
Aequationes Mathematicae 44 (1992) 72-83 0001-9054/92/010072-12 $1.50 + 0.20/0 
University of Waterloo O 1992 Birkh/iuser Verlag, Basel 

On the Sobolev distance of convex bodies 

RANDOLF ARNOLD AND ANDREAS WELLERDING 

Summary. Let 5~ rd denote the cone of all convex bodies in the Euclidean space E a. The mapping 
K~--~h x of each body K e.X¢ "a onto its support function induces a metric 6w on oF d by 
6~(K, L):= ]lhL--hxl ] w where rl" IIw is the Sobolev l-norm on the unit sphere 5 a - l c  ~a. We call 
6w(K, L) the Sobolev distance of K and L. The goat of our paper is to develop some fundamental 
properties of the Sobolev distance. 

In Section 1 we derive, subsequent to basic facts, an estimate for 6w(K, L)  by the 
quermassintegrals Wd_ 2, Wa_ 1 of  K, L a a d  the mixed volume V(K, L,  B d . . . . .  B d) 

(B d - unit ball) under the assumption that the Steiner points of  K and L coincide 
(Theorem I). In the remaining sections we discuss the relationship between 6w and 
the widely examined Hausdorff  metric tS~. For  the plane case (and only for this 
case) there exists a bound 6 ~ C 6 w  with a universal constant C > 0. The best 
possible constant C is given by Theorem 2. We show that this constant is equal to 
the norm of the general Sobolev imbedding operator on the interval [0, rc] which 
was calculated by Marti  [10]. Furthermore, the proof  of  Theorem 2 produces the 
smallest body Kw E ,~2 which satisfies ~ ( K , ~ ,  Bz )=C6w(Kw,  B2). We call Kw the 
minimal  body of  the Sobolev distance and establish a close connection between Kw 
and the Minkowski structure of  ~F 2 (Theorem 3). 

It should be mentioned that Wellerding [ 16] applied the Sobolev distance to the 
problem of  best approximation of  a plane convex body L by the images ~rK of  a 
convex body K under proper rigid motions a of  E 2. 

1. Let ~a (d t> 2) be the d-dimensional Euclidean space with the inner product 

( . , . )  and the induced norm I' 1" I~a: = {u e Eal lul ~ l} is its unit ball with the 

AMS (1991) subject classification 52A20, 52A10. 

Manuscript received January 9, 1991, and in final fore,, November 15, 1991. 

72 



Vol. 44, 1992 On the Sobolev distance of convex bodies 73 

d-dimensional volume 

T(d/2 
(F = gamma function). 

If  o) is the Lebesgue measure of the unit sphere ~d J=~?~d we have 
O)($d-1) = d'o)a.  By o~ff d we denote the cone of all convex bodies (nonempty, 
compact, convex point sets) in E a provided with Minkowski addition and nonnega- 
rive scalar multiplication. An analytic representation of a body K e X a is given by 
its support function H~: : E d--, ~, Hx(u) .'= sup{(u, v) Iv E K} which is positively ho- 
mogeneous and convex. These properties imply that H~¢ is Lipschitz continuous and 
twice differentiable almost everywhere (a.e.) (see [l]). Let cg(~d-~) denote the real 
Banach space of all continuous functions f :  5 a ~ --* R equipped with the uniform 

norm I1' II~- From 

H,~+L=H,~+H~, H~,,=;~H,, (,~>~o) 

it follows that the set of all restricted support functions hx = HK[~ a- ' forms a 
positive cone in cg(~a-~). The vector space ~U(~ a-  i) of all differences of support 
functions is dense in cg(~a i). 

The homogeneity of HK yields that if H~c is differentiable at x e ~a 1, then 

grad HK(x) = x • hK(X) + grads hK(x) (l.n) 

where grads is the gradient on ~a -  ~. grad Hx(x)  is the unique point of contact of 
K and the support hyperplane of  K with normal x. By the properties of Hx (1.1) is 
valid a.e. on ~a-~ and 

