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Probabilistic convergence structures 

LIVIU C. FLORESCU 

Summary. In this paper we try to argue that it is necessary to replace the topological convergence 
structure of Menger spaces with an appropriate probabilistic concept o f  convergence. 

DEFINITION. Let X be a set and ~Y be the set of  all nets on X; for every ct e ~ ,  let ~ r  be the set of  
all subnets of ct and ~ *  be the set of all generalized subnets of  ct. Let p: ~ x X ~ I = [ 0 ,  1] be a 
mapping and T: I × I--*I be a t-function. We say that p is a probabilistic convergence function (p.c.f.) 
relating to T if the following conditions are satisfied: 

(P1) p(~t, x) = 1, for every x e X and ct e ~ with ct ~_ {x}. 
(P2) p(~t, x) ~<p(fl, x), for every x e X, ct • ~ and f l e  ~ .  
(P3) p(ct, x)/> inf{sup{p0,, x): ~, ~ ~ }: fl • :Y~ }, for every x e X and ~t e ~ .  
(P4) For every x e X, ~t e ~r, (fla)a~D -~ ~r, where ct: D ~ X, fld: Ea "-* X, d e D, we have 

p(6, x)/> T(p(~t, x), inf P(fla, ~t(d))), 
d ~ D  

where 

6: D x l-I E a ~ X ,  t$((d, (ec)ceo)) =fla(ea). 
d 6 D  

We may interpret p(~t,x) as "the probability that the net ct converges to x".  If 
= {(ct, x ) e  .~" x X:p(ct, x ) =  1} then, from (PI ) - (P4) ,  it follows that ~ is a convergence class of a 

topological space. In a Menger space (X, F, T), (g is the convergence class of  the uniformity defined by 
Schweizer and Sklar. 

Now, let (0, T) be a Frank probabilistic topological structure on X and Po : ~ x X--* I be the 
mapping defined by po(ot, x) = sup{3, e 1: ct converges to x in the closure space (X, 0(. ,  2))}. Then Po 
is a p.c.f, relating to T. Conversely, for every p.c.f, relating to T,p, there exists exactly one probabilis- 
tic topological structure (0, T) such that Po = P. Therefore, a probabilistic convergence function is 
a probabilistic variant of  a topological convergence class. In Menger spaces we generalize some 
results of  Schweizer and Sklar concerning the "continuity" of  a probabilistic metric. In the context of  
Sherwood's E-spaces we obtain classical results in probability theory as special cases of  more general 
results. 
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1. Introduction 

The notion of  probabilistic metric spaces was introduced by Menger in 1942 (see 
[9]); an adequate uniformity for these spaces was defined in 1960 by Schweizer and 
Sklar [l 1]. The results that have been obtained afterwards (see, for example, [ 1], [3], 
[10], [13]) use the convergence structure induced by this uniformity (with excep- 
tions, see [15] and [16]). 

Probabilistic metric structures are introduced for modelling those situations in 
which we have only probabilistic information about the distances between points of 
the space. Such being the situation, it stands to reason that, in this framework, the 
topological properties ought also to bear a probabilistic stamp. 

In a metric space (X, a), the net ct converges to x ~ X if and only if the net of 
real numbers a(at, x) converges to zero. But, in a probabilistic metric space 
(X, F, T), for every x, y e X and a > 0, we know just "the probability that 
a(x,y) < a " =  Fxy(a). Hence we cannot simply answer "yes" or "no"  to the 
question: "Does tr(~t, x) converge to 0?". The probabilistic answer to this question 
is the appropriate one. This is a first sign that the problem of convergence in 
probabilistic metric spaces is not well founded. 

A second argument for the previous remark is the following: Schweizer, Sklar 
and Thorp [12] prove that, if the t-norm T is left-continuous at (1, 1), then the 
uniformity introduced in [11] is metrizable; in particular, for Sherwood's E-spaces 
(see [14]), the convergence in these metrizable spaces is convergence in probability 
(this fact was noticed by Drossos in [3]). Therefore, for the study of convergence in 
this uniform space it is very comfortable to use a metric which induces the uniform 
structure of the space, instead of the probabilistic metric. 

In this paper we will argue that it is necessary to replace the topological 
convergence structure of Menger spaces by an adequate probabilistic concept: the 
probabilistic convergence structure. 

Section 2 of  this paper is preliminary. In Section 3 we introduce the general 
concept of a probabilistic convergence structure. In the theory of probabilistic 
topological structures there are two equivalent methods. A. The first is a pattern of 
those situations in which we know the probability that a certain topological condition 
holds (for example: Menger's statistical metrics [9], the function c of Frank [8] and 
the dilatation function of the author [5]); B. Another way is to consider a family 
{tpx: 2 e [0, 1] } of topological structures as model of the ideal topological structure 
tp, in the following sense. If the condition C is satisfied for tpx then the probability 
of the event " C  is satisfied for tp" is not smaller than ;t (this idea was used by Frank 
for the definition of probabilistic topological spaces [8], by the author for the 
introduction of  probabilistic proximities and uniformities [4], and for the equivalent 
forms of type B of Menger's metrics--the probabilistic pseudometrics [6]). 
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The A-forms for probabilistic convergence structures are probabilistic conver- 
gence functions and the B-forms are probabilistic convergence classes. 

We give a characterization of Frank's probabilistic topological structures (see 
[8]) using probabilistic convergence structures. This result is a probabilistic variant 
of the characterization of topological structures by means of convergence structures 
(see [2; 35.A 18]). 

Section 4 is concerned with sequential probabilistic convergence structures. 
In Section 5, in the particular case of Menger spaces, we obtain two results 

concerning the "continuity" of a probabilistic metric. These results generalize 
Theorems 8.1 and 8.2 of [11]. 

For the E-spaces of Sherwood [14], we obtain in Section 6 a generalization of 
some well-known results in probability theory. We remark that these results are 
given without proofs in [7]. 

2. Preliminaries 

Let X be a set and 0: ~(X) ~ ~(X). This 0 is a closure operation in the sense 
of (~ech on X if (1) 0(~b) = ~ ;  (2) A ~_O(A), for each A _ X ;  (3) O(AwB) = 
O(A) wO(B), for each A, B ___ X (see [2, 14 A.1]). 

Let I be the closed unit interval and T be a t-function (a left-continuous and 
nondecreasing mapping from I × I into I with T(0, 4) = T(2, 0) = 0 for every 2 e I). 
A probabilistic topological structure (p.t.s.) on X is a pair (0, T), where 
0: ~(X) x I ~ ~(X)  is a mapping satisfying 

(T1) 0(.,  4) is a closure operation in the sense of Cech on X, for every 2 e L 
(T2) 0(., 0) is the indiscrete closure on X, 
(T3) 0(.,  4) ~ 0(., #) if # ~< 2, and 
(T4) 0(0(.,/~), 4) _ 0(. ,  T(2, p)), for every 2, # ~ L 

If  (0, T) is a p.t.s, on X, then (X, 0, T) is a probabilistic topological space. The 
notion of a probabilistic topological space was introduced by Frank [8] and he gave 
the following probabilistic interpretation. If x ~ O(A, 2) then the probability of the 
event "x  is in the closure of A"  is not smaller than 2. 

Let (0, T) be a p.t.s, on X; 0 is left-continuous if 

(T5) 0(., 2) = 0 0( . , /0 ,  for every 2 ~ (0, 1]. 

It should be noted that the condition (T3) is a weakened form of the condition (T5). 
Conversely, we easily get the following: 
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LEMMA 2.1. Let (0, T) be a p.t.s, on X and let 01¢: ~(X) x I--* ~ ( X )  defined by 
01c(" , O) = 0(. ,  O) and 01¢(", 4) = N ,  < z 0(.,/~), for every 2 ~ (0, 1]. Then (01c, T) is 
the finest left-continuous p.t.s, on X coarser than (0, T). ((0", T) is coarser than 
(0", T) /ff 0 ' ( . ,  4) ~_ 0"(. ,  2), for every 2 ~ I). We say that 01¢ is the left-continuous 
modification of O; we remark that 0 is left-continous iff 0 = Olc. 

The following result is concerned with the description of p.t.s, in terms of 
neighbourhoods; the proof is analogous to the proof of the similar theorem for 
topological structures and we omit it. 

