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On the definition of a probabilistic normed space

C. ALSINA, B. SCHWEIZER AND A. SKLAR

Summary. In this paper we give a new definition of a probabilistic normed space. This definition, which
is based on a characterization of normed spaces by means of a betweenness relation, includes the earlier
definition of A. N. Serstnev as a special case and leads naturally to the definition of the principal class
of probabilistic normed spaces, the Menger spaces.

The notion of a probabilistic normed space, in which the values of the norms are
probability distribution functions rather than numbers, is a natural generalization
of that of an ordinary normed linear space. Experience has shown us, however, that
the realization of such a generalization is not as straightforward as it may seem at
first sight. In this paper we present a new definition of a probabilistic normed space.
We regard this definition as both natural and fruitful. It includes the earlier
definition of A. N. Serstnev as a special case, leads naturally to the definition of the
principal class of probabilistic normed spaces, the Menger spaces, and is compatible
with various possible definitions of a probabilistic inner product space (which will
be the subject of a subsequent paper). It is based on the probabilistic generalization
of a characterization of (ordinary) normed spaces by means of a betweenness
relation (see Theorem 1) and relies on the tools we have fashioned in the course of
our development of the theory of probabilistic metric spaces.

Probabilistic metric spaces were introduced by K. Menger in 1942 [1]. Subse-
quent refinements (see [2, Chap. 1]) have led to the definition of a probabilistic
metric (or PM) space as a triple (S, %, t), where S is a set, & is a mapping from
S x S into a space A* of distribution functions and 7 is a triangle function (see
below). Denoting the value of & at the pair (p, g) by F,,, the following conditions
are assumed to hold for all p, ¢, r in S:
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(M1) F,, =g, if and only if p =gq.
(M2) F,, =F,.
(M3) F, =1(F,, F,).

Specifically, A* is the set of all probability distribution functions that are
left-continuous on R=(—o, + ), 0 on [—0, 0], and possibly discontinuous
(defective) at + oo. For any a 20, ¢, is the distribution function given by

£ ={°’ x<a (1)

I, x>a.

In particular, under the usual pointwise ordering of functions, ¢, is the maximal
element of A*. A triangle function is a binary operation on A" that is commuta-
tive, associative, nondecreasing in each place, and has ¢, as identity. Continuity of
a triangle function means continuity with respect to the topology of weak conver-
gence in A*.

Typical (continuous) triangle functions are convolution and the operations 7,
and 15+, which are, respectively, given by

17(F, G)(x) = sup{T(F(u), G)) | u +v = x}, (2)
tr+(F, G)(x) = inf{T*(F(u), Gv)) |u +v = x}, 3)
for all F,G in A* and all x in R [2, Secs. 7.2 and 7.3]. In (2), T is a continuous
t-norm, i.e., a continuous binary operation on [0, 1] that is commutative, associa-
tive, nondecreasing in each place, and has 1 as identity; in (3), T* is a continuous

t-conorm, i.e., a binary operation on [0, 1] which is related to a continuous z-norm
T by

T*x,y)=1—-T(1 —x,1—y). 4)
It follows without difficulty from (1)—(4) that

T7(8as €5) = €41 b = Tre(8as 65) &)
for any continuous f-norm 7, any continuous z-conorm T* and any a, b > 0.

Probabilistic normed (PN) spaces were first defined by A. N. Serstnev in 1962

[3,4]. A PN space in the sense of Serstnev is a triple (S, .47, t), where S is a real
linear space, 7 is a continuous triangle function, and 4" is a mapping from § into



Vol. 46, 1993 On the definition of a probabilistic normed space 93

A*, such that — writing N, for A"(p) —for all p, g in S,

(N1) N, =g if and only if p =0,
(N3) N,,, 21N, N,
(8) N, (x) =N,(x/|A]) for all 1 and x in R.

Here 6 is the null vector in S, and we adopt the convention that N,(x/0) = g(x).
Note that (S) implies

(N2) N_,=N,,

and that, if (N1), (N2) and (N3) hold and #:85 xS — A" is defined via
F,, =N, _, then (S, #, 1) is a PM-space.

