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Problem Section 

Some Problems in Computational Geometry 

Claire Mathieu 1 

In recent years, with the rise of computational geometry and an increasing number 
of people working on the subject (see Lee and Preparata [5] for a survey), many 
formerly neglected problems were solved e~iciently and elegantly, but at the same 
time, as is natural for every expanding field, even more arose and became of 
interest: a few are hereafter offered. 

Although the minimum spanning tree problem (MST) has long been solved 
(at least in theory), related questions still remain unanswered. For example, let 
us consider n points in the plane, with which we wish to form a "reasonable" 
polygon. In practice these points are on the boundary of an unknown object, 
and the polygon is "reasonable" if the order of the points is roughly the same 
on the boundary of the other object and on the polygon. A traveling salesman 
tour (TST) would be a nice solution, but finding it is an NP-hard problem, and 
so we would like an easier criterion for constructing a good polygon. Suppose 
that such a polygon is part of the Delaunay triangulation of the points. It contains 
(n -2)  Delaunay triangles, and the (graph-theoretic) dual of these triangles is a 
subtree of the Voronoi diagram, and covers ( n -  2) Voronoi nodes (Figure 1). A 
good criterion of "reasonableness" might be to minimize the cost (cumulated 
edge-length) of this tree: whence the question of choosing k = n - 2  nodes among 
N = 2n - e - 2  (number of nodes of the Voronoi diagram, e being the number of 
edges on the convex hull of the n data points), in order to minimize the cost of 
their MST (problem proposed by J. D. Boissonnat). 

Another problem in connection with Delaunay graphs, appealing but deceptive 
in its apparent simplicity, was proposed to me by J. D. Boissonnat and H. Crapo: 
this is the question of proving that a planar Delaunay triangulation always has 
a Hamiltonian cycle--which, if true, might lead to nice heuristics for the TST 
problem. For the definition of a Delaunay triangulation see, for example, Shamos 
and Hoey [8]. 

Algorithms for solving geometrical problems in the plane abound, and their 
worst-case complexity has been fairly well studied, but many difficulties arise 
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Fig. 1. 

when trying to generalize them to higher dimensions: for example, the well-known 
convex hull planar problem has been solved in worst-case time O(n log h) in 
Kirkpatrick and Seidel [4], where n denotes the number of points and h the size 
of the convex hull, thus yielding an algorithm worst-case optimal in the size of 
both the input and output. It still remains to be shown, however, whether an 
O(n log h) algorithm can also be found for three-space. 

When n data points are given, the two farthest points are both on the convex 
hull. This produces the pair in O(n log n) time in two dimensions. The closest 
pair can be found in O(n log n) in any dimension [1], but we do not know of 
any algorithm with complexity lower than O(n2--(1/2k§ n) 1 - - ( 1 / 2 k + l ) )  i n  k-space, 
k>_4 (O((n log n) 18) if k =  3), [9] for finding the farthest pair. 
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The same gap between dimension two and greater dimensions appears when 
we examine the MST problem. There is an O(n log n) algorithm for the planar 
case [8]. When the points are taken from a uniform distribution in [ 0 . . .  1] k, 
an average-time linear algorithm exists for k = 2 ,  but nothing better than 
O(n log log n) is known for k->3 [3]. 

When the average performance of algorithms is examined, the increase in 
difficulty with dimension is striking. It may be due to a lack of efficient merge 
procedures: for instance, no method is now known for finding the hull of the 
union of four-dimensional polyhedra in less than quadratic expected time [2]. 

Once several algorithms are known for solving a problem, their average-case 
complexity must be analyzed in order to compare their efficiency. (A standard 
reference about the study of random geometrical objects is Santalo [7]). Uniform 
distribution is the one that is usually easiest to study, but normal distribution is 
another case often encountered. Bentley et al. [3] have given an average-case 
constant time algorithm to find the nearest neighbor of a query point in the case 
of a uniform distribution, but analyzing the same problem for an unbounded 
distribution is an open problem. 

The average number of points on the convex hull has been computed under 
various assumptions on the distribution of points, and efficient average-time 
algorithms are known [2]. Still, it would be interesting to have precise results on 
the distribution of the number of extreme points (convex-hull points): for 
example, what is its variance if the points are independently drawn from a uniform 
distribution in a disk .9 This may give information on the stability of the algorithms. 

When a problem depends on several parameters, it is usually analyzed by 
making one of the variables grow boundlessly while all the others are kept 
constant. But almost nothing has been done so far for the study of situations 
where two or more parameters go to infinity together: what is the average number 
of points on the convex hull of n points uniformly taken in an n-sided regular 
polygon? (See Renyi and Sulanke [6] for related questions.) Is there a nontrivial 
way of finding the two nearest of n points in n-space [1]? All these questions 
remain open to investigation. 

Acknowledgments. Thanks to Jean-Daniel Boissonnat for many suggestions. 
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