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On the Sobolev distance of convex bodies

RANDOLF ARNOLD AND ANDREAS WELLERDING

Summary. Let ¢ denote the cone of all convex bodies in the Euclidean space EY. The mapping
K+ h, of each body KeX'? onto its support function induces a metric 8, on X? by
6,(K, Ly=|h, —hy|, where |- |, is the Sobolev 1-norm on the unit sphere $¢~ ! < E’. We call
d,(K, L) the Sobolev distance of K and L. The goal of our paper is to develop some fundamental
properties of the Sobolev distance.

In Section 1 we derive, subsequent to basic facts, an estimate for §,(X, L) by the
quermassintegrals W,_,, W,_, of K, L and the mixed volume V(X, L, B¢, ..., BY
(B¢ = unit ball) under the assumption that the Steiner points of K and L coincide
(Theorem 1). In the remaining sections we discuss the relationship between 6, and
the widely examined Hausdorff metric . For the plane case (and only for this
case) there exists a bound §,,<C4, with a universal constant C > 0. The best
possible constant C is given by Theorem 2. We show that this constant is equal to
the norm of the general Sobolev imbedding operator on the interval [0, =] which
was calculated by Marti [10]. Furthermore, the proof of Theorem 2 produces the
smallest body K, € #? which satisfies é_(K,,, B?) =Cd,(K,,, B?). We call X, the
minimal body of the Sobolev distance and establish a close connection between K,
and the Minkowski structure of % ? (Theorem 3).

It should be mentioned that Wellerding [16] applied the Sobolev distance to the
problem of best approximation of a plane convex body L by the images oK of a
convex body K under proper rigid motions o of E2.

1. Let E¢ (d =2) be the d-dimensional Euclidean space with the inner product
{+,+> and the induced norm |-|. B = {u € E||u| < 1} is its unit ball with the
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d-dimensional volume

d/2

wd:=Z— (I' = gamma function).
ri=+1
z+)
If @ is the Lebesgue measure of the unit sphere SY '=JB¢ we have

(S~ ") =d w, By A * we denote the cone of all convex bodies (nonempty,
compact, convex point sets) in [ provided with Minkowski addition and nonnega-
tive scalar multiplication. An analytic representation of a body K € "¢ is given by
its support function Hy :E—> R, Hy (1) :=sup{<u, v)|v € K} which is positively ho-
mogeneous and convex. These properties imply that H is Lipschitz continuous and
twice differentiable almost everywhere (a.e.) (see [1]). Let ¥(S¢~ ") denote the real
Banach space of all continuous functions f: $7~ ! - R equipped with the uniform
norm |- |,. From

Hy,p=Hg+H,, Hyx=AHy (A20)

it follows that the set of all restricted support functions sy = H |S“~"' forms a
positive cone in €(S¢~'). The vector space ¥(S“~ ") of all differences of support
functions is dense in €(S$~ ).

The homogeneity of Hy yields that if Hy is differentiable at x e ¢!, then

grad Hp(x) = x * hg(x) + grad, hg(x) (L.1)
where grad, is the gradient on $¢~'. grad H,(x) is the unique point of contact of
K and the support hyperplane of K with normal x. By the properties of H (1.1) is
valid a.e. on $~! and

V,(hy, b)) =<{grad, hy, grad, h, ) € Z2(S“ ), K Lex“

where #Z*(S“') is the real vector space of all essentially bounded Lebesgue
measurable functions on $¢~ !, Therefore, the inner product

1
—d'wd

w

(S8 = f BV g) dwy,  wy:

is well defined on ¥ (S?~'). The Sobolev 1-norm | f||,.:=(f|f)¥* on ¥ (S4~")
induces the Sobolev distance 6,(K,L)=|h, —hx|, of two convex bodies
K, L € 27 The pair (9, 35,) forms a metric space. The metric §,, is congruence
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invariant and equivalent (but not uniformly equivalent) to the Hausdorff metric &,
on % ¢ (compare [13]). Because of

8,(K, L) = f [grad(H, — H e )(x)|? deo(x)

sd

the Sobolev distance of K and L is a mean square of the Euclidean distance of
related points grad H(x) and grad H,(x) of contact. In this sense 62 can be
decomposed into a normal and a tangential component by

sd—1

d,(K, L) = “ hy —hyg ”%‘l‘j V(h, — hy) dow,
where

Ulor=|, fedom U= V19,050

The normal component 6,(K, L) == |, — hg|| , is the usual #,-metric on % 9 (see,
for example, [2], [4], [8], [11], [15]). On the other hand, the Lipschitz continuity of
fe¥(S*"") implies that f is a constant if V,f vanishes a.e. Therefore, from
V.hy = V,h, ae. it follows that i, = hy + const., i.e., the parallelism of the convex
bodies K and L. Hence,

1/2
(K], [L]) = ( Ld— 1 Vo(hy —hg) da)0>

defines a metric on the set 29:={[K]|K e %"} of parallel classes of convex bodies
and

3.(K, L)* = 6,(K, L)? + p,(K], [L)?, K, Lex“.