PROPOSITION 2.2. Let (0, T) be a p.t.s, on X and, for every 2 ~ L x ~ X, let 
f 'a(x) be the neighbourhood system of x in the closure space (X, 0(. ,  2)); then, for 
every x ~ X, the family {~e'~(x): 2 e I} satisfies the following: 

(N1) For every 2 ~ L ~ ( x )  is a neighbourhood system of x for a closure 
operation on X (i.e. (a) if  V ~ f 'a(x)  and W ~ V then W ~ ~a(x),  (b) for 
every V ~ f 'a(x),  x ~ V, and (c) if  V, W ~ f '~(x)  then V n  W ~ ~/'a(x)). 

(N2) f'o(X) = {X}. 
(N3) ~Uu(x ) ~_ ~Ua(x ) if  # <~ 2. 
(N4) For every V ~ f'r(x, u)(x) there exists W ~ 3e'a(x) such that, for every 

y e W, V e f ' u ( y ) .  

On the other hand, if, for each x e X, the family {Ua(x): 2 ~I} satisfies the 
conditions (N1)-(N4),  then there exists exactly one p.t.s. (0, T) on X such that, for 
every x ~ X and 2 s / ,  ~ea(x) is the neighbourhood system of x in the closure space 
(X, 0(. ,  2)). We remark that 0 is left-continous iff 

(N5) ~Ka(x) = U ~ , (x ) ,  for every 2 e (0, 11 and x ~ I". 
t~<a 

Let q / =  {q/z : 2 e I} be a family of filters on X x X and let T be a t-function; the 
pair (q/, T) is called a probabilistic uniform structure on X (see [4, Definition 5.2.]), 
if the following conditions hold: 

(U1) q/a is a semiuniformity on X, for every 2 e I (i.e. q/a is a filter in X x X, 
for every U e q/x and x e X (x, x) e U and U -1 s q/a for every U ~ q/D- 

(U2) q/0 = {X x X}. 
(U3) q/, c_ q/x if g ~< 4. 
(U4) For every U ~ q/r(~.,) there exists V e q/k, W s q/u such that V o W c_ U. 

A left-continuous probabilistic uniformity on X is a probabilistic uniformity 
(q/, T) for which 

(U5) q/~ = U q/v, for every 2 ~ (0, 1]. 
~<~.  
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Let (q/, T) be a probabilistic uniformity on X and, for every 2 e / ,  let 0( . ,  2) be 
the closure induced by q/x. Then (0, T) is a p.t.s, on X (see [4, Proposition 5.2]). We 
say that (0, T) is the p.t.s, induced by (q/, T). If  (q/, T) is a left-continuous 
probabilistic uniformity then (0, T) is left-continuous also. 

In this paper every t-norm (see [11]) is left-continuous on I x L Let (F, T) 
be a Menger metric on X (see [11]); for every a > 0 , 1 t ~ [ 0 , 1 )  we define 
Ua,lt  = {(X, y): Fxy(a ) > #}. Then, for every 2 e (0, 1], ~ = {Ua.lt : a > 0,/~ < 2} is a 
base for a semiuniformity q/~ on X; let q / =  {q/a : 2 e I}, where q/o = {X x X}. Then 
(q/, T) is a left-continuous probabilistic uniformity on X (see [4, Proposition 6.1]). 
We say that (q/, T) is induced by (F, T). We remark that q/~ is the uniformity 
defined by Schweizer and Sklar on (X, F, T) in [11]. 

3. Probabilistic convergence structures 

Let X be a set, (A, < )  and (B, ~<) be two directed sets and a: A ~ X, fl: B ~ X 
be two nets. We say that fl is a subnet of a if there exists a one-to-one mapping 
f :  B --* A such that 

a) fl=a of, 
b) for every a E A there exists b ~ B such that a <f (b) ,  
c) b~ ~< bz implies f(b~) <f(b2);  

fl is a generalized subnet of ~ (see [2, 15 B.17]) if 

a*) fl = a of, 
b*) for every a e A there exists b ~ B such that f (c)  > a, for every c e B with 

c>~b. 

Let X be the set of all nets on X; for every ~t e X, let X~ be the set of  all subnets 
of 0t and X~* be the set of all generalized subnets of ct. Obviously, a e X~ c_ X,*, for 
every at E X. The notation at _ Y means that the range of the net a is in the set 
Y~_X. 

Let (D, ~<) be a directed set and, for every d e D, let (Ea, <. d) also be a directed 
set, and let fld : Ed ~ X be nets. Then D x Ha~D Ed, endowed with the product order 
( 4  x Hd~D ~< d), is a directed set and 6:D x Hd~n Ed-* X, 6((d, (ec)c~n)) = fld(ed) 
is a net; we say that 6 is the combination net o f  the nets (fld)a~n. 

DEFINITION A. Let T: I x I -~  I be a t-function and let p: X x X-* I be a 
mapping; p is a probabilistic convergence function on X relating to T if the following 
conditions are satisfied: 

(P1) p(ct, x) = 1 for every x ~ X and ~t e X with ct _c {x}, 
(P2) p(a, x) ~< inf{p(fl, x): fl ~ X~} for every a e X, x ~ X, 
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(P3) p(~, x) I> inf{sup{p(~, x): ~ ~ X~ }: fl e X~}, for every ct e ~ ,  x e X, 
(P4) For every x ~ X, ~t e X,  (fld)d~O ~ X,  where ~: D ~ X ,  fld: Ed ~ X ,  d e D, 

we have p(&, x) >1 T(p(~t, x), infd~Dp(fld, ~t(d))), where 6 is the combination 

net of  the nets (fld)d~D" 

REMARK 3.1. We may interpret p(ct, x) as: "the probability that the net ~t 
converges to x" ;  hence a probabilistic convergence function estimates, for every net 
0t e E" and for every x e X, the degree of convergence of 0t to x. From (P1), every 
constant net converges with probability one. From (P2) it follows that, for every 
subnet fl of  a net ~t, the probability for fl to be convergent is not smaller than the 
probability that • is convergent. The condition (P3) is equivalent to the following: 

(P3') If for every subnet fl of  ct there exists a generalized subnet 7 of  fl such that 

2 < P(7, x) then 2 ~< p(ct, x). 
We remark that, if for every subnet fl of  ~t there exists a generalized subnet ), of  

fl such that p(y, x) = 1, then p(~, x) = 1. Finally, the condition (P4) is equivalent 

with 
(P4') If 2 < p(ct, x) and, for every d e D, p < P(fld, 0t(d)), then T(2, #) < p(6, x). 
From (P4) it follows that if p(ct, x) = 1 and P(fld, ~(d)) = 1, for every d e D, 

then p(6, x ) =  1 (with the supplementary condition T(1, 1 ) =  1). So, if 
U = {(0t, x) e X x X: p(ct, x) = 1}, then from (P1) - (P4)  it follows that: 

(a) (ct, x) e U, for every x e X and ct e X with 0t c_ {x}. 
(b) If (ct, x) e U then (fl, x) E U, for every f l e  X~. 
(c) If(~, x) ¢ U then there exists a f l e  X~ such that, for every V ~ X~, 0', x) ¢ U. 
(d) If(~t, x) e U and (fld, ~(d)) e U, for every d 6 D, then (6, x) ~ U (the condition 

on iterated limits). 
These conditions are necessary and sufficient for a convergence relation to be a 

convergence class of a topological space (see [2, 35 A.18]). 

In Theorems 3.4 and 3.5 we give a characterization of p.t.s, using probabilistic 
convergence functions. Therefore, a probabilistic convergence function is a proba- 
bilistic variant of  a topological convergence class. 

We must remark that the axioms of Definition A are independent of any 
probabilistic determination, hence this interpretation for p is not essential. 

We recall that a convergence class is a set U _  X x X which satisfies the 
conditions (a), (b), (c) from Remark 3.1 and the following: 

(d') Let (D, ~<) be a directed set and ([~d)d~iD C7. ~', where fld: Ed-'*X, for every 
d e D. If (fld, X) e U, for every d e D, then (6, x) e U, where 6 is the combination net 
of the n e t s  ([~d)d~D (the condition of  diagonalization). 

These conditions are necessary and sufficient for a convergence relation to be a 
convergence class of a closure space (see [2, 35 A.17]). 
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DEFINITION B. Let c~ = { ~  : 2 e I}, where ~ _ £r x X, for every 2 e L and let 
T be a t-function; c# is a probabilistic convergence class on X relating to T if 

(C1) c#~ is a convergence class for every 2 ~ I, 
(C2) cgo = ~r x X, 
(C3) c#~ = ~ , < ~  ¢g, for every 2 e(0 ,  1], 
(C4) For every x ~ X,  • ~ ~ ,  (fld)d~O ~-- ~ ,  where ~t: D ~ X, fld: Ed ~ X, d e D, if 

(~t, x) e ~ and (fla, ~t(d)) e (g, for every d e D, then (6, x) e c#r(x,,), where 
t5 is the combination net of the nets (fld)d~O. 