V~ (hK, hL) ,= (grads hK, grads hL ) e ~ ~(~a-1),  K, L e ~ a  

where ~ ( ~ a - l )  is the real vector space of all essentially bounded Lebesgue 
measurable functions on ~d- I .  Therefore, the inner product 

fs  1 ( f[  g)w ,= ,~-, ( fg  + Vs ( f ,  g)) doo, Wo.-= ~ co 

is well defined on "I/ '(~d-').  The Sobolev l-norm Ilfl]w,=(flf)L/2 on ~ ( ~ a - , )  
induces the Sobolev distance 6w(K,L),=][hL-hx[[.:  of two convex bodies 
K, L e 3fl a. The pair (3ff d, 6w) forms a metric space. The metric 6.: is congruence 
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invariant and equivalent (but not uniformly equivalent) to the Hausdorff metric 6o~ 
on jf 'd (compare [13]). Because of 

fsd-~ [grad(HL - Hx )(X)[ 2 d~oo(X) 6w(K, L) 2 

the Sobolev distance of K and L is a mean square of the Euclidean distance of 
related points grad Hx(x) and grad HL(x) of contact. In this sense 6 2 can be 
decomposed into a normal and a tangential component by 

6w(K, L )  2 = II - h, ,  1122 + V~(hL hK) d~0 
d~ d- - l  

where 

( f tg):= fSa_lfg doo, Hfll2".=(flf) '/z , V,f.'= V~ ( f , f ) .  

The normal component a2(K, L),= IIhL -- hr [[z is the usual £~z-metric on o~ff a (see, 
for example, [2], [4], [8], [11], [15]). On the other hand, the Lipschitz continuity of 
f e  ~V'(S a- ~) implies that f is a constant if Vsf vanishes a.e. Therefore, from 
V,hx = V~hL a.e. it follows that hL = hx + const., i.e., the parallelism of the convex 
bodies K and L. Hence, 

P2([K],[L])'=(fs~_lVs(hL-hK)d~%) 1/2 

defines a metric on the set ~d :=  {[K] ]K ~ ~g'd} of parallel classes of convex bodies 
and 

3w(K, L) 2 = 62(K, L) 2 + p2([K], [L]) 2, K, L ~ jd-a. 

Furthermore, there is a close connection between the Sobolev distance and the 
Steiner point (d-th curvature centroid) 

f x .  hx(x) dtoo(X) = f grad HK(x) dooo(X) s(K)  d 
3s d--I J~d--I 

of a body K ~ X "d. It is not hard to see that 

6.,(K + a, L) 2 = 6.(K - s(K), L - s(L)) 2 + [a + s(K) - s(L)]2 (1,2) 
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for all K, L • )Of d, a • E d. A consequence is that the minimum of the Sobolev 
distance of L and all translates of K is given by 3 w ( K - - s ( K ) ,  L -  s(L)). By 
restriction of 6~ to translates a + )fig of the subcone fffg..= {K ~ ff{.a[ s(K) = 0} of 
~ d  we derive an upper bound for 6w(K, L) by quermassintegrals of K, L and the 
mixed volume if(K, L):= V(K, L, B a, . . . .  B u) (for the definition of V see, e.g., 
Leichtweiss [9]). 

THEOREM 1. Let  K, L • o,~ff a and s(K) = s(L). Then 

3~(K'L)2 <~ d + l \  2d2 (Wd_~(L) --~odWa_~(K)) 2 

+ ( d  - 1)(2d + l) 2if(K, L) - W d - 2 ( K )  -- Wd_2(L)  

d +  1 ~o d 

Proof. The main tool of our proof is a strengthened version of Wirtinger's 
lemma due to Schneider [12] (Lemma 1, p. 53-54) extended from cg2(~d-I) tO 
~($d--  t) by approximation. It says that if g • ~ ( ~ d -  1) satisfies 

°8(0) :=f~d-~ g(x) dc°°(x) = O and f sa-  ~ x " g(x) d~°°(x) = O' 

then 

where equality holds iff g is a spherical harmonic of degree two. Applying 
this to 

2d 
g . - - -  ( f - - f (o ) ) ,  f : = h L  - h x ,  

2 d +  1 

we get 

IIf I1~ =f (o )  ~ + I I f -P(o)  I1~ ~ f (o )  ~ l + 2-~--~( [[f -f(°)ll~ ÷ fs~_ 1 

2d i f (O ) .  , 1 
- 2 d +  + 2-3-~-~ Ilfll L 

VJdcoo) 
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~<2--ff-~ f(O) + 2 - - f f ~  [[fl]~ - ( d -  1) a-,  d -  1 

which yields 

-%< , f(0) d + l  ~-, d - 1  dcoo. 

