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On the continuous solutions of the Gola.b-Schinzel equation 

KAROL BARON 

Summary. In this paper theorems of P. Javor and N. BrillouEt-J. Dhombres will be completed and a 
theorem of S. Wolod~ko generalized, by describing complex-valued continuous solutions defined on a 
complex topological vector space of the Gotqb-Schinzel equation 

f ( x  + yf(x)) =f(x) f (y) .  ( .)  

The main result reads as follows. 

THEOREM. Assume that X is a linear topological Hausdorff space over the fieM K of all real or complex 
numbers. 

A function f:  X---, K is a continuous solution of  this equation (*) i f  and only i f  

f =dp o x*, 

where dp: K--*K is a continuous solution of(*)  and x* is a continuous linear functional on the space X. 

1. The aim of this paper is to complete the theorems of  P. Javor [6; Theorem 2] 

N. Brillou&-J. Dhombres [3; Proposition 3] by describing complex-valued 
continuous solutions, defined on a complex topological vector space, of  the 
Got~lb-Schinzel equation 

f ( x  + y f ( x ) )  = f ( x ) f ( y ) .  (1) 

Complex-valued continuous solutions of  this equation have been considered 

previously in two papers by S. Wotod~ko: in paper [9] for functions defined on 
the complex plane and in paper [10] for functions defined on a complex normed 
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space. In paper [10] the author notes also that his result on continuous complex- 
valued solutions of the Goi~lb-Schinzel equation [9; Th6or6me 7] does not 
establish all such solutions and he quotes a theorem [10; Twierdzenie 1] which 
already describes all of them. However, the paper, to which the reader is re- 
ferred there, has probably never appeared. All complex continuous solutions 
f:  C--*C have been determined by P. Plaumann and K. Strambach [7; Satz 1, 
Bemerkung 2, Hilfssatz 2, Satz 2]. We prove here S. Wotod~ko's theorem the 
way he had suggested it: from the theorem on the general solutions f: C ~ C  
of (1). 

2. Assume that X is a linear topological Hausdorff space over the field K of all 
real or complex numbers. 

THEOREM. A function f: X ~  K is a continuous solution of equation (1) /f and 

only i f  

f ~ ~) o X ~, 

where dp: K--*~ is a continuous solution of  equation (1) and x* is a continuous 

linear functional on the space X. 

Because of the above-mentioned theorem of N. Brillou& and J. Dhombres, only 
the complex case (i.e. the case where ~ = C) requires a proof. We shall start with 
describing all continuous and complex-valued solutions defined on the complex 
plane. Regarding continuous and real-valued solutions defined on the real line see 
[1; Section 2.5.1, Theorem 2]. 

3. Three tools will be used in getting all continuous solutions f :  C ~ C of equa- 
tion (1). First of all, like in the first paper of S. Wotod~ko, a theorem on the 
general solution f: C ~ C will be exploited. But, additionally, also the form of 
continuous solutions f :  C ~ R of this equation will be used. Finally, the following 
property of closed subgroups of the group (C, +)  will be very helpful (cf. [2; 
Chapter VII, §2, Proposition 3]): each such subgroup is either discrete or con- 
tains a straight line passing through the origin. At this place I would like to 
thank Professor Roman Ger for calling my attention to this property of closed 
subgroups. 

As to the general solution of equation (1), they are determined in the papers 
[5] by P. Javor and [9] by S. Wotod~ko for functions acting between a vector 
space and the (commutative) field over which the space is considered (cf. also [4; 
Satz 13.3.2, Satz 13.3.3]). In our case, if f :  C--*C is a non-constant solution of 
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equation (1), then 
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or, i f x e N + w ( ~ )  and~t~M,  
f ( x )  = 0, if x ~ C\ [N + w(M)], (2) 

where N is a subgroup of the group (C, +) ,  M is a subgroup of the group 
(C\{0}, .), 

M .  N = N (3) 

and the function w: M ~ C fulfills the following two conditions: 

w(otfl) - w(~t) - otw(fl) ~ N (4) 

for all ~, f l e  M, and, for every • e M, 

if w(~) e N, then • = 1. (5) 

