guerra

the inner while loop of Algorithm 1, which generates the O(r) term. We devote
the next section to curbing this term.

3. Improving Efficiency. The operation of the inner while loop of Algorithm 1
is basically that of moving the ith pebble to the leftmost position of/3 which is
larger than the value t of the threshold which was updated last. This might involve
an uncontrolled number of advancements on the ai-OCC list. The information
needed to move the ith pebble is embodied in the structure of /3: through the
while loop we want to m o v e the pebble to the leftmost occurrence of ai in fl
which falls past bt.

For s constant and /o r small compared with n (like, for example, in the analysis
of molecular sequences [12], [15]) this information can be made available by a
simple preprocessing of the string [35. We prepare the s (n + l) table
CLOSEST[o-1 . . . o's, 1 n + 1] which is filled as follows.

CLOSEST[trp, n + 1] = n + 1, for p = 1, 2 , . . . , s.

F o r j = 1, 2 , . . . , n, CLOSEST[trp,j] =j'>-j, where bj, matches trp but bk # crp for
j < k < j ' .

For example, the table CLOSEST associated with 13 = cbacbaaba is as follows:

1 2 3 4 5 6 7 8 9 10

c b a c b a a b a $

a 3 3 3 6 6 6 7 9 9 lO
b 2 2 5 5 5 8 8 8 10 10
c 1 4 4 4 10 10 10 10 10 10

The preparat ion of CLOSEST in | time is straightforward. For instance,
it can be based on the alternative definition of CLOSEST offered by the following,
equally straightforward, lemma.

LEMMA 1. Define CLOSEST[o'p, n + l] = n + l , l <- p <- s.
Then, for j = 1, 2 , . . . , n, CLOSEST[trp,j] = j for p such that o'p = bj, and
CLOSEST[o-p,j] = CLOSEST[trp,j + 1] for all other values of p.

In addition to the array CLOSEST, we may also make use of the auxiliary
table SY MB, already introduced in connection with Algorithm 1.

With these two implements, the inner while loop can be removed from Algorithm
1, and substituted there with the simple assignment

PEBBLE [i] = S Y M B [CLOSEST[ai, t]].

We refer to the algorithm obtained with this modification as Algorithm 2. Notice
that Algorithm 2 does not access CLOSEST if ai = b,.

The Longest Common Subsequence Problem Revisited 323

THEOREM 2. Algorithm 2 finds an LCS in time O(lm + sn + n log s) and space
O(d+sn) .

The proof of Theorem 2 is straightforward and thus is omitted. Notice that, of
the three terms in the above upper bound for the time, two are charged by the
preprocessing. The processing phase charges a time at most proportional to the
product lm. Since all dominant matches are detected during this phase, then lm
must be an upper bound for the number of such matches.

The term sn becomes huge as s approaches m. To circumvent this, we replace
the table CLOSEST with a new table that we call CLOSE[1 �9 �9 n + 1] and regard
as subdivided into consecutive blocks of size s. Letting p = j mod s (j = 1 , . . . , n),
CLOSE[j] contains the leftmost position not smaller than j where crp occurs in
fl$. CLOSE[n+1] is set to n + l .

The array CLOSE[j] can be obtained in time | for instance, by scanning
the o'-OCC lists one at a time in succession while filling the entries of CLOSE
relative to each symbol. The manipulations involved in connection with each
tr-OCC list are similar to the merging of two lists, one of size n/s and the other
of size N(o-), the number of occurrences of tr in ft. Thus each such merge involves
less than n / s+ N(tr) comparisons. There are s such merges totaling less than
s(n/s)+Y, p N (%) = 2 n comparisons. The total number of assignments is
obviously n. We leave the details of this construction to the reader.

We now assume that the table CLOSE has been prepared, and we let
closest[trp,j] be the function whose tabular version is the array CLOSEST
discussed above.

LEMMA 2. For any given p and j (l<p<-s , l<- j<-n) , closest[trp,j] can be
retrieved from CLOSE[j] and from the Crp-OCC list in time O(log s).

PROOF. We prove our claim by giving an explicity strategy to identify
closest[trp,j] from p andj . First, compute j ' = (j div s)s+p, where div stands for
the integer division operation. Three cases have to be distinguished according to
whether j ' =j , j '< j , o r j ' > j . I f j ' = j then CLOSE[j] = closest[trp,j] by definition.
Our strategy returns CLOSE[j] as the answer in constant time. Next, suppose
j ' <j . If CLOSE[f] = j " > j , then clearlyj" = closest[trp,j]. Otherwise closest[crp,j]
is not smaller than j " = CLOSE[f] but not larger than j " = C L O S E [f + s]. Now
SYMB[j"] and SYMB[f"] point to the corresponding entries in the crp-OCC list,
and there can be no more than s entries in O'p-OCC between these two entries.
Thus closest[trp,j] can be retrieved in log s steps by performing a binary search
in this segment of % - o c c . The case j ' > j is handled along the same lines as the
case just discussed. []

We can now set up still another version of our LCS algorithm, which we call
Algorithm 3. Algorithm 3 does not differ from Algorithm 2, except that the
assighment

PEBBLE[i] = SYMB[CLOSEST[a,, t]]

is now replaced by

PEBBLE[i] = SYMB[closest[ai, t]].