Well known integral representations 

W d_,  (K)  = o9 d f hK dcoo = e~dfiK(O), Wd_ 2(K) = IT(K, K), 
ds d - - I  

L (  ' ) ~'(K, L) = o2 a hxht~ Vs(hx, h t )  d(oo 
a-,  d - 1  

of W~t_ l, Wu_ 2 and /7 by support functions (see Hell [7], Schneider [12]) complete 
the proof. [] 

REMARK. Applying Theorem 1 to normalized bodies 

K" - c°d (K -- s(K)), £ _ C O d  (L -- s(L))  
w~ , (K) w~_, (L) 

one obtains a stability result for the inequality 

IT(K, L)2 ~ > W , ~ _ 2 ( K ) W d _ 2 ( L ) ,  K , L ~  d 

(a special form of the Aleksandrov-Fenchel inequality) in which equality holds iff 
K and L are homothetic (see Schneider [12], Theorem 2 and the remarks on p. 56, 
and Goodey and Groemer [6], Theorem 3 and the following remark). In [12] and 
[6] we find results analogous to our Theorem 1 involving £°2-metric instead of 6w. 

2. In the case of the plane ( d =  2) each f : $ 1 - - ~  may be considered as a 
2n-periodic function f = f ( t ) ,  t ~ ff~. Then, the Sobolev distance of K, L ~ aft 2 is 

6 ~ ( g ,  L)  = I l l &  - h,,  II~ + ]lh~_ - h~, 1122] '/2 
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where 

1 f2"f(t) 2 dt, IIf]lz z = ~ j0 

On the Sobolev distance of convex bodies 

~, df y , = ~ .  
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It is well known that on Sobolev 1-spaces over bounded intervals of ~ the Sobolev 
norm is stronger than the uniform norm. From Fuglede [5], for example, one 
derives for a 2n-periodic function f that if 

lfo f(O) = ~ f ( t )  dt = O, 

then 

IIfI[~ ~,t  f'(0= at = 2~= IIf'll$. 

Applying this to an arbitrary f e  ~ ( ~ 1 )  we get 

II f II ~ ~ I/(0) l + , J ~  II f '  112 ~< II f 112 + , / ~  II f '  112 ~< ~/1 + 2~ 2 II f rl w. 

Hence, we have the bound 

6~(K, L) ~<~/1 + 27t 2 3w(K, L), K, L ~ ~ 2  (2.1) 

for the Hausdorff  distance 6~(K, L),=][hL- h,, which is the usual deviation on 
ff£2 [gUa]. The following theorem gives the best possible constant in (2.1). 

THEOREM 2. Let K, L ~ oU 2. Then 

6~(K, L) <~/~z • coth 7t aw(K, L). (2.2) 

The universal constant 

1 ~'/: 
= l + 2 1 . 7 7 5 7 . . .  

n = l  

is best possible. 

Proof. We have to show that the infimum of  the image 6w(J[~) of  

~t', ..- {(K, L) 6 ~ 2  x 9~2 [a~(K, L) = 1}, 
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under  6w is equal to 1/C. Then,  the general result (2.2) follows by transit ion f rom 
K and L to K/fio~(K, L) and L / f ~ ( K ,  L). Let (K, L ) e ~ / ~ .  W.l.o.g. assume that  

Min [Vo - u[ = [Vo - Uo [ = 1, Uo e K, Vo ~ L. I f  a denotes the reflection at the line 

through u0 and vo, then Blaschke's symmetrization K'  = (K + aK)  /2, L '  = (L + aL) / 
2 produces  

6 o ~ ( K ' , L ' ) = I  and 6w(K' ,L ' )<<,fw(K,L) ,  

since [I "11~ and [I L are convex functionals on ~K(5') .  Therefore,  
inf  6w(~ ' l  ) = inf  fiw(~¢¢2) where 

Jr '  2.'= {(K, L) E Mg I [ hL(0) -- hx(0)  = 1, hr(t)  = hK( -- t), hL(t) = hL( -- t)}. 

In order  to compute  the last infimum, we follow Mart i  [10] who determined the 
least cons tant  C '  in the Sobolev inequality [If[[~ <~C'[[U [[w on [0, to] involving the 
absolute  m i n i m u m  of  

~0 t° I[y] .'= F(t, y, y ' )  dt, 

y(O) = l, y(to) variable,  

F(t,  y, y ") = y2 _[_ y ,2 t (2.3) 

in the class o f  ~2-functions.  In the case t o = n the E u l e r - L a g r a n g e  equat ion o f  I 
and the transversal i ty condit ion Fy = 0 at  the line t -- n induce the boundary  value 
p rob lem 

y " - y  = 0 ,  y(0)  = 1, y ' (n )  = 0 .  (2.4) 

Since y2 + y , 2  is convex as a function o f  both  arguments ,  the solution 

yo(t) .'= cosh t - t anh  n - sinh t = 
cosh(n - t) 

cosh n 
> 0  

o f  (2.4) supplies the absolute  m in imum of  (2.3) with to = n (see T r o u t m a n  [14], p. 
59). 

