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In a previous paper [3], to which we refer the reader for definitions and notations, 
we presented an algorithm for computing the disk-packing constant S. Because of  
the relatively slow convergence of  the process, the practical consequence of  the method 
was to show that 

1.272441 < S < 1.350000. (1) 

A lower bound of 1.28467 which we had obtained by an earlier ad hoc method [2] 
was thus superior to that obtained by the systematic algorithm. Here, we will give 
an improvement of  certain inequalities used in [3], which combined with the basic 
algorithm of [3] allow us to show that 

1.300197 < S < 1.314534. (2) 

This result lends considerable weight to the heuristic estimate S ~  1.306951, obtained 
by Melzak [6]. 

The improvement is a result of  some new inequalities involving the disk-packing 
function M(a, b, c; t). Our principal new result is that M is a strictly convex function 
of (a, b, c). This, combined with the fact that M is a symmetric function of  these 
three variables and an auxiliary lemma, allows us to show that 

a + - -  M(O,l, 1;t)<~M(a,b,c;t)<~½((a+b)-t+c-t)M(O,l,  1;t). 

(3) 
These inequalities replace similar (but weaker) results used in [3] and give the improve- 
ment from (1) to (2). 

1. Preliminaries 

We use the notation of  [2] and [3] for the most part. Let T(a, b, c) be the region 
bounded by three mutually tangent circles of curvatures a, b, c, where a, b, c i> 0, 
and at most one of  a, b, c equals zero. (We do not insist, as in [3], that a<~b<~c). 
Let {r,} be the sequence of radii of  the disks in a simple osculatory packing ofT(a, b, c), 
and define, for real t, 

M(a,b ,c ; t )=  ~ rt,. (4) 
r l = l  
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We shall omit the variable t whenever convenient. The disk-packing constant S is 
defined by 

S = inf { t : M ( a ,  b, c; t) <oo} ] 
= s u p { t : M ( a ,  b, c; t) =oo},  ; (5) 

and is independent of  the curvatures a, b, c (See [7]). 
The osculatory packing of  T(a, b, c) can be described in the following way (as in 

[2], or [4]): In T(a, b, c) inscribe a circle with curvature s. In the figure so formed 
there are three curvilinear triangles called the first generation of triangles. In each 
of  these we inscribe a circle, the first generation of  circles. Continuing in this way, 
we inscribe, at the nth step, 3" circles, (the n th generation) in 3" curvilinear triangles. 
The nth generation can be indexed by the set G, = {1, 2, 3}", and if Go consists of 
a single element which is a vector with no components, then each disk in the 
packing can be indexed by a vector cted~=oG.=G. It is shown in [2] that if 
~t=(il ..... i , )eG,  and if a(ct), b(ct), c(ct), s(ct) denote the curvatures of  the sides 
and inscribed circle, respectively, of  the ~ -  th triangle, then 

where 
(a (~), b (or), c (ct), s (ct)) = (a, b, c, s) Pi, ... P,. ,  

s = a + b + c + 2(ab + bc + ca) 1/2, 

and P1, P2, P3 are matrices given by 

(6 )  

(7) 

Li °°I1 Ii °°2j El0011 0 0 0 -  1 0 0 2 (8) 1 0 2 , p2 = P3 = • 
P l =  0 0 -  1 0 2 '  . 1 0 

0 1 0 1 2 0 1 

For the purposes of  this paper, it will be convenient to introduce the variable d = 
d(a, b, c) = (ab + bc + ca) 1/2, so d(~)  = d(a(~), b(~), c(~)), (d is the curvature of  the 
circle circumscribed to T(a, b, c)). Then s (ct)= a(~t) + b(ct) + c(ct) + 2d(~t) and it is 
clear that (cf. [4], p.286) 

(a (~), b (~), c (~), d (~)) = (a, b, c, d) S,IS,2... S,. 
where 

Sx__. 0 1 1 1 $ 2 =  0 1 0 $ 3 =  0 1 
0 1 ' 1 1 1 ' 1 1 " 
0 2  0 2  0 2  

(9) 