REMARKS 3.2. (1) The condition of diagonalization, (d'), is a consequence of 
(a) and (C4). Hence (C1) can be replaced by (a), (b) and (c). (2) It follows from 
(C3) that if /~ ~<3, then c#~ ___~,. (3) The interpretation of (ct, x)ec#a is: "the 
probability that the net ~t converges to x is not smaller than 2" (see also Remark 
3.1). 

In the following theorem we show that Definitions A and B are equivalent. 

THEOREM 3.3. The mapping ~: p ~-~ ~P, where c~p = {c~ : 2 e I}, ~ = {(ct, x) 
x X: p(~, x) ~> 2 }, f o r  every 2 ~ I, is a bijection between the set o f  all probabilistic 

convergence functions and the set o f  all probabilistic convergence classes relating to 
the same t-function T. 

Proof. Property (C4) is a consequence of (P4), because T is nondecreasing. 
If  x ~ X , ~ S f  and ~ _ { x }  then, from (P1), p (~ t , x ) = l t > 2 ,  for every 2 ~ / ,  
hence (ct, x) ~ ~gP. Let now ct ~ ~r,/3 ~ 5(, and (at, x) e cg~ ; then, from (P2), 
p(fl, x) t> p(ct, x) i> 2, hence (fl, x) e cg~. We suppose that, for every fl ~ ~ , ,  there 
exists 7 e 5f* such that (y, x) E ~g~. Then p(y, x) I> 2, hence s u p r ~ t  p(y, x)/> 2, for 
every/3 ~ 5(,. From (P3), p(~t, x) t> 2, therefore (ct, x) ~ cg~. Then (C1) follows from 
Remark 3.2(1). It follows directly from the definition that the family ffP satisfies 
conditions (C2) and (C3). Therefore, if p is a probabilistic convergence function, 
then ~(p) = cgp is a probabilistic convergence class relating to the same t-function 
T. If (I)(pl)= (1)(p2) then, for every 2 e L  pl(~t, x ) />2  iff p2(tX, X)~>,~,, hence iff 
P~ =P2. So, • is one-to-one. Let c# be a probabilistic convergence class relating 
to T, where cg={q¢~:2eI} ;  we define p : ~ £ x X - - * L  letting p(0t, x ) =  
sup{2 e I: (ct, x) ~ ~ }. We remark that, for every ct e 5f, x e X, (a, x) e ego; hence 
there exists 2 e I such that (0t, x) e ~ .  The properties (P1), (P2) and (P3) follow 
from (C1) and (C3). It remains to establish (P4). Let x ~ X, ot ~ ~ ,  (fla)a~o ~-~?, 

where ot: D ~ X, fld : Ed ~ X, for every d ~ D and let 6 be the combination net of the 
nets (fld)d~O. If U =p(~t, X) = 0, or v = infd~op(fld, ~t(d)) = 0 then T(u, v) = 0 and 
(P4) is obvious. Let u > 0 and v > 0. From the left-continuity of T at (u, v), for 
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every v < T(u, v) there exist ). < u and /~ < v such that v < T(2, p). From the 
definition of p we have (~t, x) e cgx and (fld, or(d)) e cgu, for every d e D. Then, from 
(C4), (6, x) e cgr(a.u). Hence p(6, x) >1 T(2,/~) > v and this for every v < T(u, v). It 
follows that (P4) is satisfied. Hence p is a probabilistic convergence function on X. 
Let ~ ( p ) = c ¢ P = { c ¢ ~ : 2  e l }  and let 2 e L  For every (et, x)ec¢~ we have 
p(~t, x) >~ 2, hence (~t, x) e ff~, so that cox c c¢~. If (~t, x) e c¢~ then p(0t, x) >/2; 
hence, for every # < 2, p(~t, x ) >  # and, from the definition of p, (0t, x ) e  c¢~. 
Therefore, (0~, x ) e  0 ,<xcg~ =c¢~, so that c¢~ ___tea" It follows that ~ ( p ) =  c¢, 

hence • is onto. 
Now, we say that we have a probabilistic convergence structure on a set X if we 

have a probabilistic convergence function on X or a probabilistic convergence class 

on X. 

The following two theorems are concerned with questions related to the 
definition of  a probabilistic topological structure by specifying the degree of 
convergence of 0t to x, for every net ~t and for every x e X. So, from Theorem 3.4, 
we conclude that with every left-continuous p.t.s, on X we can associate a 
probabilistic convergence class, and from Theorem 3.5 it follows that this associa- 

tion is a bijection. 
Let (0, T) be a p.t.s, on X; for every 2 e I let ~ ~ x denote the situation in which 

the net ct converges to x in the closure space (X, 0( . ,  2)). 

THEOREM 3.4. Let (0, T) be a left-continuous p.t.s, on X; for every 2 e I let 
c£o = {(~, x) e Y" x X: ~t ~ x }  and let c~o = {fro: 2 e I}. Then ~o is a probabilistic 

convergence class on X relating to T. 

Proof. From definition, c~0 is the convergence class of 0( . ,  2), for every ), e I 
(see [2, 35 A.1]). (C2) is a consequence of  (T2). From (T3) we have that c~o c_ c~o, 

2 
for every ~ < 2, hence c~o ___ Nu<~ c~o. If  (~t, x) ~ c~0, where 0t: D ~ X ,  then ~ ~ x ,  

hence there exists V e ~g'~(x) such that, for every d e D ,  there is e d/> d such 
that 0g(ed) 6 X - -  V. But, from (N5), there exists # < 2 such that V e ~e" (x) (see 
Proposition 2.2); therefore ~-~x.  Hence (~, x) ¢ Nu< ~ ~o.  This proves (C3). Now 
let x e X, ~ e 5f; ([~d)deD C7. ~ ,  where ~t: D ~ X  and for every d e D, fld: Ed ~ X ;  we 
suppose that (~t,x) e ~  ° and (fld, o t (d) )e~  °, for every d eD.  For every 
V e ~/'r(~,,)(x) there exists W e ~e'~(x) such that, for every y e W, V e ~ u ( y )  (see 
Proposition 2.2 (N4)). Since ~t & x, there exists a do e D such that, for every d >/do, 
ct(d) e W, so that V e ~e'~,(~t(d)). For  every d e D, fla&at(d); hence there exists 

e ° e Ea such that, for every ed >1 e °, ed e gd, fld(ed) ~- V. For every d e D with 
d ~ d o ,  we denote by e ° some element of Ea and let Co =(do,(e°)a~o) e 
D x 1-Id~D Ed. Now, for every c = (d, (e~),~o) e D x 1-Id~D Ed with c/> Co, we have 
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0 for every u • D; hence 6(c) fld(ed) • V (because ed >>- e °), d>~do and e~>~e~, = 

where 3 is the combination net of  (fld)d~o. Therefore, 6 rta'~),x, so that, 
(6, x) 0 • c~ r(~, ~). 

We say that <go is the probabilistic convergence class of  the p.t.s. (0, T). 

THEOREM 3.5. Let T be a t-function which satisfies the condition T( 1, 2) = 2, for 
every 2 • L The mapping iF: 0 ~,.cgo is a bijection between the set of  all left-continu- 
ous p.t.s. (0, T) on a set X and the set of  all probabilistic convergence classes on X 
relating to T. 