Now,  define Kw ~ ~,ff2 by 2n-per iodic  extension of  

1 
hxw(t ) ,= 1 - ~ Yo ([t [), t E [ - n ,  n] .  ( 2 . 5 )  
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hK., is a support function, since 

hx.,(t) + h~.,(t) = 1 - yo(ltl) i> o, 

and 

h L ( - ~  +) -h~,w(~- ) =0 ,  

Because of (2Kw, 2 ~  2) E "/~2 

On the Sobolev distance of convex bodies 

t ~ [  --Tz, rt] 
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Figure 1. 

~ '3 '=  {(K, L) ~ ~[2]hx ,  h L of the class ~,2}. A well known approximation argument 
(see Bonnesen/Fenchel [3], p. 36-37 and Heil [7], Lemma 4.1 and its applications) 
can be used to verify that inf 6w(d¢2)= 6w(2Kw, 2B 2) = min 6w(~'1). Finally, 

fo : 6~(2K~., 2~2) 2 = _1 I[yo] =-1 Yo(Yo - Y;) dt + 1 YoY'o 

1 yo(0)yo(0) 1 tanh ~ C -2 (2.6) 

and Fourier expansion of cosh t on [ - ~ ,  ~] complete the proof. [] 

A further characterization of the convex body Kw can be derived if we ask for 
equality in (2.2) if L = 13 2 is fixed. The last proof shows that 

6~(K, ~2) = ~//Tc - coth g 6,,.(K, ~z) ¢ 0  

h)cw(0 +) - h ~ ( 0  ) > 0. 

we have 6w(2Kw, 2~3 2) ~<inf6w(d¢3) where 
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holds for K = K(a), hr(,)(t),= 1 -yo( t t l ) /a ,  t e [ -~z, zc]. In order to obtain convex- 
ity of the regions K(~t), we have to choose the parameter ~ from the interval [2, ~[. 
Therefore, K~ = K(2) is the smallest convex body of the family (K(a)). In view of 
its specific properties we call K~ the minimal body of the Sobolev distance 6w. 

Our next theorem shows a relationship between the algebraic structure of ~F2 
and the minimal body Kw of 3w. It arises from the question how inequality (2.2) 
can be improved by restriction to the subcone ~ff2 or, even stronger, by restriction 
to those convex subsets of iF0 2 which contain all bodies of a fixed perimeter 
( = 2Wl). 

THEOREM 3. (a) Let K, L e ~ 2 and s(K) = s(L). Then 

6 o v ( K  , L )  ~<(C 2 -  1)l/26w(K , L )  

where equality holds for  K = K w -  s(Kw) and L = ~2. Therefore, the universal 
constant 

l_L_y2 
(C 2 -  1) 1/2= 2 .='~ 1 + n 2) ~ 1.4673... 

is best possible. 

(b) Let K, L ~ JT "z, s(K) = s(L) and W1 (K) = W1(L). Then 

&dK,  L) ~<(C 2 - 2)'/2&(X, L) 

where equality holds for  

1[ 
K =  K~ - -  (Kw - s(Kw)) and L = B 2. 

Wl(Kw) 

Therefore, the universal constant 

o~ 1 \1/2 
(C 2 -  2) '/2= 2 Yz 1 - - ~  n2) ~ 1.0738... 

is best possible. 

Proof  We omit the proof of (a) and turn to the very similar proof of (b). 
Let K, L e X2,  s ( K ) =  s(L), W ~ ( K ) =  WI(L ) and fiB(K, L ) = I .  Using the in- 

variance of the quermassintegral Wd-  1 = W~ and the equivariance of the Steiner 
point s under Blaschke's symmetrization and the congruence invariance [equivari- 
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ance] o f  6o~, 6w, W~, s, respectively, we can assume that  K, L e ) t ~  with 

h L ( 0 ) - h x ( 0 ) = l ,  h x ( t ) = h K ( - t ) ,  h L ( t ) = h L ( - t ) .  

Setting q ,= ( t anh  n)/n < 1/3 we compute  for the minimal body K~ 

s(Kw) = - ~ , 0 ,  W.(Kw) =g(2-,1). 