324 A. Apostolico and C. Guerra

THEOREM 3. Algorithm 3 finds an LCS in time O(lm log s + n log s) and space
O(d+n).

PROOF. Each call to closest charges O(log s) time, in view of Lemma 2. The
generic stage can prompt no more than m such calls~ and there are precisely l
stages. []

If s can be regarded as a small constant, then Algorithm 3 takes time
O(Max{Im, n}). Thus, in particular, the LCS problem between two strings of
lengths m and n = ~ (m 2) has the same time complexity of the pattern matching
problem [2] for the same strings, except that preprocessing is applied here to the
"text" rather than to the "pattern." We recall that, under the assumption of
constant alphabet size, the algorithm by Masek and Paterson [13] requires
O(mn/log n) time for al lpossible values of the ratio n/m.

If n is larger than m 2 and s is larger than m, then limiting the preprocessing
to the subset of E containing only those symbols which appear in o~ enables
substitution of the log s in the bound of Theorem 3 with min{log s, log m}. In
intermediate situations, some improvement in the performance of Algorithm 3
can be gained from using searching techniques with auxiliary fingers [6], [7],
[14]. The inexperienced reader will become more familiar with such techniques
as we proceed with our discussion. For the time being, it will do to mention that
finger techniques obtain the result that consecutive search intervals on the same
o'-OCC list do not overlap during each individual stage.

It is not difficult to see that, with the sole use of fingers, the work at each stage
can be bounded by O(mlog(2n/m)), thus yielding an overall bound of
O(lm log(2n/m)+n logs) . This latter construction has been proposed very
recently in a paper which appeared in the literature during the development of
our work [10]. However, in view of the observation made above, concerning the
cases where s is close to n and m << n, such a performance conveys some advantage
on Hirschberg's only in the rather narrow spectrum of situations where, roughly
speaking, m log(2n/m) is small compared with n while n is small compared with
m 2. By contrast, the algorithm which is obtained by combined use of the restriction
(to the symbols of a) of the table CLOSE and finger techniques, performs in
time O(lm. min{log s, log m, log(2n/m)}+ n log s), which is never worse than
the time bound of the algorithm in [9], and can be better than that time bound
in a wide variety of instances.

4. A Smooth Transition. Sometimes the number r of matches can be assumed
to be small compared with m 2 (or to the expected value of lm). In these cases,
it is much desirable to have an algorithm whose running time is bounded by
some slowly growing function of r. This observation is the basis of the
LCS algorithm by Hunt and Szymanski [11], which exhibits a time bound of
O((n + r) log n). The Hunt-Szymanski algorithm (hereafter, HS for short) eludes
the risk, inherent to Hirschberg's strategy, of wastefully reconsidering the same
match many times: this is avoided by establishing, row after row, the ranks of

The Longest Common Subsequence Problem Revisited 325

all matches in each row. The main disadvantage of HS is that its performance
degenerates as r gets close to mn: in these cases this algorithm is outperformed
by the algorithm in [9], which exhibits a bound of O(ln) in all situations.

In this section we set up an LCS algorithm which does not quite coincide with
the Hunt-Szymanski strategy. This will help understand better the developments
of the following sections.

The Hunt-Szymanski approach consists of generating all the k-dominant
matches, row after row. Using the table C L O S E introduced in connection with
Algorithm 3 above, one might set up a strategy which looks similar to that in
[11], as follows. Let T H R E S H [1 �9 �9 �9 m + 1] be an array of thresholds, all of whose
locations are initialized to the value n + 1.

ALGORITHM 4

for i = 1 to m do
begin P E B B L E [i] = j = 1;

while P E B B L E [i] is active do
begin
if a r O C C [P E B B L E [i]] < T H R E S H [j]
then begin T = T H R E S H [j] ; T H R E S H [j] = ai -OCC[P E B B L E [i]];

record new dominant match; P E B B L E [i] = S Y M B [closest[ai, T]]
end;

if a~-OCC[P E B B L E [i]] = T H R E S H [j] then P E B B L E [i] =
P E B B L E [i] + 1;

j = j + l ;
end;

end.

We leave it as an exercise for the reader to recognize Algorithm 4 as nothing
but a rescheduling of the operations of Algorithm 3, and to evaluate its complexity.
He will find it unsurprising that both achieve the same time bound. This schedule
has some advantages on the previous one in some extreme situations.