Proof. We must prove that, for every probabilistic convergence class q¢ relating 
to T, there exists exactly one left-continuous p.t.s. (0, T) such that ~ = q¢0. Let 
~g be a probabilistic convergence class on X relating to T, cg = {cga: ;t e I}. For  
every 2 e L c~ is a convergence class, hence we define 0: ~ (X)  x I ~ ( X )  by 
O(A, 2) = {x e X: there exist ~t ~_ A, at e 5f with (~, x) • cga } and we say that 0( . ,  2) 
is a closure operation and c~0 = c~a, for every 2 • I (see [2, 35 A.6]). It remains to 
establish for 0 (T2) - (T5) .  (T2) is a consequence of (C2), and (T3) is a consequence 
of (C3). It follows that O(A, 2) _ (-]u < a O(A, I~) = Olc(A, 2), for every A _ X and 
2 • (0, 1]. Let x e O~¢(A, 2); from Lemma 2.1., 0~¢(., 2) is a closure operation; hence 
there exists an ct e 5(, ~ _  A, such that ~ converges to x in (X, 0~(. ,  2)). For  
every f l e ~ r ~ , f l : D ~ X  converges to x in (X, 0~¢(.,2)). For every d • D ,  let 
Xd = {fl(e): d <<. e} ~_ X, Dd = {e: d ~< e} and let 7 = fl/Da • ~p (where [3/Dd is the 
restriction of fl to Dd); then 7 converges to x in (X, 01¢(", 2)) and 7 ~ Xa. Therefore, 
x • Olc(Xd, 2) = (-],<~ O(Xd, IZ). It follows that, for every /z < 2, there exists a 
75 e ~ ,  75 c Xd, such that (7,~, x) • ~gu" Let 7,~: E]  ~ X  and let 6" be the combina- 
tion net of  the nets (7~)aEo. Hence ~ :  D x I-LEo E~ --*X, 6U(d, (eu)~D) = 7,5(ea). 
For  every d e D  and (eu),~o e I - I~DE, ,  there is an e e D such that d<~e 
and [3(e)=7~(ed) (because 7~(ea) eXd) .  Then we define a mapping 
f :  D x I-Id~D E~ ~ D ,  letting f (d,  (e~)~D) = e. It follows that 6 ~ = fl o f  and, for 
every d • D and (e~)u~D • I-IuED E~, there exists a c = (d, (e~),~o) • D x I-I~o E~ 
such that, for every c ' =  (d', (e'~)~o)>t (d, ( e ~ ) ~ o ) =  c, we have that d'>~ d and 
e'~ i> e~, for every u ~ D, hence f (c ' )  =f(d ' ,  (e',,)u~D) = e' >>. d" >1 d. It follows that 
6~e~r~ .  Let ~ t ' e X , ~ t ' : D - - . X ~ ' ( d ) = x ,  for every d e D .  Then (~t',x) • ~ l  and 
(75, ~t'(d)) = (7,~, x) e c~,, for every d • D. From (C4), we have (6 ~', x) • 
cgro,u ) = c~u. Hence, for every/~ < 2 and for every fl • ~/'~, there exists 6 ~ • ~ such 
that (6 ~, x )e~g , .  From (C1) (see also Remark 3.2(1)), we have that, for every 
/~ < 2, (~, x) • cgu ; hence (~t, x) • ~ < a ~ = cga (from (C3)). It follows that 
x e(A,  2), hence we have proved (T5). Now, let x e O(O(A, lz), 2); there exists 
~t ~_ O(A, #), ~t: D ~ X, such that (~, x) • cga. For  every d • D, ~t(d) • O(A, I~); 
hence there exists fld: Ed ~ X ,  fld ~--A such that ([3d, ~t(d))• cg~. Let 6 be the 
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combination net of  the nets (fld)de.O" From (C4), (6, x) e fr(~,~) and 6 _ A. Hence 
x e O(A, T(2, #)), so that we have (T4). Therefore (0, T) is a left-continuous p.t.s. 
and W(0) = cg0 = f .  If  (01, T) is another left-continuous p.t.s, on X with W(01) = f ,  
then f0 !  =c  g0, hence, for every 2 e L ff0~ = i f0 .  Therefore, for every A _ X ,  
2 e / ,  x e 01 (A, 2) if and only if there exists ct e &r, ct _ A such that ~t converges to 
x in (X, 01( ' ,  2)) and this holds if and only if (0t, x) e f o !  = f o  = ~g~, hence, if and 
only if x e O(A, 2). 

REMARKS 3.6. (1) The mapping ~-~ o ~ :  O A,-~po defined by po(~t ,x )= 
2 

sup{2 e I: 0t ~ x } ,  for every ct e E', x e X, is a bijection too. 
(2) Let (0, T)  be a left-continuous p.t.s, on X, where T is a t-function with 

T(1, 2 ) = 2 ,  for every 2 e L  and let W ( 0 ) = f o =  {pro: 2 e l }  and ~-1(c¢o)=Po;  
2 . 

then ~ -*x  lff (0t, x) e f o ,  and this is so iffpo(0t, x)/> 2, for every 2 e / ,  0t e E', x e X. 
If  follows that x eO(A,  2) iff there exists ~ c_A with po(ct, x) t> 2, so that 
c(x, A) = sup,=_a po(0t, x), where c: X x ~ ( X )  - *L  c(x, A) = sup{2: x e O(A, 2)} is 
the function defined by Frank [8]. Indeed, it is obvious that c ( x , A ) < .  
sup, _ A Po( ct, x), and for every 0t _ A, 0t: D ~ X, from po(~t, x) >~ 2 = po(Ct, x), we 
have that 0t & x  hence x e O(~t(D), 2) _ O(A, 2), so that, c(x, A)  >i ~. =po(ct, x). The 
significance of this equality is the following: the probability that x is in the closure 
of  A is equal to the least upper bound of  the probability that • to converges to x, 
when 0t e Y', 0t ~_ A. 

EXAMPLES 3.7. By Theorem 3.4, we can associate to every left-continuous p.t.s. 
on X a probabilistic convergence class and, from Theorem 3.3, a probabilistic 
convergence function. 

(a) Let (X, ~q-) be a topological space and let ( - )  be the ~J--closure on this 
space. We define 0: ~ (X)  x I ~ ~ (X)  letting O(A, 2) = , / i f  2 > 0 and let 0( . ,  0) be 
the indiscrete closure on X. Then (0, T) is a left-continuous p.t.s, on X, where 
T ( 2 , / ~ ) = l  if 2 ~ 0  and # # 0  and T ( 2 , # ) = 0  if 2 = 0  or p = 0  (see [8]). Let 
f 0 =  {fo}x~l and Po be the associate probabilistic convergence class and the 
probabilistic convergence function. Then, for every 2 # 0, q¢0 is the convergence 
class of  (-) ,  f o  ° = 5f x X, and po(ot, x) = 1 if ct converges to x in (X, 3-) and 
po(~t, x) = 0 if ~t does not converge to x in (X, 3-). 

(b) Let (F, T) be a Menger metric on X, where T is a left-continuous t-norm, 
and let (0, T) be the left-continuous p.t.s, induced by this Menger metric ((0, T) is 
induced by the probabilistic uniformity induced by (F, T)). Then, for every 2 e I: 

(1) (ct, x) e f 0  iff, for every a > 0, l imF,(d)x(a ) >/2, and 
d 

(2) po(Ot, x) = lim lira F~d),,(a), 
a ~ 0  d 
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for every ct e X, x e X, where limdFa(d)x(a ) is the lower limit of the real net 

(F~,~a)x(a))d~O. 

Proof. Let (q/, T) be the probabilistic uniformity induced by (F, T), where 
q / =  {q/~ }x~l. We know that, for every 2 e (0, 1], ~x = {U~,, : a > 0, p < 2} is a base 
for the semiuniformity q/~, where U~.u = {(x, y): Fxy(a ) >/2} .  Let ~: D ~ X  be a net; 
then ~t--,x iff for every a > 0  and # < 2  there exists d o e D  such that, for 

2 
every d >/do, we have F~(d)x(a) > p. Hence ct ~ x iff for every a > 0 and /~ < 2 
SUpdo~O infd>>.doF~(d)x(a) =limdF~d)x(a) >/~. The proof" of (1) follows from 

the remark that (~,x) eU ° iff c t ~ x  (see Remark 3.6(2)). Now, po(~t,x)= 
sup{2 e I: ~t ~ x} (see Remark 3.6(1)), hence, from (1), po(~t, x) = 
sup{2: inf,> o limd F~td)x(a)>1 2} = l im,_o limdF~d)x(a) because Fxy(') is a nonde- 
creasing mapping). 

4. Sequential probabilistic convergence structures 

Let us denote by N the set of  natural numbers and let Xo be the set of  all 
sequences on X; for every ct e Xo, let £ r  be the set of  all subsequences of ,t. We 
remark that £r ,  = X~ in the case of sequences. 