Over the years, the theory of PM-spaces has undergone a substantial develop-
ment. In contrast, since its initial application by Serstnev to problems of best
approximation [5, 6], there has been little real progress in the theory of PN-spaces.
The principal reason for this is the fact that condition (S) seems to be too strong.
It implies, for example, that every one-dimensional subspace of a PN-space is a
simple PM-space [2, Sec. 8.4]. More generally, it imposes a structure theory which
is too similar to the theory of ordinary normed linear spaces; and it also has the
drawback that we have never been able to formulate a reasonable definition of a
probabilistic inner product space that is naturally compatible with (S). Consider-
ation of these matters has led us to a new and more general definition of a
probabilistic normed space. It is based on an alternate definition of an ordinary
normed linear space which is contained in the following:

THEOREM 1. Let V be a real linear space and f a mapping from V into
R* =[0, c0). Then f(Ap) = |A|f(p) for all p in V and all J. in R (whence, in particular,
S0 =0) if and only if

(n2) f(—p)=f(p),
and
(nd) f(p) =flep) +f((1 - a)p),

Jor all p in V and all « in [0, 1). Thus the pair (V, f) is a normed linear space if and
only if (n2), (nd) and the conditions

(nl) f(p)#0 ifp+¥,
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and

(m3) f(p+q <f(p)+f(q) forallp.qinV,

are satisfied.

Proof. The necessity of (n2) and (n4) is trivial. As for their sufficiency, we start
with the fact that, for any p in V, (n4) yields

f(p) =f(0p) + f(1p) = f(6) +f(p),
whence f(8) = 0. Consequently,
S(0p) =£(6) =0=0/(p),

for all p in V. We now proceed by induction: If there is a non-negative integer n
such that f(np) = nf(p) for all p in V then we have, using (n4), for all p in V

n 1

n+l(n+1)p>+f(n+1
=f(np) + f(p) = (n + DS(p).

fl(n+1)p) =f< (n+ l)p)

Hence f(np) =nf(p) for all p in ¥ and all non-negative integers n. A standard
argument now yields the result that f(rp) = rf(p) for all p in ¥ and all non-negative
rational numbers r. Next, if 0 < 1 < v then, for any p in V,

fop) =1 (%vp> +f<v — 4 w)

=Jp) + (v — Ap) = f(4p).

Thus, for a fixed p in V, the expression f(4p) is nondecreasing in 1 for 1 = 0.
Consequently, for any p in V, f(Ap) = Af(p) for all 1 >0, irrational as well as
rational. Finally application of (n2) yields f(4p) = |4|f(p) for all p in ¥ and all 1 in
R, and the proof is complete.

Note that Theorem 1 states that, if f() =0, then the condition f(4p) = |A|f(p)
can be replaced by (n2) and a betweenness condition, namely the requirement,
equivalent to (n4), that points on the linear segment joining § and p are metrically
between 0 and p (see [2, Sec. 3.3]).
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We now apply Theorem 1 to obtain:

LEMMA 1. Suppose the pair (S, A7) satisfies (N1) and (N2). Then (S, A) satisfies
(S) if and only if

Np :TM(Napa N(l—oz)p) (6)

Jor all p in S and all « in [0, 11, where M is the t-norm given by M(x, y) = min(x, y)
for all x,y in [0, 1].

Proof. For any F in A", let F~ denote the left-continuous quasi-inverse of F,
i.e., the function defined for all ¢ in [0, 1] by

F* (1) =sup{x | F(x) <t}. )

It is known that, for any F,G,H in A", H=r1,(F,G) if and only if
H”» =F"+G"* [2, Sec. 7.7]. Thus (6) holds if and only if

for all p in S and all « in [0, 1].

Now suppose that (S, 4" satisfies (N1), (N2) and (8). Then, for any p in S, any
o in (0, 1), and any x in R,

N,(x) =N, (x/a) and N, _,,(x}=N,(x/(1~a).
It follows from (7) that

Ny=aN; and N;_,,=(1—-aN.;,
whence (8) holds for a in (0, 1). Since (8) holds automatically for « =0 and « = 1
(by virtue of (N1)), (8) holds for all « in [0, 1], whence (6) holds.