However, the alert reader has already noticed that Algorithm 4 does not relate
the Hunt-Szymanski strategy as closely as Algorithm 3 relates to Hirschberg's.
Indeed, it neglects the basic motivation behind HS, namely, the efficient manage-
ment of those situations where r is expected to be close to n. In fact, there is no
strong necessary relation between r and the size of the list T H R E S H which is
to be handled at any given row of L. Thus, as long as we allow an unpredictable
number of elements of T H R E S H to be considered in connection with any row
of L, it is unlikely that an algorithm with the control structure of Algorithm 4
could be t ime-bounded in terms of r. An algorithm with a time bound based on
r should be set up as a sequence of more elementary manipulations, each one
of which can be charged to a distinct match. We shall see soon that the row-by-row
approach of Algorithm 4 is compatible with such an objective.

We can now start the presentation of a new implementation of the Hunt-
Szymanski strategy, which is not subject to the worst-case degenerations of HS.

326 A. Apostolico and C. Guerra

Moreover, we will be able to draw for our algorithm a bound which is expressible
in terms of d instead of r, namely, O(m log n + d log(2mn/d)) . Intuitively, and
with reference to Algorithm 4, this can be obtained by dynamically swapping the
roles of the two lists which are merged at each row of L, namely, T H R E S H and
ai-OCC.

For the reader's convenience, we start our discussion by reproducing HS below
as Algorithm 5. Notice that HS preprocesses/3 to obtain an appropriate number
of replicas of the reverse of each o'-OCC list: such lists are called M A T C H L I S T s
in [11].

ALGORITHM 5: " H S "

element array a [l : m] , f l [l : n] ; integer array THRESH[O: m]; list array
M A T C H L I S T [1 : m];

pointer array L I N K [1 : m]; pointer PTR;
begin
(PHASE 1: initializations)

for i =1 to m d o
set M A T C H L I S T [i] = { j l , j2 , . . . ,jp} such that j l > j2 " �9 ">jp and ai = bjq for

l<-q<-p;
set THRESH[i] = n + 1 for 1 <- i <- m; THRESH[O] = 0; LINK[O] = null;

(P H A S E 2: find k-dominant matches)
f o r i = l t o m do

for j on M A T C H L I S T [i] do
begin

f ind k such that T H R E S H [k - 1] < j -< THRESH[k] ;
if j < T H R E S H [k] then

begin T H R E S H [k] =j ; L I N K [k] = newnode(i,j, L I N K [k - 1]) end
end

(PHASE 3: recover LCS 3' in reverse order)
k = largest k such that T H R E S H [k] # n + 1; PTR = L I N K [k] ;
while PTR ~ null do

begin print the match [i,j] pointed to by PTR; advance PTR end
end

The principle of operation of HS is transparent: by scanning the M A T C H L I S T
associated with the ith row, the matches in that row are considered in succession,
from right to left; through a binary search in the array THRESH, it is assessed
whether the match being considered represents a k-dominant match for some k.
In this case the contents of T H R E S H [k] is suitably updated. We remark that
considering the matches in reverse order is crucial to the correct operation of
HS (the reader is referred to [11] for details). The total time spent by HS is
bounded by O ((r + m) l o g n + n log s), where the n log s term is charged by
preprocessing. The space is bounded by O (d + n) . As mentioned, this time
performance is quite good whenever r is comparable to n: in such instances, the

The Longest Common Subsequence Problem Revisited 327

worst-case time bound becomes in fact O(r log n) ~ O(n log n). However, this
performance degenerates to O(n 2 log n) as both r and m get close to n.

5. A Modified Paradigm for HS. The objective of this section is to rearrange
HS in a harmless way, but so that it is easier for us to distill possible sources of
inefficiency. It turns out that the new scheme can be implemented more efficiently
than the original one, as we show in Section 6.

We follow [3]. Our main modifications concern the second phase (i.e., finding
k-dominant matches) of H S as presented above. Slight adjustments of the prepro-
cessing are also required. The first innovation brought about by algorithm HS 1
below is that HS 1 does not consider all the matches in each row. Rather, HS 1
maintains, for each symbol, its associated active list of matches, the matches of
any such list being characterized by the fact that they are not current thresholds.
The second innovation consists of spotting all and only the new dominant matches
contributed by any given active list by performing a number of primitive dictionary
operations [2] proport ional to the number of these new dominant matches, i.e.,
independent of the current size of the active list involved.

As regards this second feature, a glance at Figure 1 shows that the bold circles
of our example are roughly one half of all circles. While it is obviously always
the case that d <- r, there seems to be no general direct proportionali ty between
d and r. For example, consider the following two extreme instances, both
offsprings of the assumption ot =/3. In the first extreme, we also assume that a
and/3 both represent some permutation of the integers: thus d = r, but also d = n.
In the other extreme, we set instead a = a n, i.e., both strings consist of n replicas
of the same symbol a: thus r = n 2, but still d = n. More generally, HS 1 is
asymptotically much faster than HS whenever r = O(n 2) while d = O(n). As the
above brief discussion suggests, these latter conditions are met, in particular, by
pairs of nearly identical input strings. Unfortunately, there are still cases where
both r and d are quadratic in the size (m + n) of the input.