DEFINITION A o. Let T be a t-function and let p: Xo x X ~ I  be a mapping; p is 
a sequential probabilistic convergence function (s.p.c.f.) on X relating to T if the 
following conditions are satisfied: 

(Plo) p(ct, x) = 1, for every x e X and 0t e X o with ~t _c {x}, 

(P2o) p(~t, x) ~< inf{p(fl, x): f le  Xx }, for every • e Xo, x e X, 
(P3o) p(ct, x) 1> inf{sup{p(7, x): V e Xa}: f l e  X~}, for every 0t e Xo, x e X, 
(P4o) For  every x e X, ~ e Xo, (f l") .~N- Xo there exists a strictly increas- 

ing sequence of  natural numbers (kn).~N such that p(6, x) >1 
T(p(~t, x), inf.~Np(fl n, 0t(n))), where 6 e Xo, 6(n) = fl"(k.), for every n e N. 

DEFINITION Bo. Let U = {U~ : 2 e I} where Ua ___ Xo x X, for every 2 e L and let 
T be a t-function; U is a sequential probabilistic convergence class (s.p.c.c.) on X 
relating to T if: 

(Clo) U;~ is a sequential relation satisfying the following: 
(a) (ct, x) e ~g~, for every x e X and ~t e ~o with • _ {x}, 

(b) if (~, x) e U~ and f l e  Xx then (fl, x) e U~, 
(c) if (at, x) ¢ Ux then there exists f l e  X~ such that, for every V e Xa, 

(~,, x) ¢ ~ ,  
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(C2o) 'go = ~0  x ,v, 
(C3o) c~ = n~<~q¢~, for every 2 e(0 ,  1], 
(C4o) For every x ~ X, ~t e kro, (fln)n,N -- ~0 with (~, x) ~ qfa and (fin, 0t(n)) e ~ ,  

for every n e N, there exists a strictly increasing sequence of natural 
numbers (kn)n~N such that (fi, x) e ~r(~,,), where t$(n) = fin(k,), for every 
n ~ N .  

Definitions Ao and Bo are equivalent too; indeed the mapping ~ ~ p ,  where 
P: ~o x X--*Lp(~t, x) = sup{2 e I: (~t, x) e c~}, is a bijection between the set of all 
s.p.c.c, and the set of  all s.p.c.f, on X. The proof is analogous to the proof of 
Theorem 3.3. and we omit it. 

We say that a p.t.s. (0, T) satisfies the first axiom of countability (or that (0, T) 
is of a countable local character) if, for every 2 ~ I and for every x ~ X, there exists 
a countable local base at x in the closure space (X, 0(. ,  2)). 

We now give the sequential variant of Theorem 3.4. 

THEOREM 4.1. Let (0, T) be a left-continuous p.t.s, on X satisfying the first 
~to x X: ot --* x}  and let axiom of  countability; for every 2 ~ I, let ~0 = {(~t, x) 

ego = {~o : 2 ~ I}. Then ~o is a s.p.c.c, on X relating to T. 

Proof  For every 2 e / ,  ~0 is the sequential convergence class of the space 
(X, 0(. ,  2)). Hence c~0 satisfies (Clo) (see [2, 35 B.2 and 35 B.6]). For (C20) and 
(C3o) we have the same proof as in Theorem 3.4. Now, let x e 11, ct e :Yo, 
([Jn)n~N c_ ~o and 2,/~ ~ I with (~t, x) e ~0 and (#n, ~t(n)) e c~o, for every n e N. 
Because ~ --*x, there exists a monotone local base {Vn }n~N for ~ ( X )  with 0t(n) ~ Vn 
for each n e N (see [2, Exercise 5 (Section 15)]). Let {Wn}n~N be a monotone local 
base for ~r(~,u)(x) with Wo = X. Let us denote by Inta A = X -  O ( X -  A, 2) the 
interior of A in (X, 0(. ,  2)). We remark that, for every n E N, there exists a k e N 
such that V, ~ Int u Wk (at least k = 0) and if Vn - In h, Wk then, for every i ~< k, 
Vn ~ Int ,  Wi. Now, for every n E N, let U'n = Wn, if V. ~_ n ~ =  ~ Int~ Wk and 
U'~ = Wk, if Vn ~ Int~ Wk and Vn ~ Int,  Wk + I and let Un = AT, ffi i u~,. Clearly, 
Un e ~r(~,,)(x) and Vn ~_ Int ,  Un, for every n e N. For every U ~ ~r(~,~,)(x), there 
exists Wp ___ U; from Wp e ~r(~,~)(x) and the condition (N4) of Proposition 2.2, there 
exists V e ~a(x)  such that, for every y ~ V, Wp ~ ~ ( y ) .  Hence V ~ Int,  Wp. 
Because { Vn }n,N is a local base for ~a(x),  there exists q e N such that Vq ~_ V, hence 
Vq ~ Int~ W~. It follows that Uq ~_ U'q ~_ Wr ~_ U. Hence { Un }n~N is a monotone 
local base for ~r(a,,)(x) and V~ ___ Int~Un, for every n e N. For every n ~ N, 
~t(n) e Vn --- Int~ Un; hence Un e ~r~(~t(n))- But fin ~ ~t(n), so that there exists kn e N 
such that fl~(kn) e Un. Clearly, we can choose (kn)n~N to be a strictly increasing 
sequence. If  t~(n) = [3~(kn), for every n ~ N, then t$ r(~,~) x; hence (6, x) ~ ~0r(~.~). 
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Conversely, we have 

THEOREM 4.2. I f  c~ is a s.p.c.c, on X relating to the t-function T, where 
c~ = {c~}~l ,  and we define O: # ( X )  x I - * ~ ( X )  letting O(A, 2) = {x e X: there 
exists ~t e ~fo, ot ~_ A with (ct, x) e ~ }, for every A ~_ X and 2 e I, then (0, T) is a 
p.t.s, on X and ~ ~_ ~o, for every 2 e I (~o is the sequential convergence class of  

(X, 0( . ,  ,9)). 

Proof. For every 2 e L 0( . ,  2) is a closure on X. (T2) is a consequence of  (C2o) 
and (T3) is a consequence of (C3o). For every 2, /~ e L  A _ X ,  A # : ~ ,  and 
x e O(O(A, I~), 2) there exists ~ e ~o, c¢ _ O(A, #) such that (~, x) e cg~. For every 
n e N, ~(n) e O(A, #); hence there exists a fl" e X0, fl" - A, such that (13", ~(n)) e cg u. 
By (C4o) there exists a strictly increasing sequence of natural numbers (k,),~N such 
that (6, x) e c#r~.u), where 6(n) = fl"(k,), for every n e N. Moreover, 6 _ A, so that 
x e O(A, T(2, #)) and we have (T4). Now let 2 e I and let ~go be the sequential 
convergence class of the space (X, 0( . ,  2)). If (~, x) ¢ ~o then there exist V e ~va(x) 
and f l e  f ~  such that fl ~ X - V. From x ¢ O(X - V, 2), we have that (fl, x) ¢ r#~ 
and from (Clo) (b), (a, x) ¢ c#a. 

REMARK 4.3. If ~ is a sequential structure, single-valued at constant sequences, 
then (X, 0(. ,  2)) is a semi-separated space and c#~ = c#0 (see [2, 35 B.9]). The 
condition that c~ be single-valued at each constant sequence means that, for every 
x , y  e X, if ~ e X 0 , ~ _  {x} and ~ y  then x =y .  In the case of Menger space 
(X,F,  T) this means that, if Fxy(O+)/>2, then x = y  (see Example 3.7(b)); in 
particular, if X is an E-space (see Section 6) then this condition means that, if 
/,({t e t): x(t) = y(t)})/> 2, then x = y ,  where (fL X,/~)  is a probability space and X 
is the quotient space of  the space of random variables on f~ relating to the equality 
/z-almost everywhere. 

5. Probabilistic convergence structures of Menger spaces 

Let (X, F, T) be a Menger space under the left-continuous t-norm T. Then, for 
every 2 e (0, 1], ~0  = {Ul/,.~ i/,: n e N*} is a countable base for the semiunifor- 
mity q/~ (see 2.). Hence, the p.t.s. (0, T) induced by (q/, T) satisfies the first axiom 
of  countability. Now let c# be the s.p.c.c, relating to T (~ = {ffa : 2 e I}) and p be 
the s.p.c.f, on X induced by (0, T) (see Theorem 4.1). Then, for every 2 e I, 

(1) (ct, x) e ~  iff, for every a > 0, lim. F~(.)x(a) ~>2, and 

(2) p(ct, x) = lim lim. F~(.)x(a), for every ct e ~o, x e X, (see Example 3.7(b)). 
a ~ 0  - -  
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• 1 

We remark  that  p(~, x) = 1 iff (~, x) e ( ~ l ,  hence lff ~ ~ x ;  but  this is equivalent 
to the convergence of  ~ to x in the uniformity  defined by Schweizer and  Sklar [ 11]. 