In the other direction, if (N1), (N2) and (6) hold then it follows from (8) that

the function f,: S - R* defined for a fixed ¢ in [0, 1] by f,(p) = N (¢) satisfies
conditions (n2) and (n4) of Theorem 1. Therefore, for all 4 in R and all ¢ in [0, 1],

N5(1) = £,Gp) = |2|f.(p) = [2|N ) (0),
whence N, = |/Z|N »» which is equivalent to (5) and completes the proof.

An immediate consequence of Lemma 1 is:



96 C. ALSINA, B. SCHWEIZER AND A. SKLAR AEQ. MATH.

THEOREM 2. If the triple (S, A, 1) satisfies (N1), (N2) and (N3), then (S, 4", T)
is a PN space in the sense of Serstnev if and only if (6) holds for all p in S and all
o in [0, 1].

COROLLARY. If (S, A", 1) is a PN space in the sense of Serstnev then

™(Naps Nat - p) SN, =14 (Noyp, Ny _ ) 9
Jor all p in S and all o« in [0, 1].

The bounds in (9) are related to certain betweenness relations in PM spaces (see
[2, Chap. 14]). This observation, together with the fact that Theorem 1 shows that

ordinary normed spaces can be defined in terms of betweenness relations motivates
the following:

DEFINITION 1. A probabilistic normed space (briefly, a PN space) is a quadruple
(S, A4, t,t*), where S is a real linear space, © and t* are continuous triangle

functions, and A" is a mapping from S into A+ such that, for all p, g in S, the
following conditions hold:

(N1) N, =gy if and only if p =6,

(N2) N_,=N,,

(N3) N,,,>1(N,,N,),

(N4) N, <t*(N,,, N —qp), for all ain [0, 1].

Note that (N3) and (N4) together yield

©WNaps Nat — ) SN, STWNops N 5p) (10)
for all p in S and all « in [0, 1].

If t* = 1,, and equality holds in (N4) then, by Lemma 1, we have a PM space

in the sense of Serstnev, and conversely. Note also that if (S, ||) is a real normed
space, if T and t* are triangle functions such that

T(£a: sb) < Eavp S T*(saa 8b)’ (1 1)

for all a, b >0, and if we define #": § > A™* via N, = &|p|» then (S, A4, 7, 7*) isa PN
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space. Since (5) shows that there are many pairs of triangle functions that satisfy
(11), it follows that any real normed space may be viewed as a PN space.

If T is a continuous z-norm and T* is the t-conorm of 7, then it is known that
T < Ty, 1€, that 14(F, G) <1tn(F,G) for all F,G in A* [2, Sec. 7.3]. It is
therefore consistent with (10) to introduce the following definition.

DEFINITION 2. A Menger PN space, denoted by (S, 4, T), is a PN space
(S, A, 1,7t*) in which t = t; and t* = 17,. for some continuous f-norm T and its
t-conorm T*.

The name is appropriate, since the PM space derived from a Menger PN space
by setting F,, =N, _, is a Menger space [2, Sec. 8.1], and the right-hand inequal-
ity in (10) in a Menger PN space is the assertion that points on the linear segment
joining 6 and p are Menger-between 6 and p [2, Sec. 14.3]. Similarly, if in a given
PN space, t* =1, then (10) reduces to the equality N, =1(N,,, N _ «,), Which
means that points on the segment joining # and p are Wald-between 0 and p [2,
Sec. 14.1].

It is known that 7,, = 1, [2, Cor. 7.5.8]. Thus, if T =1,,, then the notions of
a PN space in the sense of Serstnev and a Menger PN space are equivalent; and
Menger-betweenness and Wald-betweenness also coincide. In general, since
Tps < T4« for any t-norm T, if (8, A, 74) is a PN space in the sense of Serstnev,
then it is a Menger PN space. The converse is false, as the following example
shows:

Let A: R—> A% be defined by N, =¢, and

0, 1 <0,
N.() =<exp(—/|x]), 0<t<,
1, t = 0.

A straightforward calculation shows that (R, A7, 1., T,»), where n(x, y) = xy and
n*(x, y) = x +y — xy, is a Menger PN space but that (S) fails.
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