From now on we shall find it more convenient for our discussion to "pebble"
the entries, rather than the locations, of the active lists.

ALGORITHM 6: "HS 1"

THRESH is the list of thresholds initially empty; each "act ive" list AMATCH-
LIST[trp], p = 1, 2 , . . . , s is initialized to coincide with the corresponding trp-OCC
list. The primitives INSERT and DELETE have the usual meaning, except they
do nothing if the first argument is n + l or the second argument is A.
SEARCH(key, LIST) returns (a pointer to) the smallest element in LIST which
is not smaller than key(n + 1, if no such element exists). SEARCH(n + 1, LIST)
returns n + 1 without performing any action. Notice that all the searches performed
within HS 1 terminate without success (i.e., key is not in LIST). The function
char(symbol) returns the element of the alphabet E which coincides with symbol.
By convention, AMATCHLIST[$] = {n + 1} = A.

328 A. Apostolico and C. Guerra

begin
for i = 1 to m do

begin ~r = char(a~); PEBBLE = first(A M A TCHLIST[tr]); F L A G = true;
while FLAG do

begin
(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)

end;
end;

T = SEARCH(PEBBLE, THRESH); k = rank(T);
if T = n + 1 then FLAG =false;
INSERT(PEBBLE, THRESH); DELETE(T, THRESH);
L I N K [k] = newnode (i, PEBBLE, L I N K [k - 1]);
o, '= char(bT);
DELETE (PEBBLE, A M A TCHLIST[tr]);
PEBBLE = S E A R C H (T, A M A TCHLIST[or]);
INSERT(T, A M A TCHLIST[tr']);

retrieve 3' as per phase 3 of HS;
end.

To illustrate the operation of HS 1, we may refer to Figure 1 and interpret it as
representing the product of HS 1 after it has processed the matches between
13 = cbacbaaba and the symbols in the first six positions of cr = abcdbba At
this point, THRESH consists of {1, 2, 5, 8}, and trl = a 7 = a. At this particular
stage of our example, it so happens that A M ATCHLIST[a] = {3, 6, 7, 9} coincides
with the a-OCC list, i.e., all occurrences of a in 13 could become new thresholds.
HS 1 starts by searching for "3" in THRESH, which returns the entry "5". Since
5 ~ n + 1, then THRESH is updated so that it becomes now {1, 2, 3, 8} (line 3).
The entry "3" is deleted from AMATCHLIST[a] (line 6). The algorithm now
searches in AMATCHLIST[a] for the old threshold value "5," and this search
returns t he new PEBBLE "6" (line 7). Finally, "5" is returned to AMATCH-
LIST[char(bs)] = AMATCHLIST[b] (line 8). Thus this block terminates with
FLAG = true. When line 1 is executed next, this provokes the substitution in
THRESH of the old entry "8" with the new entry "6," which is accompanied
by the various list updates. The search of line 7 advances PEBBLE to position
"9." As soon as line 1 is executed again, FLAG is set to false. This will cause
the exit f rom the while loop soon after the necessary updates have been performed
(notice that some of the updates are dummy in this case, since T = n + 1, and
that the search of line 7 is gratuitous, since FLAG was set to false). As the final
result of the management of a7, THRESH has become {1, 2, 3, 6, 9}, while
AMATCHLIST[a] shrunk to just {7}. On the other hand, AMATCHLIST[b]
was given back the matches "5" and "8."

In general, the correctness of HS1 can be established as follows. First, we
observe that, as long as we stay within the same iteration of the loop of HS1, an
item j removed from THRESH (cf. line 3) will never have to be reinserted in
THRESH. Notice that this is true irrespective of whether [i,j] is a match (i.e.,
irrespective of whether cr = or'). Thus the insertion of line 8 must be executed
after the search of line 7. It is easy to check then that the inner loop of HS 1

The Longest Common Subsequence Problem Revisited 329

maintains the following invariant condition: if PEBBLE =j ~ n + 1, then [i,j] is
a k-dominant match for some k, and, moreover, the first k - 1 positions of
THRESH contain values which are final for row i. As for the outer loop, after
HS1 has performed the ith iteration, the following assertions hold:

(1) The kth entry of THRESH is the smallest position in/3 such that there is a
k-dominant match between ai and/3.

(2) AMATCHLIST[o' t] (t = 1, 2 , . . . , s) contains all and only the occurrences of
or, in/35 which are not currently in THRESH.

We are now ready to assess a time bound for HS1. The preprocessing involved
in HS1 is quite similar to that in [11]. The table char is thought of as produced
during preprocessing, within the bound of O(n log s) charged by this latter (in
fact, Algorithms 1-3 also make implicit use of some such table). Thus each
subsequent reference to this table can be assumed to take constant time. HS1
takes at least O(m) time, since it considers each one of the m rows, in succession.
Since n + 1 appears at the end of each A M A T C H L I S T by initialization, HS1
spends constant time in handling any trivial row of L, i.e., any row whose
A M A T C H L I S T is found to contain currently only n + 1.