1 
Therefore ,  ~ ~ x iff, for  every a > 0, l im,  F,(,)x(a) = 1. 

In the following we give two theorems concerning " the  cont inui ty"  of  a 
probabil ist ic  metric• 

THEOREM 5.1. Let (X, F, T )  be a Menger space and let p be the s .p.c. f  on 
this space; then, for  every ~, f l e  ~o,  x, y ~ X and a > 0: 

lira. F=(.)a(.)(a) ~> T(F~y(a), T(p(ot, x), p(fl, y))). 

Proo f  For  every q > 0 there exist v < T(p(ct, x),p(f l ,  y)) and e > 0 such that  
T(Fxy(a), T(p(~,  x), p(fl, y))) < T(Fxy(a) - 5, v) + q ( T  is lef t-continuous at the point  
(Fxy(a), T(p(~t, x), p([3, y)))). Because T is lef t -cont inuous at (p(~, x), p(fl, y)), there 
exist 2 < p(~, x) and # < p(fl, y)  such that  v < T(2, #). Because Fxy is lef t-continuous 
at  a > 0 there exists 6 > 0 such that  Fxy(a) - F~y(a - 26) < 5. Now,  f rom 2 < p(ct, x) 
and  # < p(fl, y), there exists no e N such that ,  for every n >/no, F~(,)~(6) > 2 and 
Fa(,)y(6) > p. Then  for every n >i no we have 

F.(.)o(.)(a) >1 T(F.(.)y(a - 6), f y#(n)(~)) >1 T(T(F.(.)~(6), Fxy(a - 26)), F~(.)y(6)) 

= T(V~y(a - 26), T(F.(.)x(6), rt~(.)y(6))) >1 T(F~y(a) - e, T(2, #)) 

T(Vxy(a) - 5, v) > T(F~y(a), T(p(ot, x), p(fl, y))) - ,1. 

Hence l im.  F.(.)tj(.)(a ) >i T(Fxy(a), T(p(~,  x), p(fl, y))) -- q for every q > 0 and so we 
have the desired proof.  

REMARK 5.2. I f  p(~t, x) =p(f l ,  y) = 1 (hence if ct i x  and fl ~ y )  then we have 
l im.  F.~.),<.)(a) >>- Fxy(a), for every a > 0. Therefore,  Theo rem 5.1 is a generalization 
o f  Theorem 8.1 of  [11]. 

COROLLARY 5.3. For every ~ ~ Y'o, x, y ~ X and a > 0 we have 

l im.  F.(.)y(a) >i T(Fxy(a), p(~, x)). 

Proo f  We remark  that,  if  fl _= {y }, then p(fl, y) = 1. 

THEOREM 5.4. Let (X, F, T,,) be a Menger space, where 
defined by T,,(2, #) = max(2 + # - 1, 0), f o r  every 2, # ~ I;  

~, fl ~ YC o, x, y ~ X we have 

Tin( lira F=(.)t~(.)(a ), T.,(p(ot, x),  p(fl, y))) ~< Fxy(a), 

T m : I X I ~ l  is 
then for  every 

at all continuity points a > 0 o f  Fxy('). 
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Proof  Let rt > 0; f rom the continuity of  F~y(.) at  a, there exists 6 > 0 
such that  F x y ( a + 2 6 ) - F x y ( a ) < r l / 3 .  F r o m  the left-continuity of  T,. at  
(Fxy(a), T,.(p(ct, x), p(~, y))), there exists v < Tm(p(o~, x), p(~, y)) such that  

T,,,(Fxy(a), T,,,(p(ot, x), p(fl, y))) < T,,,(Fxy(a), v) + q/3. (1) 

Because Tm is lef t-continuous at  (p(0t, x),p(fl, y)), there exist 2 <p(0t, x) and 
<p(fl, y) such that  v < Tin(2, #); hence there exists an no e N such that,  for every 

n >i no, F~,(,,)x(6) > 2 and Fa(,)y(6) > #. N o w  we have for every n I> no 

Fxy(a) + q/3 > 

>1 

F~y(a + 26)/> T,.(Fxt3(.)(a + 6), Ft~(.)y(6)) 

Tm (Tm(F.(.)t~(.) (a), F.(.)x (6)), Fa(.)y (6)) 

Tm(F.(n)~(n)(a), Tm(F~(.)x(8), Fo(n)y(O))) 

T,.(F.(.)tj(.)(a ), Tm(~. , I.l)) > Tm(F.(.)tj(.)(a ), v) 

F.(.)~(.)(a) + v -- 1. (2) 

(a) I f  Fxy(a) + Tm(p(~t, x), p(fl, y)) I> 1 then, f rom (1), 

0 ~ Fxy(a) + Tm(p(~t, x), p(fl, y)) - 1 < Tm(Fxy(a), v) + rl/3 

= Fxy(a) + v - 1 + q/3; 

hence 

v - 1 > T,,,(p(ot, x), p(fl, y)) - q/3 - 1. (3) 

Thus,  f rom (2) and (3), Fxy(a) + q/3 > F~,(,,)t~(,o(a ) + T,,,(p(~, x),p(fl, y)) - q / 3 -  1 
or F.(.)~(.)(a) + Tm(p(o~, x), p(fl, y)) - 1 < Fxy(a) + 2q/3 for every n />  no and we 
obta in  the p r o o f  of  the theorem. 

(b) I f  F~,y(a) + Tm(p(~, x), p(fl, y)) < 1 then for  2 = p(~, x) - q/3 and 
# =p(fl, y) - ~//3 there exists an n I 6 N such that,  for every n >t n~, P.(.)x(6) > 2 and 
F,(.)y(6) > #. So, similarly to (2), we obta in  

F,,y(a) + rl/3 >~ Tm(F.(n)t~(.)(a), Tin(2, #) ) />  F.(.)t~(.)(a) + 2 + # - 2 

= F.(.)t~(.)(a ) +p(ot, x) +p(fl ,  y) - 2rl/3 - 2, 

for  every n >/nl and this gives the desired proof .  
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REMARK 5.5. If p(~t, X)=p(fl ,  y ) =  1 then we have, from Corollary 5.3 and 
Theorem 5.4, lim, F,~,)a~,)(a) <. F~y(a) <. lim, F,~,)o~,)(a), hence we obtain the conti- 
nuity of F..(a) at (x, y). Therefore Theorem 5.4 generalizes Theorem 8.2 of[11].  

COROLLARY 5.6. For every • ~ ~0, x, y ~ X and for all continuity points a > 0 o f  
F~y(.), we have 

lima F,(,)y(a) + p(~, x) - 1 <. F~y(a). 

REMARK 5.7. From Corollaries 5.3 and 5.6 we obtain p(at, x ) -  1 ~< 
l im, F,~,)y(a) -Fxy(a)  <.lim, F,t,)y(a) -F~y(a) <~ 1 - p ( ~ , x ) ,  for every x , y  e X ,  

e Y'0 and for all continuity points a > 0 o f F ,  y(.). Hence F,¢)y(a) converges to Fxy(a) 
faster than ~ to x, and this for every sequence ~ and for every x e X. 

6. Probabilistic convergence structure of E-spaces 

Let (~,  ~ ,  p) be a space with a probability measure/~ on ~ ,  a a-algebra of  
subsets of f~. Let (Y, d) be a separable metric space and let ~¢ be the family of 
all ~ -  ~d-measurable mappings of  f~ in Y (~d is the a-algebra of the Borel 
subsets of (Y,d)) .  For every x, y e , t ¢  and a > 0  let us write Axy(a ) = 
{09 e t): d(x(og),y(o~))<a}. Because (Y ,d )  is a separable space, it follows that 
Axy(a) ~ ~ for every x, y ~ ~/¢ and a > 0. 

Let - be the equality/~-almost everywhere and let X be the quotient space J r ' / - .  
One can easily check that, if x ' - y '  and x" ~y" ,  then #(Ax,y,(a))= ~(Ax,,y,,(a)) , 
for every a > 0 .  Hence we can define a mapping F : X  x X ~ A ,  letting 
Fxy(a) = #(Axy(a)), for every a > 0, and Fxy(a) = 0, for every a ~< 0, where A is the 
set of the distribution functions. (X, F, Tin) is a Menger space relating to the t-norm 
Tm (Tin has been defined in Theorem 5.4). This Menger space is called the E-space 
relating to (Y, d) (see [14]). 