In order to get all continuous solutions f :  C ~ R of  equation (1), we can apply 
the theorem of  Z. Dar6czy on real-valued continuous solutions of  the Got~tb- 
Schinzel equation defined on a real Hilbert space (cf. [4; Satz 13.4.3]) or the above- 
mentioned theorem of  N. Brillou6t and J. Dhombres.  It follows that, if f :  C --* R is 
a continuous solution of equation (1), then either f =  0, or 

f ( x ) = l + c R e x + d l m x ,  x e C ,  (6) 

for some real constants c and d, or 

l + c R e x + d l m x ,  i f l + c R e x + d l m x > ~ O ,  

f ( x ) =  0, i f l + c R e x + d l m x < O ,  
(7) 

for some real constants c and d. 

Now we are able to prove the following theorem of S. Wolod~ko. 



158 KAROL BARON AEQ. MATH. 

PROPOSITION..4 function f :  C--*C is a continuous solution o f  equation (1) /ff 
either f =  O, o f f  has the form (6) or (7) with some real constants c and d, or 

f ( x )  = 1 + cx, x e C, (8) 

with a complex constant c. 

Proof. Let f :  C ~ C be a continuous solution of equation (1) and represent it in 
form (2), where M and N are subgroups of the groups (C\{0}, .) and (C, +),  
respectively, so that equality (3) holds, and w : M ~ C  is a function fulfilling 
conditions (4) and (5) for all a, fl ~ M. Of course 

N = f - ' ( {1} )  (9) 

and 

M=f (C) \{O} .  (lO) 

If  the funct ionftakes  real values only, then e i ther f  = 0, or there exist real constants 
c and d such that f h a s  either form (6) or (7). In the sequel we shall assume t h a t f  
does not take only real values. Hence (cf. also (10)) 

M \ R  ~ ~ .  (11) 

We shall show that 

N = {0}. (12) 

Let us consider two cases. If  N is not a discrete subgroup then it contains a 
straight line passing through the origin. This together with properties (3) and (11) 
implies that N = C but then, because of equality (9), f =  1 which was excluded. 
Hence the subgroup N is discrete. Suppose that it is nontrivial. Then, in view of 
equality (3), the subgroup M is discrete, too. Because f (C)  is a connected set and 
equality (10) holds true, this is possible only in the case where f is a constant 
function. But this is impossible, as constant solutions of equation (1) are real- 
valued. Property (12) has been proved. Taking it into account we can rewrite the 
form (2) of the function f as follows 

or, if x = w(ct) and a e M, (13) 
f ( x ) =  O, i f x e C \ w ( M ) .  
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Moreover (cf. (4) and (5)), the function w is a solution of the equation 

w ( ~ # ) - w ( ~ )  - ~w(~) = 0  (14) 

such that, for every ~ e M, 

if w(ct) = 0, then ct = 1. (15) 

It is easy to see (cf. also [9; Lemma 13]) that each solution w: M ~ C of equation 
(14) has the form 

w(~)=d(1  - ~ ) ,  ~ e M, 

where d is a complex constant. Of  course, in our case (cf. (15) and (11)), d ~ 0 .  
Hence, putting c = - 1/d and making use of  formula (13), we get the following form 
of our solution: 

l + c x ,  i f l + c x ~ M ,  
f ( x )  = 0, if 1 + cx e C\M.  (16) 

In particular, 

f - ' ( { 0 } )  = 1 [ (C\M) - 1], 
c 

which shows that M is an open subset of the space C, and being a subgroup of  the 
group (C\{0}, .) it must be equal to this group: 

M = C \ { O } .  

This equality together with formula (16) leads to form (8) of the function f and 
concludes the proof of the Proposition as each of the functions given there is a 
continuous solution of  equation (1). 

4. In this part of the paper we shall prove the following analogue of  Javor's 
theorem (which will be used also in the proof  of our main result). 

LEMMA. Assume that X is a complex linear topological Hausdorff space. I f  a 
continuous function f:  X ~ C is a solution of  equation (1) such that 

f ( X ) \ R  ¢ 0 (17) 
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then 

f ( x )  = F(x  + N), x e X, (18) 

where N is a closed linear subspace o f  the space X of  co-dimension one and 
F: X /N- -*C is a continuous solution o f  equation (1). 