THEOREM 4. In handling aH nontrivial rows, Algorithm HS1 performs |
searches, insertions, and deletions.

PROOF. All the searches, insertions and deletions take place in the while loop
(lines 1-8) controlled by FLAG. There is a fixed number of such primitives within
these lines, whence it will do to show that FLAG is true exactly d times. With
our assumptions, tr = char(al) and AMATCHLIST[cr] = char(aO-OCC is not
empty, and the first element on this list (i.e., the leftmost match in the form [1,j])
is a 1-dominant match, as well as the only dominant match in that list. By
initialization, FLAG is true the first time it is tested. Since THRESH is empty
at this time, lines 3 and 4 will be executed, whence the first 1-dominant match
is recorded. The algorithm also proceeds to the update of the other lists involved,
so that at the next step the contents of such lists will be consistent. Moreover,
since the S E A R C H of line 1 returns n + 1, then FLAG is set to the value false,
which exhausts all manipulations involving matches in the first row. In general,
the first match on the A M A T C H L I S T associated with a nontrivial row is certainly
a k-dominant match for some k. Assume that a certain number of entries of this
A M A T C H L I S T have been processed and that: (i) the number of times that
FLAG was true equals the number o f dominant matches detected so far, (ii) j
identifies the last dominant match detected, and (iii) j is the only such match
which has not been recorded yet. It is easy to see that HS 1 locates the displacement
of this match in THRESH (line 1); switches FLAG to false, if appropriate (line
2), updates the lists and records this new dominant match in L I N K (lines 3-6
and 8); and probes into AMATCHLIST[o-] seeking the next position to which
the PEBBLE should be advanced to mark the next dominant match (line 7,
meaningful only if FLAG is true). Thus FLAG is true as long as conditions
(i)-(iii) hold, that is, exactly for d times. []

330 A. Apostolico and C. Guerra

The actual t ime bound of HS 1 depends on the internal representation which
is chosen for the various lists involved. I f the lists are represented as priority
queues such as 2-3 trees or AVL trees [14], then HS1 runs in O(d log n + n log s)
time, inclusive of preprocessing, which reduces to O(d log log n + n log s) if one
uses a structure better fit to the manipulation of integers [16]. This already
compares favorably with the corresponding bounds in [11], where r figures in
the place of d. One interesting observation, however, is that the sequences of
insertions in each list constitute in fact merges of sorted linear sequences. Efficient
dynamic structures are available [6], [7], [14] that support, say, the merging of
two lists of sizes k and f -> k in time O(k log(2f/k)). This leads to speculation
that the total time spent by HS1 for the mergings could be bounded by a form
such as O(m log m + d log(2mn/d)). Unfortunately, it does not seem that the
O(k log(2f /k)) bound still holds, with such structures, if deletions are intermixed
with insertions in an uncontrolled way. Besides, the management of such struc-
tures is rather involved, and their storage requirements usually large.

It turns out that the special case which is of interest here is indeed susceptible
to efficient implementat ion on finger-trees [3]. In what follows, however, we
provide an alternative construction based on simpler structures, and thus show
that the desired performance can be achieved at the expense of almost negligible
complications.

6. Characteristic Trees. We present a data structure suitable for the efficient
implementat ion of dictionary primitives [2], [14] on sorted subsequences S of a
fixed subsequence U (the universe) of the string of integers 1 2 �9 �9 �9 n. We shall
assume, to simplify our presentation, that the cardinality m of U is such that
m = 2 c for some integer c.

Having chosen U, we associate with it a balanced and complete binary tree
To with m leaves, labeled in succession with the keys in U (i.e., with an integer
in {1, 2 , . . . , n}). Each interior vertex v of Tu is marked with the ordered pair
of keys representing the largest elements of U which appear in the subtrees of
Tu rooted at the left and right son of v, respectively (for all our purposes, this
information is redundant if m = n: however, for uniformity of treatment, we
consider it as provided in all cases). Any choice o f a subsequence S of U translates
in a corresponding instantiation Tu (S) of Tu, as follows (Tu itself can be regarded
as Tv(O), with O the empty sequence). Each leaf i in Tu(S) is marked "1" if
i ~ S, and "0" otherwise. Thus, the leaves of the tree become a blueprint of the
characteristic function of the set S with respect to the universe U (see Figure 3).
In addition, each interior node is marked "0" if neither of its son nodes is marked
"1," and "1" otherwise. To(S) is called the U-characteristic tree associated with
S or simply the C-tree of S when this raises no confusion about U. The C-tree
of S requires only 2 m - 1 records (actually, bits when n = m), and it can be
allocated sequentially, as any heap. Thus, for any node in a C-tree, one can travel
just as easily upward, downward, or horizontally on the same level.