(lo) 
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F o r  our  purposes,  the impor tan t  fact to note is tha t  the St are non-negative matrices 
with non-zero row sums, and  thus 

s (a)  = (a (=), b (~), c (ct), d (~t)) (1, 1, 1, 2) r 
= (a,  b, c, d) S,l ... S,, (1, 1, 1, 2) r 
= (a,  b, c, d) (w a (~), w 2 (~t), w 3 (~), w, (ct)) r , 
= w 1(~) a + w 2(~) b + w 3(ct) c + w 4(Ct) d ,  

where the quanti t ies w~(~) are positive. 
Thus we have 

(11) 

M(a,b,c;t)= ~ (wx(~t) a+w2(~)b+w3(et)c+w4(ct)d)-'. (12) 
a ~ G  

For  the purpose of  obta ining upper  bounds  on S, we need inequalit ies for sums of  
s(et) - t  over finite subsets G'  c G. We shall let M '  be a generic symbol  for sums of  the 
form 

M ' ( a ,  b, c; t) = ~, s(et) - t ,  (13) 
~ E G "  

and we assume that  G' is such tha t  M'(a,  b, c; t) is symmetric in the three variables 
(a, b, c). The necessary and sufficient condi t ion for this is that  if  ~ e G '  then the 
vectors obta ined  by replacing the first component  of  ~t by any of  1, 2 or 3 are also 
in G'. Since G is a union of  finite subsets, any inequali ty for  M '  implies a similar 
inequali ty for  M, but  M'  is finite for  all real t, so a discussion of  cases of  equality 
in the inequalit ies can avoid certain trivialities. 

2. Main Results concerning the disk-Packing Function 

We begin with a result whose p r o o f  uses inversion. 

L E M M A  1. Let M '  (a, b, c; t) be aefined as in (13). Then 

M ' ( a ,  b, c; t) ~< ½ ( b - '  + c - ' )  M ' ( 0 ,  1, 1; t) (14) 

for  any real t. There is equality i f  and only i fb  = c and a = O. 
Proof. It  is clear f rom (13) and (11) that  M '  decreases in all variables and is 

homogeneous  of  degree - t, (see also [7]), and hence we have 

M' (a, b, c) <~ M'  (O, b, c) = b - ' M '  (O, 1, c/b).  (15) 

We may  assume that  b ~< c since bo th  sides of  (14) are symmetr ic  in b and c. I f  b = c, 
(14) reduces to (15), so we suppose y = b / c <  1. We wish to invert  7'(0, 1, l )  into 
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T(0, 1, ~-1). Let the radius of  the inverting circle be Q. Then we can choose coordinates 
with origin 0 at the centre of  the inverting circle. Let C1, C2, C3 be circles of radii 
?, 1, 1 respectively, tangent to the real axis at the points Q-2x/y,  Q, Q + 2 respectively, 
so C2 is tangent to C1 and Ca. If  we choose Q so Q2/(Q + 2)2 = ?, then Ca inverts into 
C1, and C2 and the real axis are left invariant. Call this inversion L 

The disks in the packing of  T(0, 1, 1), other than those with centres on x = Q + 1, 
occur in pairs of  equal radii with centres at points (Q + e, y) and (0 + 2 - e, y), say, 
obtained by reflection across the line x = Q + 1. For a circle of radius r in the packing 
of  T(0, 1, 1), let r '  be the radius of the circle obtained by applying/, and let r" be the 
radius of  the circle obtained by first reflecting across x = ~ + 1, and then applying 1. 
If  the circle of  radius r has centre (Q +e, y), then 

r ' = 0 2 [ ( 0 + e )  2 + y 2 - r 2 ] - l < 0 2 r ( o + e ) - 2 ,  since y > r  (16) 

and likewise 

r" < 02r(0 -I- 2 -- e) -z  • (17) 

Thus, we have 

(r ') '  + (r")' < 02'r'((Q + e)-2'  + (0 + 2 -- e) -2') "[ 
O 2trt (0  - 2t "F = ~< ( 0 + 2 )  -2t) r ' ( l + y ' ) .  

(18) 

The second inequality results from the fact that the function ofe involved is decreasing 
for 0 < e < 1, and increasing for 1 < 8 < 2, hence has its maximum at 0 and 2. 