Furthermore, there is a close connection between the Sobolev distance and the
Steiner point (d-th curvature centroid)

X+ hy(x) dog(x) = f

Sd-

s(K) =dj

Sd -

grad H(x) dwy(x)

of a body K e &% It is not hard to see that

0. (K+a,L)*=6,K—s(K),L—s(L))*>+la +s(K) — (L)) (1.2)
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for all K,LeX % ael? A consequence is that the minimum of the Sobolev
distance of L and all translates of K is given by J,(K — s(K), L —s(L)). By
restriction of 4, to translates a + J°§ of the subcone & §:={K € o ¢|s(K) = 0} of
A" ¢ we derive an upper bound for §,(K, L) by quermassintegrals of K, L and the
mixed volume F(K,L):=V(K,L,B? ..., BY (for the definition of V see, e.g.,
Leichtweiss [9]).

THEOREM 1. Let K, L € X' and s(K) = s(L). Then

2d* (W, (L) — W,_(K)\?

0,(K, L)* < d+1 < Wy )
d—DQRd+1D2V(K, L)y — W,_,(K) — W, (L)
d+1 wy ’

Proof. The main tool of our proof is a strengthened version of Wirtinger’s
lemma due to Schneider [12] (Lemma 1, p. 53—-54) extended from €%(S“~!) to
¥ (S~ !) by approximation. It says that if g € ¥ (S§7~!) satisfies

£(0) ==J g(x) dwg(x) =0 and J x - g(x) dawy(x) =0,
sd—1 sd—1
then

2 dor, < V.ed
Ld—] wo 2de—~l g wO

where equality holds iff g is a spherical harmonic of degree two. Applying
this to

f:=hL _hK9

we get

|£113 =70+ [f = F(O) | </(0)* + 37 +1<|If ~F O3+ J . lvsfdwo)

s 713
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Hence,

7] =dlif - @ j (7= g 9.1 ) don
sd -1

O+ R~ [ (7 v dan

2d+l 2d+l

which yields

U1 < o for - =D [ (20 ) o,

d+1 d+1 d

Well known integral representations
W,_1(K) =wdf4 1 hkdwo=0)dﬁ1<(0), W, _(K)= V(K, K),
-

- 1
VK, L) = a, J (hKhL - d—1 V,(hk, hL)) dawq
gd— | -

of W, |, W,_,and ¥ by support functions (see Heil [7], Schneider [12]) complete
the proof. ]

REMARK. Applying Theorem 1 to normalized bodies

. Wy _ Wy
K=y m & —sE), D=3 (L =)

one obtains a stability result for the inequality
VK L2 W, oK) - W, 5(L), K Lex*

(a special form of the Aleksandrov—-Fenchel inequality) in which equality holds iff
K and L are homothetic (see Schneider [12], Theorem 2 and the remarks on p. 56,
and Goodey and Groemer (6], Theorem 3 and the following remark). In [12] and
[6] we find results analogous to our Theorem 1 involving #,-metric instead of d,,.

2. In the case of the plane (d=2) each f:S$'->R may be considered as a
2n-periodic function f = f(?), t € R. Then, the Sobolev distance of K, L € "% is

Su(K, L) =[||h.
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where

1 2n d
115 =5, J f? dr, f'::;{ .

It is well known that on Sobolev 1-spaces over bounded intervals of R the Sobolev
norm is stronger than the uniform norm. From Fuglede [5], for example, one
derives for a 2n-periodic function f that if

2

70 =35z | roa-o
T Jo
then

2

Sz

[£]%<m rnf’(t)2 dt =2n?