For any element i~ U which is not (is also) in S, the operation of inserting i
in (or deleting it from) Tu(S) is straightforward. The key property of Tu(S) is

The Longest C o m m o n Subsequence Problem Revisited 331

2 5 6 7 9 11 12 13 20 28 29 41 42 53 58 62

Fig. 3. The characteristic tree o f the set S = {7, 12, 20, 28} relative to the set U = {2, 5 , . . . , 62}. All
"0" marks are omitted, and range information is not reported on the deepest interior nodes. To
exemplify just once, leaf 53 is connected to its characteristic node by a broken line.

that if a vertex is marked "1" ("0") , then all its ancestors (descendants) are also
marked "1" ("0"). It is convenient to associate, with each leaf i of Tu(S) such
that i e U - S , the characteristic node v(i) for that leaf, defined as the highest
"0"-node on the path from i to the root. Now, to transform Tu(S) into Tu(S u {i}),
it suffices to change the marks of all vertices on the path of Tu(S) from i to v(i)
(inclusive). Likewise, to delete leaf i, travel from this leaf upward changing all
marks to "0," until the first vertex of which both sons were previously marked
"1" is encountered. The mark of this node is left unchanged, and the son of this
node through which the node itself was reached becomes the new characteristic
node of i. The operation of testing for membership in S of a key i e U, though
immediate, is of not much use. To compensate for this, the operation of searching
is not restricted to take arguments from U. More precisely, we define the search
of i e {1, 2 , . . . n} in Tu(S) as the function which returns the first element j of S
not smaller than i (or n + 1, if no such element exists). We assume that any such
search originates at the bot tom of Tu and from a finger leaf f The searching
technique used requires only slight modifications of otherwise standard searching
on afinger-tree [14] (see also [6] and [7]). In short, the finger search for i in the
C-tree Tu(S) takes the same effort as the finger search for j in Tu, if Tu is
regarded this time as the finger-tree associated with the set U. For instance,
assume that i > f The search starts by climbing from leaf f toward the root
(performing transitions to right neighboring nodes, whenever appropriate) until
a node v is found that is marked "1" and subtends an interval of U the
right end of which is larger than i. I f j is not in the subtree of Tu rooted at v,
the predecessor of j in S certainly is. Which case applies is ascertained by a
straightforward downward search which is driven both by the range and boolean
information stored in each node. I f the element of S returned by this search is
the predecessor of j in S, let v' be the deepest 1-marked right neighbor of an

332 A. Apostolico and C. Guerra

ancestor of v. Then j must be the leftmost element of S in the subtree of Tu
rooted at v'. The node v' can be easily spotted by resuming the climb from v.
Alternatively, this second stage could be avoided by linking the 1-marked leaves
of T u (S) in a linear list.

In any case, the effort involved in the search is bounded by a constant times
the number of nodes that are visited during the climb-up process. Visiting each
new node corresponds to doubling the previous guess for the distance separating
i from the finger in the key space U, much as it happens in an unbounded search
[5]. This observation supports the following straightforward lemma (see, for
instance, [14]).

LEMMA 3. The search in Tu(S) for an element which falls b positions (i.e., leaves)
away from a finger takes O(log b) steps.

We now consider sequences of consecutive searches in T c (S) , that start with
the finger pointing to the leftmost leaf of Tu. By always bringing the finger on
the key returned by the search which was performed last, it is easy to maintain
inductively that if, for the current query, f_> i, then f is a!so the result of the
search. Thus, each time a climb-up process is performed, this results in moving
the finger to the right of its previous position. For k consecutive searches, the
total effort is bounded by a constant times the sum

k

E log bj,
j = l

where the bj's represent the widths of the various search intervals, and these
latter are nonoverlapping, i.e., Y~jk 1 b;-< 2m. With this constraint, the above sum
is maximum when all the b;'s are equal, which yields a bound of O (k l o g (2 m / k))
for the sequence of searches. The problem is more complicated when we consider
instead a sequence of consecutive insertions (or a sequence of consecutive
deletions), due to the fact that the climb-up is always to be performed there, for
the purpose of node re-marking.

It is fortunate that a bound similar to the above can in fact be drawn also for
these cases. Again, this is due to the fact that Tu can be regarded, say, as a
special 2-3 tree of the kind presented in [6] (see also [7] and [14]). The specialty
consists of our tree having only 2-nodes. To be more precise, we appeal to the
following result in [6].

LEMMA 4. Let T be a 2-3 tree with m leaves numbered 1, 2 , . . . , m, and let
il, i 2 , . . . , ik be a subsequence o f the leaves. Let io = 0 and bj = i j - ij_ 1 + 1, for
j = 1, 2 , . . . , k. Furthermore, for i and i '> i, let l(i, i') be the number o f nodes which
are on the path from i' to the root but not on the path from i to the root. Finally, let

k

p = [l o g m] + l + E l(/j_,, 6)-
j = l

The Longest Common Subsequence Problem Revisited 333

Then p obeys the inequality

p ~ 2 ([l o g m] + ~ [logbj]) .
j = l

For any subsequence Q of U of cardinality k, the expression denoted by p is
an upper bound for the process of producing Tu(Q) (Tu) from Tu (Tu(Q)) by
orderly insertion (deletion) of the elements of Q.