Thus, using an obvious notation, 

2M'(0,  1, ),- 1) = E (r '(~)) '  + E (r"(~t))' / 
~G / (19) 

~G'  < ( I + Y  t) E r ( ~ ) t = ( l + ? ' ) M ' (  0 , I , 1 ) '  
a tEG'  

which, combined with (15), proves (14). Strict equality holds in .05), for finite M, 

i fa  > 0, and in (18) if ? < 1. 

THEOREM 1. Let M'(a, b, c; t) be defined as in (13), and let t > O. Then M'  
is a strictly convex function of(a, b, c) in the region 

R = { ( a , b , c ) : a , b , c > ~ O  and a b + b c + c a > O } .  

Proof. Let p~= (ai, bt, c~), i =  l, 2, 3 be points in R, with PIMP2, such that 
Pa = up1 + (1 - u)p 2 for some u with 0 < u < 1. Let M~ = M'(a~, bo c~; t). There are 
two cases to consider: (i)p2 = ;LPl for some 2 > 0, (ii)p 2 ~ 2pt for any 2 > 0. 
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In case (i), 

M~ = (u + (1 -- u) 2)-'M~ < uM'l + (1 - u) 2-'M'1 = uM'l + (1 - u) M~. 

For case (ii), we use equation (11), denoting wj(ct) by wj for j =  1, 2, 3, 4. For i =  1, 

2, 3, let 

s i (ct) = wla, + wzb , + w3c, + w,d (a,, b,, c,). (20) 

Then, using the fact that d(a, b, c) = x/ab + bc + ca is a concave function of (a, b, c), 
(see [1], p.35 or [5]), we have 

us1 (~) + (1 - u) s2 (~) 
= wxa a + w2b3 + w3c 3 + w 4 {ud (a x, bx, cl) + (1 - u) d (a2, b2, c2)} (21) 

< wla 3 + w2b3 + w3c 3 + w,d (a 3, ba, ca) = s3 (ct). 

(Strict inequality holds since P2 ~ 2p~). By H61der's inequality (with exponents - 1/t 

and 1/(1 + t)), we have, from (21), 

us1 (~t)-' + (1 - u) s 2 (ct)-' } (22) 
>t (u + (1 - u)) '+l (usa (ct) + (1 - u) s2 (~t))-' > s3 (ct)-'. 

Summing over cte G', we have 

M~ < uM~ + (1 - u) M~, 

which proves the strict convexity of M'  for t > 0. 
Remark. It should be noted that we have made no use of special properties of 

the wi other than w~ >/0. 

COROLLARY 1. Let (a, b, c)eR,  and suppose (A, B, C ) e R  is a linear combina- 
tion, with non-negative coefficients, o f  the six points (a, b, c) ..... (c, b, a) obtained by 
permuting a, b, c in all possible ways. Let t > O. Then 

(A + a + C)' M' (A, B, C) ~< (a + b + c)' M' (a, b, c) (23) 

with strict inequality unless (A, B, C) is proportional to a permutation of(a, b, c). 
Proof. This follows immediately from the facts that M'(a, b, c) is a homogeneous 

function of degree - t in (a, b, c), is symmetric in (a, b, c), and is stricly convex. 
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COROLLARY 2. I f(a,  b, c)~R and t > O, then 

M' (a, b, c) ~< ½((a + b ) - '  + c-t)  M'  (0, 1, 1). (25) 

Furthermore, if  a, b, c are equal to the side lengths of  a triangle then 

( )' a + b + C M' (0 ,  1, 1). (26) M'(a ,b ,c)<~ 2 

I f  a <~ b <~ c, strict inequality holds in (25) and (26) unless a = 0 and b = c. 
Proof. The point (a, b, c) is a convex combination of (0, a + b, c) and (a + b, 

0, c). Hence Corollary 1 implies 

M'  (a, b, c) ~< M' (0 ,  a 4- b, c). (27) 

The result (25) thus follows from Lemma 1. 
I f  a, b, c are equal to the side lengths of  a triangle, then a = x + y, b = y + z, 

c = z + x  where x, y and z are non-negative. Hence (26) is a special case of  Corollary 1, 
since 

(a, b, c) = x(1, 0, 1 ) +  y(1,  1,0) + z(0, 1, 1). 