Proof. Let us begin with recalling the following three basic properties of  the 
solution f :  

(i) f (0 )  = 1; 
(ii) if x, y e X and f ( x )  = f ( y )  ~ 0, then x - y is a period of the function f ;  

(iii) a vector x e X is a period of  the f u n c t i o n f i f f f ( x )  = 1. 
(For  a proof  cf. e.g. [1; Section 2.5.1].) 

Accept now notation (9). It follows from properties (i) and (iii) that N is a 
subgroup of the group (X, + )  and, in order to prove that it is a linear subspace of 
the space X, it is enough to show that R • N c N and ct0N c N for some So e CkR. 
To this end fix an x e N and consider the function 4,: C ~ C defined by the formula 

4,(~) = f (~x ) .  

It is easy to observe that 4, is a continuous solution of  equation (1) and 

4,(1) = f ( x )  = 1. 

Hence and from the Proposition we infer that 4,IR = 1 which means that a x e  N for 
every ~t e R, or R • N c N. Moreover, it follows from properties (ii) and (iii) that 

f ( X )  • N c N 

and this, jointly with our assumption (17), proves that aoN c N for some 0t 0 e C\R.  
Consequently, N is a closed linear subspace of  the space X. 

Further we argue as P. Javor did in his paper  [6]. On account of  property (iii), 
formula (18) defines a function F: X / N  ~ C ,  which is of  course continuous (as the 
function f is continuous) and fulfills equation (1). It remains to show that 

dim X / N  = 1. 

Let us observe that dim X / N  >>, 1, as in the opposite case the function f would be 
constant, and therefore real-valued, contrary to our assumption (17). Suppose that 
dim X / N  > 1 and let 8 be a two-dimensional subspace of  the space X/N.  Consider 
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also the set q/defined as the image of  the set X \ f - 1 ( { 0 } )  under the quotient map. 
It follows from property (i) and from the fact that the quotient map is open that 
q/r~ o ~ is a neighbourhood of the origin in the space d". On the other hand the 
function F] ,  is one-to-one which follows from properties (ii) and (iii). Hence the 
function F],n~. maps continuously and in a one-to-one manner a neighbourhood of 
the origin in two-dimensional complex space 8 into the complex space C, which is 
of course impossible (cf. in particular [8; Theorem 1.21]). This contradiction 
concludes the proof  of the lemma. 

5. Passing to the proof  of the theorem, assume that X is a complex linear 
topological Hausdorff space and let f :  X ~ C be a continuous solution of equation 
(1). If  f ( X ) c  R then the theorem of  N. BrillouEt and J. Dhombres gives the 
representation 

f =  ¢o ox~', 

where ~b0: R ~ R  is a continuous solution of  equation (1) and x * : X ~ R  is a 
continuous and real-linear functional on the space X. Define the functions ¢: C ~ (2 
and x*: X ~ C  by the formulas 

q~(~) = ¢0(Re ~), x*(x)  = x* (x )  - ix*(ix).  

Of course ¢ is a continuous solution of equation (1), x* is a continuous (complex-) 
linear functional on the space X and 

¢(x*x) = ~b 0 (x* x) = f ( x )  

for every x e X. 
Assume now that condition (17) is fulfilled. Then, as follows from the lemma, 

f has the form (18), where N is a closed linear subspace of the space X of  
co-dimension one and F: X / N  ~ (2 is a continuous solution of  equation (1). Let Y 
be a one-dimensional subspace of the space X such that 

X =  Y t ~ N  

and fix an x0e  Y\{0}. Defining the functions 4~:C--*C and x*:X--*C by the 
formulas 

c~(ot) = F(otXo + N), x*(OtXo + n) = 

for every a e C and n e N, we see that ¢ is a continuous solution of equation 
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(1),  x *  is a c o n t i n u o u s  l inea r  f u n c t i o n a l  on  the  space  X and ,  for  eve ry  ~ • C a n d  

n e N ,  

f(~tXo + n) = F(ctXo + n + N )  = F(axo + N )  = ~b(a) = ~b[x*(ax0 + n)], 

wh ich  c o n c l u d e s  the  p roo f .  
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