Now, define K', L' ~ ~ 2  by 

K '  :=(1 -2r l )K+2s(K~) ,  L ' . ' =  (1 - 2t/)L + q B  2. 

From 

hL, (t) -- hw (t) = r / +  r /cos  t + (1 - 2tl)(hL(t ) --hx(t)) 

we deduce that 6o~(K', L ' ) = I .  Hence, by (2,6) and (1.2), our  

s(K) = s(L) and W, (K) = W1 (L) imply 

q = 6~,(2K.., 2B2) 2 ~< 6..(K', L' )  2 = 21/2 d- ( l - 2q)2tS.(K, L )  2, 

which yields 

81 

(2.7) 

assumptions 

In the plane case the Aleksandrov-Fenche i  inequality reduces to 
V(K, L) 2 t> V(K) • V(L) where equality holds iff K and L are homothetic.  For  this 

inequality we deduce from Theorem 1 and Theorem 3(b) a kind of  unrestricted 

stability with respect to the Hausdorf f  distance. 

K =  2 (Kw -- s(K..)), L -  2W1(Kw) •2. [] 
1 - 2r/ ( 1 - 2q)n 

By (2.7), equality occurs in (2.8) for 

q = - 2 = (C 2 - 2) - i (2.8) 6w (K, L)2/> 1 - 2r/ 
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COROLLARY l. Let K, L ~ o,~ 2 with WI(K ) ~ 0, WI(L ) -# 0, and let K, L denote 
its normalizations. Then 

6oo (K,/7) 2 ~< ~ (C 2 - 2)[V(K, L) -- V(K) ,/2 V(L) ,/2] 
JT~ 

t0~ V(K, L) - V(K) 1/2 V(L) 1/2 
= (C z - 2) [] 

3 W 1 (K) W, (L) 

3. We finish with some remarks on the Sobolev distance in the case d ~> 3. 
In order to examine the existence of an inequality (5~<<.C6.,, it suffices to 

consider bodies of  revolution with axis x0 ~ ~ a - i .  Let 

H. '= {a e SO(d) I ~rx o = xo} ~ SO(d - 1), 

then each H-zonal function f e  U ( ~ a -  ~) may be considered as a function of the 
angle t ~ [0, ~] with the axis Xo. The Sobolev norm of such f is given by 

Ilf - ( d  - [ f ( t )  2 + f ' ( t )  2] sin a -2  t dt, 

which shows that there is no universal Sobolev inequality I1" II*-<CIl" IIw on 
v ( ~ a -  1). The main argument is the singularity of the variational problem ;o } 

I[y] := (y  2 + y,2) sin u-  2 t dt = Min! 

y(O) = 1, y(to) variable, 

at the left boundary t = 0. In the case d >~ 4 one gets the non-existence of C directly 
from the (compact) convex cone L(R), R > 0 with 

cos t ,  t e [ 0 ,  q~] 
hL{m(t)= R s i n t ,  tE[~o, , t ] '  R = c o t ~ 0 , 0 < ~ 0 ~ r # 2  

and its circular face K(R) in the hyperplane (u, Xo5 = 0. (These are the bodies L5 
and Ks by Vitale [15], which lead to an estimate for /5oo(K, L) in terms of  the 
Y'p-distance of  K, L and the diameter of  KvoL.) We have 6oo(K(R), L (R) )= 1 and, 
setting fR '=  hL~R3 -- hx~m, 

[fR(t)z+f'R(t) 2] s i n a - Z t d t = ( l + R  z) s i n a - 2 t d t = s i n - 2  9 sina-2tdt.  
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Hence ,  

l im [ fg ( t )2+f ,R ( t )2 ]  sin e -  2 t d t  = lim 
R ~ o o  ~o~0 

sin a 3 

2 cos ~o 
- -  - 0 ( d  ~> 4 ) .  

Nevertheless ,  we th ink  that  the Sobo lev  d i s tance  deserves c o n s i d e r a t i o n  also in 

h igher  d imens ions .  A basic  p r o b l e m  seems to be the d e t e r m i n a t i o n  o f  sha rp  

es t imates  o f  ~ by  6,. ( inc lus ive  o f  m i n i m a l  bodies)  on  cer ta in  subclasses  o f  

y d  X ~ r d  which,  for example ,  arise f rom the d e m a n d  that  d i a m ( K w L )  <~ D (D > 0 

fixed). 
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