Applying this to an arbitrary f e ¥(S") we get

1f oo <O+ 22 | £ < NS 2+ V27 1 </ T+ 282 e
Hence, we have the bound
S (K, L)< /1 +2n%8,(K, L), K, Lex? (2.1)

for the Hausdorfl distance &, (K, L)=|h, — hx |, which is the usual deviation on
A2 [ 9. The following theorem gives the best possible constant in (2.1).

THEOREM 2. Let K, L € X 2. Then
d0,(K, Ly /n -cothn d,(K, L). (2.2)
The universal constant

172
C:= n-cothn=<l+2 y 7) ~1.7757 ...

is best possible.
Proof. We have to show that the infimum of the image é,.(#,) of

M= {(K, L) € X2x H?|6,(K,L)=1},
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under J,, is equal to 1/C. Then, the general result (2.2) follows by transition from
K and L to K[, (K, L) and L/3_ (K, L). Let (K, Lye.#,. W.l.o.g. assume that
Min |vo—u|=|po—uy|=1,uy€ K, v,€ L. If ¢ denotes the reflection at the line
through u, and vy, then Blaschke’s symmetrization K’ = (K + 6K)/2, L’ = (L + L)/
2 produces ’

0,(K,L)=1 and 9,(K’, L) <J,(K, L),

since |||, and | ‘|, are convex functionals on ¥(S'). Therefore,
infd,,(A#,) =inf 6,(#,) where

'/”2’= {(K, L) € J”l IhL(O) - hK(O) =1, hx(t) = hK( - t), hL(t) = hL( - t)}
In order to compute the last infimum, we follow Marti [10] who determined the

least constant C” in the Sobolev inequality || f |, <C’|f]. on [0, t] involving the
absolute minimum of

L]
I[y]==f F(t,y,y)dt, F(t,y,y) =y*+y"?
A (2.3)

¥(0) = 1, y(¢,) variable,

in the class of ¢*functions. In the case #, = the Euler-Lagrange equation of /
and the transversality condition F, =0 at the line ¢ = 7 induce the boundary value
problem

y'=y=0, ¥0) =1, yi(n)=0. (2.4)
Since y*+ y'* is convex as a function of both arguments, the solution

cosh(n — ¢)

0
cosh >

yo()=cosh t —tanh n - sinh ¢ =

of (2.4) supplies the absolute minimum of (2.3) with ¢, = n (see Troutman [14], p.
59).
Now, define K, € "2 by 2n-periodic extension of

1
he, (0s=1=22(ft),  tel—mnl. (2.5)
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hg is a support function, since
he (1) + hi () =1— yo((t]) >0, te[—m,n
and
hx (—7™) —hg (n7) =0, h (0%) —h% (07) >0.

Because of (2K,,2B*)e.#, we have 6,2K,,2B% <infé,(#;) where
My={(K, L) € M,|hg, h, of the class €?}. A well known approximation argument
(see Bonnesen/Fenchel [3], p. 36—37 and Heil [7], Lemma 4.1 and its applications)
can be used to verify that inf J, (.#,) = J,(2K,,, 2B?) = min J,(#,). Finally,

3 T

" 1 ’
Yo(¥o — yo) dt + ;J’OJ’O

0 0

1 1
5w(2Kw7 2[82)2 = ~[[y0] =- f
A 1

1 1
= = —»o(0yp(0) =~ tanhn = C 2 (2.6)

and Fourier expansion of cosh ¢ on [ — x, n] complete the proof. O

A further characterization of the convex body K|, can be derived if we ask for
equality in (2.2) if L = B? is fixed. The last proof shows that

6,(K,B)=,/n -cothnd, (K, B?) #0

Figure 1.
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holds for K = K(a), hxy(f) =1 —yo(|t])/a, t € [ — =, 7]. In order to obtain convex-
ity of the regions K(«), we have to choose the parameter o from the interval [2, col.
Therefore, K, = K(2) is the smallest convex body of the family (K(«)). In view of
its specific properties we call K,, the minimal body of the Sobolev distance 4,,.

Our next theorem shows a relationship between the algebraic structure of 2
and the minimal body K,, of §,. It arises from the question how inequality (2.2)
can be improved by restriction to the subcone "3 or, even stronger, by restriction
to those convex subsets of ' which contain all bodies of a fixed perimeter
(=2m)).