Let (q/, T,,) be the probabilistic uniformity induced by (F, Tin). We recall that 
q / =  {q/;, } ~ ,  where, for every 2 e (0, 1], ~ = {Ua,v : a > 0, ~ < 2} is a base for the 
semiuniformity ~ and q/o = {X × X}, and U~,v = {(x, y) e X x X: Fxy(a) > ), } for 

every a > 0 and ~, e [0, 1). For every at e 5f o and x e X, 0t ~ x  (ct is 2-Cauchy) means 
that ~ converges to x in (X, ~ )  (~t is a Cauchy sequence in (X, ~ ) ) .  We recall that 
~t ~ x  iff p(ct, x) = lima~ o lirn, F~,<,,)x(a) i> 2 (see Remark 3.6 (2)). Similarly, we can 
prove that ~t is 2-Cauchy iff lima ~ 0 lim,,,, F~,~,,,)at,o(a) >t 2. Let c: 5fo ~ I be a mapping 
defined by c(~t)=sup{2 e I: ~t is 2-Cauchy} =lima_~olimm,. F~,t,,)~,~a)(a). Then c(~t) 
gives "the probability for ~t to be a Cauchy sequence". 
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1 
We remark that a ~ x iff ~ converges in probability to x, and a is 1-Cauchy iff 

ct is Cauchy in probability. Therefore, if (Y, d) is a complete metric space, then q/l 
is a complete uniformity. 

PROPOSITION 6.1. For every a = (x,),~N • Xo and x • X we have 
(i) #({o9 • D: x,(og) ~x(og)}) ~< sup{2 • I: • ~ x } ,  

(ii) #{o9 • D: (X,(og)),~N is d-Cauchy}) <~ sup{2 • I: a is 2-Cauchy}. 

Proof. (i) Let Axnx(a) = {o9 ~ D: d(x,(og), x(og)) < a}. We remark that 

A = {o9 • n: xo( o) x(og)} = N U N Axmx(a). 
a > 0  h e N  m > ~ n  

Therefore 

#(A) = # (  Na>0 ~-l imAx'x(a)]=l im#(~-Ax"x(a)) ' /  a--O 

because li__m_m, Axnx(al) ~ lirn, Axnx(a2), for every al ~< a2. Hence 

#(A) ~< .~olim l ~  #(Axnz(a)) = .~olim lim F~n~(a) =p(a,  x) = sup{2: a ~ x }  

(see Remark 3.6 (1)). The proof is similar for (ii). 

REMARK 6.2. If Ct = (X,),~u • Xo converges almost everywhere (a.e.) to x (ct is 
Cauchy a.e.) then a ~ x  (ct is 1-Cauchy); hence a converges in probability to x (~ is 
Cauchy in probability) and so we rediscover a classical result. 

In the following lemma we give some properties of  the mappings p and c. 

LEMMA 6.3. Let a e Xo and let X ,  be the set o f  all subsequences o f  ot and 
x, y e X. Then 

(a) (i) Ip(a, x) - p ( a ,  Y)I ~< #({o9: x(og) :/: y(og)}) and 
(ii) T,,(p(~, x), p(ct, y)) <~ #({o9: x(og) = y(~o)}). 

(b) (i) Tm(p(~, x), p(~, x)) <~ e(ct) and 
(ii) T,,(p(fl, x), c(a)) <~p(ot, x), for  every fl • X , .  

Proof. Let a = (X,),~N. (a) (i) For every n e N  and a >0 ,  {o9: x(og) =y(og)}n 
Axnx(a ) c_ Axny(a). Therefore, #({o9: x(o~) =y(og)}) + #(Axnx(a)) - 1 <<. #(Ax,y(a)); 
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hence #({09: x(to) = y ( o 0 } )  +p(ct, x) - 1 ~<p(0t, y), and so p(ct, x) -p(c t ,  y) ~< 
#({09: x(~o) # y ( o 0 } ) .  (ii) For  every n e N and a > 0, we have Ax.x(a/2) c~Ax.y(a/2) 
c_ Axy(a), so that l im.  #(Ax.x(a/2)) + l im.  la(Ax.y(a/2)) - 1 ~<lim. [#(Ax.x(a/2)) 
+ i~(Ax.y(a/2)) - l] ~< l im. #[Ax,~(a/2) c~ Ax.y(a/2)] <<. #(Axe(a)). When a ~ 0, we 
obtain Tm(p(ct, x), p(~, y)) ~< #({co: x(~o) = y(to)}). (b) (i) For  every n, m e N and 
a > 0, we have Ax.x(a/2) C~Axm~(a/2) c_ A . . . .  (a). Proceeding as above, we obtain the 
result. (ii) Let  fl = (Xk.).~N be a subsequence of  ~t; for every n e N and a > 0 we have 
Axk x(a/2) c~ Axk x,.(a/2) c_ Ax,.~(a). Therefore,  

~_  #(Axk#,(a/2)) + li_~_m " #(A~,,~,.(a/2)) - 1 <~ ~ #(Axk~(a/2)) 

+ lira iz(Axk~,.(a/2)) - 1 ~< lira I~(Ax.x(a)). 
m , n  rl 

The p roo f  follows immediately by letting a ~ 0. 

REMARKS 6.4. F r o m  (a) we obtain 
(i) If  x - y then p(~, x) = p(0t, y), for  every ~t e A r, 

(ii) If  0t converges in probabil i ty to x and y then x "- y, and 
(iii) If  p(~, x) = 0 then p(~, y) ~</~({o~: x(~o) # y(co) }), 

If  p(0t, x) = 1 then p(~, y) ~</z({~o: x(co) = y(o0} ). 
F rom  (b) we have 
(i) If  ~ converges in probabil i ty to x then ~ is Cauchy in probabili ty,  and 

(ii) If  fl converges in probabil i ty to x and 0t is Cauchy in probabil i ty then ~t 
converges in probabil i ty to x. 

REMARK 6.5. Fo r  every (x.).~N e Y'o and a > 0, we have 

limm,n it(A . . . .  (a)) ~</~ (lim.,,,, Axmx.(a) ), 
m ~ 6 n  

hence 

(- ) c((x.).~u) <~ lim # lim Axm~.(a) . 
a-~O m,n 

m ~ n  

Here 

lim Ax,.~,(a)= N U A,,,~.(a). 
m , n  p = l  m > n ~ p  

m ~ n  

The  following theorem is a generalization of  a well-known result o f  F. Riesz. 
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THEOREM 6.6. Let (X, F, T,.) be an E-space relating to the separable complete 
metric space (Y, d). Let (X.).~N ~ X0 be a sequence which satisfies the condition: 

c((x.).~N)=lim#(lir~Aa~o . . . .  (a)). ( , )  

Then there exist a subsequence (Xk.).~N of (X.).~N and x ~ X such that 

c((x.).~ N) < ~({~: xk.(o~) --, x(~o) }). 

Proof. Let 

L = C((X.).EN) = lim limm, . #(A . . . .  (a)) 
a ~ O  

and, f rom ( , ) ,  

L =  lim I t ( l i m A  . . . .  (a ) ) ,  

For  every a > 0 there exists a b .  ~< a such that: 

(1) L - a  < SUPn p,q>~ninf It(Ax~q(ba)) <<. inf ',p>o>~nU Ax~,q(ba)) < L + a. 

N o w  there exists an n(a) ~ N such that,  for every p > q >1 n(a), 

(2) L - a  < it(A~p~q(b~)) <-..Ia~ > q U >1 n(a) Axpxq(b.)) < L + a. 

Therefore,  for every integer k t> 1 there exist a b(k) <<. 1/2 k and an integer N(k) ~ N 
such that,  for all q >>. N(k) and p > q, the inequalities 

/ 
(3) L - 1/2 k -  1 < It(Axpxq(b(k)) ) <~ it ~>  

hold. Let 

U Axpxq(b(k))) < L + 1/2 k -  
q >! N(k) 

kl = N(1),  k2 = max(k1 + 1, N(2))  . . . . .  k .  = max(k .  _ ~ + 1, N(n)) . . . .  