Remark. The inequality (25) is most effective when a, b, c are ordered so that 
a ~< b ~< c. The inequality (26) is better than (25) whenever it applies; however, in 
our applications, a, b and c always satisfy a + b < c. 

COROLLARY 3. If(a,  b, c)~R, and t > O, then 

M ' ( a , b , c )  t> a + - -  M ' ( 0 , 1 , 1 ) .  (28) 

Strict inequality holds unless a = 0 and b = c. 
Proof By Corollary 1, 

( b + c  b + c )  (29) 
M ' ( a , b , c ) > ~ M '  a, 2 ' 2 

and, by Lemma l(b) of  [3], i fB ~< C, then 

M'(A, B, C)/> (A + C)-' M'(0, 1, 1). (30) 

Combining (29) with (30) yields (28). 
One can bypass [3] by giving an alternate proof  of  Lemma l(b) as follows: use 

induction on n to show Wl(a ) 6 W2(a ) + W3(Ot ) for a~G,.  
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Then, since B ~< C, 

wlA + w2B + w3C + w4(AB + BC + CA) 1/2 <~ (A + C) (w 2 + w 3 + w,),  

from which (30) follows immediately. 
Remark. Corollary 1 gives many amusing inequalities as special 

example, for any (a, b, c)~ R, 

a + b + c  

3 

cases. For 

(31) 

3. The Disk-Packing Constant 

As was shown in [3], inequalities such as (25) and (28) can be used to generate 
lower and upper bounds for S which converge to S. We refer the reader to [3] for 
a precise description of  the process used. Briefly, suppose one has an inequality of  
the form 

M' (a, b, c, t) ~< F (a, b, c; t) M'  (0, 1, 1 ; t) (32) 
or 

r (a ,  b, c; t) M'(0 ,  1, 1; t) <~ M' (a, b, c; t). (33) 

Then, for any number x > 0, there is a constructively defined functionf(x, F; t) for 
which the equationf(x, F; t) = 1 has a unique solution t = v(x, f ) ,  and 1 < v(x, F) < 2. 
If  F satisfies (32), then S <~ v(x, F) and if F satisfies (33), then v(tc, F) ~< S. If  in 
addition, one assumes that 

(a + c)-t <~ F (a, b, c; t) <~ b-t,  (34) 

then 6 
[S - v(x, F)[ < (log 10)/(logx). (35) 

Computations have been carried out, based on the inequalities (14), (25) and (28). 
The inequality (26) is not useful here since it is not valid for the appropriate triples 
(a, b, c). The values of  x are the same as those used in [3], and the reason for these 
choices is given there. The computations were performed on an IBM 360/67 computer. 
The longest computation was that of  v(841, F) with F as in (28), which used 560 
seconds of  C.P.U. time. 

The results are shown below in comparison with the results obtained in [3]. 
The rows headed S, A indicate the parameters for the least squares fit of a curve 
S + A(logx) -1 to v(K, F), and the row RMS gives the root mean square deviation 
of  this approximation. It is clear from this that the rate of  convergence is still very 
nearly 1/(logx), but the better inequalities (25) and (28) have greatly improved the 
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start ing values. Note ,  for  example,  that  the second entry in the second column,  which 

took  5 seconds o f  computa t ion ,  is far bet ter  than  the four th  entry in the four th  

co lumn which took 128 seconds o f  computa t ion  on an IBM 360/75. 

Table of v(x, F) for various x and F 

La+b+cL -~ 
F(a,b, c; t) 2 ½((a+b)-t+c-t ½(b-¢+c-t) b-t (a+c)-t 

type of bound lower upper upper upper lower 
x = 4 1.282599 1.345722 1.384291 1.571658 1.191561 

25 1.295224 1.322910 1.338060 1.410266 1.246116 
144 1.298681 1.317054 1.326648 1.373234 1.263876 

841 1.300197 1.314534 1.321906 1.357603 1.272441 
S 1.304812 1.306138 1.304773 1.297644 1.291789 

A 0.030796 0.054765 0.109870 0.377927 0.139798 
RMS 4.05 x 10-5 1.91 x 10 -4 6.14 × 10 -4 3.16 x 10 -a 1.36 x 10 -~ 
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