THEOREM 3. (@) Let K, L € #°* and s(K) = s(L). Then
0 (K, L) <(C*=1)'726 (K, L)

where equality holds for K =K, —s(K,) and L = B2 Therefore, the universal
constant

<CZ—1)”2=(2 >

172
1+n2) ~ 1.4673. ..
n=1

is best possible.
(b) Let K, L € A%, 5(K) = s(L) and W,(K) = W,(L). Then

0o (K, L) <(C*—2)"25,(K, L)

where equality holds for

K=K ”

w = WKL) (K, —s(K,) and L =B

Therefore, the universal constant

oo

1 1/2
2

is best possible.

Proof. We omit the proof of (a) and turn to the very similar proof of (b).

Let K, L e X2 s(K)=s(L), Wi(K) =W,(L) and §.(K, L)=1. Using the in-
variance of the quermassintegral W,_, = W, and the equivariance of the Steiner
point s under Blaschke’s symmetrization and the congruence invariance [equivari-



Vol. 44, 1992 On the Sobolev distance of convex bodies 81

ance] of 8., d,,, Wy, s, respectively, we can assume that K, L € # 2 with

h(0) —he(0) =1, hy()) =he(=1), hp(d) =k (—0).

Setting # :=(tanh n)/n < 1/3 we compute for the minimal body X,

s(K,) = ( —g,o), Wi(K,) =5 (2. 27

Now, define K, L’ € "2 by

K =(1 — 2K +25(K,), L’+=(1—2n)L + nB>.
From

hy () = he (8) =1+ cos £+ (1 = 2n)(h, (1) — (1))

we deduce that §.(K’,L)=1. Hence, by (2.6) and (1.2), our assumptions
5(K) =s(L) and W,(K) = W,(L) imply

n=0,(2K,,2B8%)* <0, (K, L)? =2+ (1 —2n)?0,.(K, L),

which yields

n {1 - _
5W(K,L)2>1_2n—<;—2) =(C2=2 " (2.8)

By (2.7), equality occurs in (2.8) for

2 ~ 2W,(K,)
K=& & L=,

In the plane case the Aleksandrov—Fenchel inequality reduces to
V(K, L)? > V(K) - V(L) where equality holds iff K and L are homothetic. For this
inequality we deduce from Theorem 1 and Theorem 3(b) a kind of unrestricted
stability with respect to the Hausdorff distance.
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COROLLARY 1. Let K, L € % with W, (K) #0, W,(L) #0, and let K, L denote
its normalizations. Then

5. (R, IY'< 3 (C? = DIV, ) — V(R) V()"

_10m V(K, L) — V(K)"2V (L)'
=5 O owmoD

3. We finish with some remarks on the Sobolev distance in the case d = 3.
In order to examine the existence of an inequality 5., <Cd,, it suffices to
consider bodies of revolution with axis x, € $9~!. Let

H:={0 € SO(d) | ox, = x, } = SO(d — 1),

then each H-zonal function e ¥ (S?~!) may be considered as a function of the
angle ¢ € [0, n] with the axis x,. The Sobolev norm of such fis given by

[ = 4= D0 f (£ + £ @) sin® 2 ¢ d,
d-w o
which shows that there is no universal Sobolev inequality |-|,<C| |, on

V(S?— ). The main argument is the singularity of the variational problem

4

I[,V]==Io(y2+y’2) sin?~2 ¢ dt = Min!
0

¥(0) = 1, y(1,) variable,

at the left boundary ¢ = 0. In the case d > 4 one gets the non-existence of C directly
from the (compact) convex cone L(R), R >0 with

cost, tel0,q]

, R=coto,0<¢<mn/2
Rsint, telp,n] cote o<n/

hicgy(t) = {

and its circular face K(R) in the hyperplane (u, x,> =0. (These are the bodies L;
and K by Vitale [15], which lead to an estimate for 6. (K, L) in terms of the
&, -distance of K, L and the diameter of KU L.) We have é,,(K(R), L(R)) =1 and,

setting fr:=="Hh,z) — hxcrys

n @ P
J [fr(D*+1R(D3 sin""ztdt=(l+R2)f sind‘ztdt=sin_2¢J sin“ =t dr.
0 1] 0
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Hence,

H i 2 v 2] aand—2 : Sind73¢
lim [fr(O)*+fr(D?F] sin?~ * tdt = lim —— = d=4).
R—o0 g »—0 2COS @

Nevertheless, we think that the Sobolev distance deserves consideration also in
higher dimensions. A basic problem seems to be the determination of sharp
estimates of d_, by 4, (inclusive of minimal bodies) on certain subclasses of
A4 x A “ which, for example, arise from the demand that diam(K wL) <D (D >0
fixed).
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