Clearly, k.]" + ~ as n - -*~ ,  so that  (Xk.).EN is a subsequence of  (X~).EN. NOW 
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we show that (Xkn )nEN has the required property. For convenience we write 
A. = Axk. + d% (b(n)), B. = Up > q >1 k. Axf, q(b(n)), for every n e N. Because k. + 1 > 

k. >>. N(n), we have 

(4) L -- 1 /2" - '  < #(A.) ~< #(B.) < L + 1 /2" - '  

So, from (4) we obtain 

(5) A. ___ B. and #(B. - A.)  = #(B.) - #(A.) < 1/2"- 2, 

for every n >t 2, and 

(6) B.+, c_B. 

for every n/> 1 and, if Bo = (']~=, B., then #(Bo) = L. Now, let Ao = lira. A. ; hence 
A o ___ B o and, from (5), 

# ( B ° - A ° )  = lim # ( .  ? k  (B° -- A") )  ~<li~rn , ,=k~#(B°-A"' 

~<lim ~ # ( B . - A . ) < ~ l i m  ~ 1/2n-2=0 .  
k n = k  k n = k  

It follows from (6) that #(Ao) = L. For  every co ~ A o, there exists n o e N such that, 
for every n >t no, d(Xk. +~(to), XK.(tO)) < b(n). Let a > 0 and choose n l e  N such that 
n, >/no and 1/2", - 2 < a. Then, for every m >i n/> n,, we have 

d(Xk.(to), Xk,.(tO)) <~ d(Xk.(CO), Xk. +, (tO)) + " '"  + d(Xk,. _, (tO), Xk,.(09)) 

<b(n)+ ""  + b ( m - 1 ) ~ <  ~ 1/2 j - ' = 1 / 2  " ' - 2 < a .  
j = n  1 

Hence the sequence (Xk.(to)).~N is Cauchy in the complete metric space (Y, d). Let 
us consider the function x: f l -~ Y, defined by x ( t o ) = l i m .  Xk.(to), if tO e Ao and 
x(tO) = Yo, if co e 1) - Ao, where Yo is a fixed point in Y. Then x e X, and we have 
u({to e ~ :  x~.(to) ~ x(oJ)})/> ~(Ao) = L = c((x.).~. 

REMARK 6.7. We know that (X.).~N is Cauchy in probability iff (X.).~N is 
1-Cauchy. Hence, if (X.).~N is Cauchy in probability then (*) holds (see Remark 
6.5), and, from the previous theorem, we obtain that there exists a subsequence 
(XK.).~N of (X.).~N which converges almost everywhere. 
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COROLLARY 6.8. Le t  ,t = (Xn)n~N be a sequence which satisfies the condition ( . )  

o f  Theorem 6.6. Then there exists  an x ~ X such that 

Tm(p(~,  x ) ,p (~ ,  x))  <~ c(~) and  T,,(c(~), c(~)) <<.p(~, x).  (**) 

Proof.  F r o m  Theorem 6.6, there exist a subsequence fl = (Xk,) ,~u of  • and x e X 
such that  c(~)~<#({~o:xk.(~o)~x(~o)}).  F r o m  Proposi t ion 6.1(i), e(~)<~p(fl, x),  

and, f rom L e m m a  6.3(b)(ii), Tm(c(~ ), c(~)) <~ T, . (p( f l ,  x) ,  c(~)) <~p(~, x) .  The first 
condit ion of  (**) is L e m m a  6.3(b)(i). 

Therefore  ( . )  implies (**); the following example  shows that  the converse is 
false. 

EXAMPLE 6.9. Let t be a real number  in [0, 1], and let b >~ 2 be an integer; then t 
has a unique b-adic  expansion,  that  is, an expansion of  the form t = ~ff= ~ ak(t ) /b  k, 

where the "digi ts"  ak(t) are integers with 0 ~< ak(t ) < b, for every k / >  l, and also 
ak(t) < b -- l for infinitely many  k. We define xn : [0, l] -~ R by xn(t) = an(t). Then 
([0, l], ~ ,  p) is a space with a probabi l i ty  (# is the Lebesgue measure  on [0, l]), and 

= (Xn)n~N is a sequence in the induced E-space  relating to the separable complete  
metric space R with the usual metric. Fo r  every n < m and 0 < a ~< l, we have 

A . . . .  (a) = {t: Ix . ( t )  - xm(t)  I < a} = {t: xn(t  ) = Xm(t)} 
b - - I  

= U {t: a, ( t )  = k = am(t)}. 
k = 0  

But 

{t: an(t) = k = am(t)} = {t: an(t) = k}ra{ t :  am(t) = k }  

= U 
a ; ~ { O , l , . . . , b  - -  1} 

i = 1 ,2 , . . . , n  1 

' ' .  a '  k;O, ' '  a~, lk+ l )  [O, a la2  . .  , , -  i ala2 . . . .  

U 
a~ ' e  {O, l , . . . , b  1} 
J = 1 ,2 , . . . ,m  - -  1 

[0, a ' ; a ~ . . ,  a m _ l k ;  O, a ( a ~ . . ,  a m - l k  + 1) 

' ' . . a '  k + l )  = U {[O, a l . . . a ' n _ l k ; O ,  a l .  n - l  
a[ f z {O , 1 , . . . , b  - 1}, i =  1 , 2 , . . . , n - -  1 

a j ' E { O , 1 , . . . , b -  I} ,  j =  1 , 2 , . . . , m -  l 

" . . . a" a'~ . a "  c~[O, a l  , ,_  lk;  O, . .  , , _ l k  + 1)} 

U U ' . .  ' . a" k" = [O, a l .  a , _ l k a ~ + l  • • m - I  ' 

a / ~ { O , l , . . . , b - -  ~} a.."~{O 1 . . . b - -  1} 
i =  1 , 2 , . . . , n -  "J ' " ' . / = n +  l , . . . , m  - -  I 

' a '  k " . _ l k + l ) .  O, a l . . .  n - l  a n + l . ,  a"  
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Therefore  It({t: a . ( t )  = k = am(t)}) = b " -  1 . b . . . .  1 . 1/b m = 1/b 2, so that  

I t (A~ .~ . (a ) )  = b • 1/b2 = 1/b. We obtain  that  

c(~) = lira lira I t ( A ~ . ( a ) )  = 1/b. 
a--*O ra,n 

Now,  let fl = ( X k n ) n E N  be a subsequence of  ~; then (Xk . ( t ) ) .~N is convergent  if and 
only if there exists no e N  such that,  for  every n >lno,  X k . ( t ) = X k . o ( t ) .  Let 
A~ = {t: a . ( t )  = i}, for every n e N and i = 0, 1 . . . . .  b - 1; now, (Xk . ( t ) ) .~u  con- 
verges iff there exist i e  {0, 1 . . . . .  b - 1 }  and no t N  such that,  for every 

n >i no, ak . ( t )  = i, or t e A ~ .  Therefore  

It({/: ( x , . ( t ) ) . E u  converges}) = It U N Akp = ~ lim I t  Ak. 
\ i = O  nE.Np>~n i f f iO n ~.p ~> n 

b - - I  
i 

i = 0  n 

b - - I  

= ~] l im It({t: a k , ( t  ) = a k ,  + l ( t )  . . . . .  ak2~(t ) = i}). 
i = O  n 

But 

A = {t: ak . ( t  ) = ak.  + t( t)  . . . . .  ak2. ( t  ) = i}  

= {t: t = O, al • • • a k . _  I iak. ÷ ~ • • • ak2. -- l iak2. + I • • -}; 

hence l t ( A ) = b  k " - l ' b  k " ÷ ~ - k " - ~ . . . b  k ~ - k z " - ~ - l "  l / b  k 2 n = l / b  "+ l ,  so that  

It({t: (Xk. ( t ) ) ,EN converges}) = 0. It  follows tha t  • does not  satisfy ( . )  (see Theo rem 

6.6.). 
Now,  let M: [0, 1] ~ {0, 1 . . . . .  b - 1} defined by x i ( t )  = i, for  every t e [0, 1] and 

i e {0, 1 . . . . .  b - 1}. F o r  every 0 < a ~< 1, we have Ax.x,(a) = {t: a , ( t )  = i} so that  
p(~, x ' )  = lim~ It(A~) = 1/b. Therefore  T, , (c (~) ,  c(~)) = Tm(1 /b ,  1/b)  = 0 < 1/b = 

p (~ ,  x ' ) ,  hence • satisfies (**). 
We remark  that,  for  i # j ,  x i ( t ) # x J ( t ) ,  for  every t ~ [0, 1] and  p(~, x ~) = 

p(~, xO. 
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