Let now U and Q = (il, i2 , . . . , ik) be subsequences of {1, 2 , . . . , n} of car-
dinalities m and k, respectively, and let S be a subsequence of {1, 2 , . . . , n}. With
reference to Tu(S), consider the following three homogeneous series of k
operations each. Each series applies a chosen primitive to all the elements of Q,
in an orderly fashion. The series which are considered are: (i) the finger-searches
of each of the elements of Q (where the finger is suitably initialized to point to
io = 0), (ii) the insertions of each of the elements of Q, and (iii) the deletions of
each of the elements of Q (the two latter series being defined only when Q is
also a subsequence of U).

LEMMA 5, p is an upper bound for each of the series (i)-(iii).

PROOF. Obvious for the searches, for which the bound that was sketched above
is actually tighter. Consider then the insertions. Assume that il, i 2 , . . . , ij_l = f
have been inserted, and let i be the leaf marked ' f ' which is the closest such
leaf to the left of /j (i = 0 if no such leaf exists). It suffices to show that i ~ f
implies l(i, i~) <- l(f, ij). Now i ~ f implies that f < i. Since the three individual
paths from the root to each of f, i, and i t all share a common prefix, consider
the topmost node whereby this bundle of paths is split. If only one path takes
the right branch out of that node, then, since i </ j , this must be the path to it,
and the assertion holds with equality. On the other hand, if two of the paths
depart along the right branch then these must be the paths leading to i and ij,
and l(f,/~) is at most l(f, i). But since the tree is perfectly balanced, then
l(f, i) = l(f, it) , whence the assertion follows. An analogous argument proves the
claim for the series (iii). []

In view of Lemma 4, Lemma 5 can be rephrased by saying that k orderly
insertions in an originally nonempty C-tree do not require more effort than in
the case where the tree is initially empty. Likewise, the work involved in k orderly
deletions cannot exceed the effort of transforming a tree which stores exactly k
elements into the empty tree. We leave it as an exercise for the reader to show
that the assumption, made at the beginning of this section, that m is a power of
2 can be levied at this point with no substantial penalty on the results presented
so far. Lemma 5 does not apply to any hybrid series of dictionary primitives.
However, we shall use it to show that it works for the peculiar hybrid series
which are involved in HS1 at each row. Thus, we assume henceforth that all lists
in HS1 are implemented as C-trees, i.e., heap structured complete binary trees,

334 A. Apostolico and C. Guerra

and that each such tree is endowed with a suitable finger. The collective initiali-
zation of all trees takes trivially O(n) time.

THEOREM 5. HS1 requires O(n log s) preprocessing time and

O(m log n + d log(2mn/d))

processing time.

PROOF. It is easy to check that the preprocessing required by HS1 is basically
the same as that required by HS, whence we can concentrate on the second
time-bound. Let d~ denote the number of dominant matches which HS1 introduces
as a result of handling row i. As seen in the discussion of Theorem 4, d~ searches
are performed on T H R E S H while considering row i. Observe that the arguments
of successive searches constitute a strictly increasing sequence of integers, and
that the same can be said of the values returned by those searches. Thus, by
Lemma 5, the cost of all searches on this row is bounded, up to a multiplicative
constant, by log n + ~,d'= 1 log bk, where the intervals bk are such that ~ kd'= 1 bk ~- 2 n,
since the C-tree of T H R E S H contains n leaves. (Recall that, in the upper bound
for the searches, the log n term is actually unnecessary.) It follows that, up to a
multiplicative constant, the total cost on all rows is bounded by m log n +

d log bk, where now ~d=l bk ~ 2mn. With this constraint, the previous sum is
k = l

maximized by choosing all bi equal, i.e., b i=2mn/d . The claimed bound then
follows at once.

It is not difficult to show that the same bound holds for the insertions and
deletions performed on THRESH. We observe the following. First, the two lists
of arguments for the insertions and deletions, respectively, represent increasing
subsequences of the integers in [1, n]. Moreover, the set of items inserted into
T H R E S H is disjoint from the set of items deleted from THRESH. The second
observation enables us to deal with each one of the two series separately. In
other words, the total work involved in the insertions and deletions affecting
T H R E S H at some row is not larger than the work which would be required if
one performed all the deletions first, and then performed all the insertions. Thus,
through an argument analogous to that used for the searches, the bound follows
from Lemma 5, and from the fact that, on each row, T H R E S H is affected by d~
insertions and by a number of deletions which is at least d~ - 1 and at most di.

We now turn to the primitives collectively performed on all the A M A T C H L I S T s
invoked during the management of any single row. The key observation here is
that the sum of the cardinalities of all such lists never exceeds n. In fact, there
will be exactly n leaves in the forest of C-trees which implement such lists. I f
the C-trees corresponding to the various A M A T C H L I S T S s are visualized as
aligned one after the other, it is easy to adapt the same argument which was used
for T H R E S H to the primitives affecting the collection of these lists. Indeed, the
special conditions on the searches, insertions, and deletions still hold locally, on
each individual list. This leads to our claimed bound, since the d~ insertions in
THRESH correspond in fact to d~ searches with deletions on AMATCHLIST[o '] ,
and an equivalent number of insertions take place in the collection of all
lists. []

The Longest Common Subsequence Problem Revisited 335

7. Concluding Remarks. The two main algorithms discussed in this paper have
their natural predecessors in two algorithms previously presented in [9] and [11],
respectively. Algorithm 1 and its companion algorithms are inherently off-line,
as is the original algorithm in [9]. Also, the best time bound obtained here within
the framework of the region-by-region approach turns into O(ln), i.e., the bound
already achieved in [9], when the input strings have nearly equal lengths. Since
lm is an upper bound for d, and there are situations where d ~ O(n) while
lm =O(nZ), Algorithm 6 (HS1) appears to be asymptotically faster in general
than the other algorithms presented in this paper. Moreover, HS1, like HS itself,
can be executed on-line. However, we show elsewhere [4] that the basic structure
of Algorithm 3 can be used to set up a linear space LCS algorithm which takes
time equal to that of Algorithm 3 (when finger-searches are used), up to an
additive term O(m log n). The only previously known linear space LCS algorithm
takes never less than | time [8]. Interestingly, it does not seem that Algorithm
6 is amenable to an equivalent (i.e., time-performance-preserving) implementation
in linear space. Finally, we mention that the problem of devising an O(n log n)
time algorithm for the LCS of two strings, or showing that no such algorithm
exists, is still open.

Acknowledgments. We are indebted to Z. Galil, K. Mehlhorn, F. P. Preparata,
and W. Schnyder for enlightening discussions, and to the referees for their
comments.

References

[1] A.V. Aho, D. S. Hirschberg, and J. D. Ullman, Bounds on the complexity of the maximal
common subsequence problem, J. Assoc. Comput. Math., 23 (1976), 1-12.

[2] A.V. Aho, J. E. Hopcroft, and J. D. Ullman, The Design and Analysis of Computer Algorithms,
Addison-Wesley, Reading, MA, 1976

[3] A. Apostolico, Improving the worst-case performance of the Hunt-Szymanski strategy for the
longest common subsequence of two strings, Inform. Process. Lett., 23 (1986), 63-69.

[4] A. Apostolico and C. Guerra, A fast linear space algorithm for computing longest common
subsequences, Proceedings of the 23rd Allerton Conference, Monticello, IL, 1985, pp. 76-84.

[5] J.L. Bentley and A. C.-C. Yao, An almost optimal algorithm for unbounded searching, Inform.
Process. Lett., 5 (1976), 82-87.

[6] M.R. Brown, and R. E. Tarjan, A representation of linear lists with movable fingers, Proceedings
of the lOth Annual A C M Symposium on Theory of Computing, San Diego, CA, 1978, pp. 19-29.

[7] M.R. Brown and R. E. Tarjan, A fast merging algorithm, J. Assoc. Comput. Mach. 26 (1979),
211-226.

[8] D.S. Hirschberg, A linear space algorithm for computing maximal common subsequences,
Comm. ACM, 18 (1975), 341-343.

[9] D.S. Hirschberg, Algorithms for the longest common subsequence problem J. Assoc. Comput.
Mach., 24 (1977), 664-675.

[10] W.J. Hsu and M. W. Du, New algorithms for the LCS problem, J. Comput. System Sci., 29
(1984), 133-152.

[11] J.W. Hunt and T. G. Szymanski, A fast algorithm for computing longest common subsequences,
Comm. ACM, 20 (1977), 350-353.

336 A. Apostolico and C. Guerra

[12] H.M. Martinez (ed.), Mathematical and computational problems in the analysis of molecular
sequences, Bull. Math. Biol., 46, 4 (1984).

[13] W.J. Masek and M. S. Paterson, A faster algorithm for computing string editing distances, J.
Comput. System Sci., 20 (1980), 18-31.

[14] K. Mehlhorn, Data Structures and Algorithms 1 : Sorting and Searching, EATCS Monographs
on TCS, Springer-Verlag, Berlin, 1984.

[15] D. Sankott and J. B. Kruskal (eds.), Time Warps, String Edits and Macromolecules: The Theory
and Practice of Sequence Comparisons, Addison-Wesley, Reading, MA, 1983.

[16] P. van Emde Boas, Preserving order in a forest in less than logarithmic time and linear space,
Inform. Process. Lett., 6 (1977), 80-82.

[17] R.A. Wagner and M. J. Fischer, The string to string correction problem, J. Assoc. Comput.
Mach., 21 (1974), 168-173.

