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On the definition of  a probabilistic normed space 

C. ALSINA, B. SCHWEIZER AND A. SKLAR 

Summary. In this paper we give a new definition of a probabilistic normed space. This definition, which 
is based on a characterization of normed spaces by means of a betweenness relation, includes the earlier 
definition of A. N. gerstnev as a special case and leads naturally to the definition of the principal class 
of probabilistic normed spaces, the Menger spaces. 

The not ion o f  a probabilistic normed space, in which the values o f  the norms are 
probabili ty distribution functions rather than numbers,  is a natural  generalization 

of  that o f  an ordinary normed linear space. Experience has shown us, however, that  

the realization o f  such a generalization is not as straightforward as it may  seem at 
first sight. In this paper  we present a new definition o f  a probabilistic normed space. 

We regard this definition as both natural and fruitful. It includes the earlier 
definition o f  A. N. ~erstnev as a special case, leads naturally to the definition o f  the 
principal class o f  probabilistic normed spaces, the Menger spaces, and is compatible 

with various possible definitions o f  a probabilistic inner product  space (which will 
be the subject o f  a subsequent paper). It is based on the probabilistic generalization 

of  a characterization o f  (ordinary) normed spaces by means o f  a betweenness 
relation (see Theorem 1) and relies on the tools we have fashioned in the course of  

our development of  the theory o f  probabilistic metric spaces. 

Probabilistic metric spaces were introduced by K. Menger  in 1942 [1]. Subse- 
quent refinements (see [2, Chap.  1]) have led to the definition o f  a probabilistic 
metric (or  PM) space as a triple (S, ~ ,  ~), where S is a set, ~- is a mapping f rom 

S × S into a space A + of  distribution functions and z is a triangle function (see 

below). Denot ing the value o f  ~ at the pair (p, q) by Fpq, the following conditions 

are assumed to hold for all p, q, r in S: 
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(M1) F p q = ~ o i f a n d  o n l y i f p = q .  

( M 2 )  Fpq = Fqp. 

(M3) Fp, >1 "c(Fpq, Fq,). 

Specifically, A + is the set of  all probability distribution functions that are 
left-continuous on R = ( -  or, + ~ ) ,  0 on [ - ~ ,  0], and possibly discontinuous 
(defective) at + ~ .  For any a ~> 0, ea is the distribution function given by 

0, x ~<a, (1) 
e . ( x ) =  1, x > a .  

In particular, under the usual pointwise ordering of functions, e0 is the maximal 
element of  A +. A triangle function is a binary operation on A + that is commuta- 
tive, associative, nondecreasing in each place, and has eo as identity. Continuity of 
a triangle function means continuity with respect to the topology of weak conver- 
gence in A +. 

Typical (continuous) triangle functions are convolution and the operations r r  
and r r . ,  which are, respectively, given by 

z r (F ,  G)(x)  = sup{T(F(u ) ,  G(v)) I u + v = x} ,  

*r*(F, G)(x)  = in f {T*(F(u) ,  G(v)) [ u + v = x} ,  

(2) 

(3) 

for all F, G in A ÷ and all x in ~ [2, Secs. 7.2 and 7.3]. In (2), T is a continuous 
t-norm, i.e., a continuous binary operation on [0, 1] that is commutative, associa- 
tive, nondecreasing in each place, and has l as identity; in (3), T* is a continuous 
t-conorm, i.e., a binary operation on [0, 1] which is related to a continuous t-norm 

T by 

T*(x ,  y)  = 1 - T(  1 - x ,  1 - y). (4) 

It follows without difficulty from (1 ) - (4 )  that 

(5) 

for any continuous t-norm T, any continuous t-conorm T* and any a, b t> 0. 
Probabilistic normed (PN) spaces were first defined by A. N. gerstnev in 1962 

[3, 4]. A PN space in the sense of ~erstnev is a triple (S, sV', ~), where S is a real 
linear space, z is a continuous triangle function, and sV is a mapping from S into 
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h +, such that - writing Np for JV(p) - for all p, q in S, 

(N1) 

(N3) 

(~) 

Np = s0 if and only if p = 0 ,  

Up+q >t z(Np, Uq), 

U,:p(X) = UAx/l  I) for all ,~ and x in n. 

Here 0 is the null vector in S, and we adopt the convention that Np(x/O) = So(X). 
Note that (4) implies 

(N2) N p = Np, 

and that, if (N1), (N2) and (N3) hold and f f : S  x S ~ A  + is defined via 
Fpq = Np_ q, then (S, ~ ,  r) is a PM-space. 

Over the years, the theory of PM-spaces has undergone a substantial develop- 
ment. In contrast, since its initial application by gerstnev to problems of best 
approximation [5, 6], there has been little real progress in the theory of PN-spaces. 
The principal reason for this is the fact that condition (~) seems to be too strong. 
It implies, for example, that every one-dimensional subspace of a PN-space is a 
simple PM-space [2, Sec. 8.4]. More generally, it imposes a structure theory which 
is too similar to the theory of ordinary normed linear spaces; and it also has the 
drawback that we have never been able to formulate a reasonable definition of  a 
probabilistic inner product space that is naturally compatible with (S). Consider- 
ation of these matters has led us to a new and more general definition of a 
probabilistic normed space. It is based on an alternate definition of an ordinary 
normed linear space which is contained in the following: 

THEOREM 1. Let V be a real linear space and f a mapping from V into 
~+ = [0, ~ ) .  Then f(2p) = [2[f(p) for all p in V and all 2 in ~ (whence, in particular, 

f(O) = O) if  and only if  

(n2) f ( - p ) = f ( p ) ,  

and 

(n4) f ( p )  =f(~p)  + f ( (1  - a)p), 

for all p in V and all a in [0, 1]. Thus the pair ( V , f )  is a normed linear space i f  and 
only if  (n2), (n4) and the conditions 

(nl)  f ( p ) ~ O  i f p ~ O ,  
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and 

(n3) f ( p  + q) <.f(p) + f(q)  for all p, q 07 V, 

are satisfied. 

Proof The necessity of (n2) and (n4) is trivial. As for their sufficiency, we start 
with the fact that, for any p in V, (n4) yields 

f ( p )  =f{op) +f(lp) =/(0) + f ( p ) ,  

whence f(O) = 0. Consequently, 

f ( Op) = f ( o) = o = oA p), 

for all p in V. We now proceed by induction: If  there is a non-negative integer n 
such that f(np) = nf(p) for all p in V then we have, using (n4), for all p in V 

=flnp)  + f ( p )  = (n + 1)f(p). 

Hence f (np) = nf(p)  for all p in V and all non-negative integers n. A standard 
argument now yields the result thatf(rp)  = rf(p) for all p in V and all non-negative 
rational numbers r. Next, if 0 ~< 2 < v then, for any p in V, 

=f(,~p) +f( (v  - 2)p) ~>f(2p). 

Thus, for a fixed p in V, the expression f(,~p) is nondecreasing in 2 for ,~ >t 0. 
Consequently, for any p in V, f(2p) = 2f(p) for all 2 i> 0, irrational as well as 
rational. Finally application of  (n2) yieldsf(2p) = ]21f(p ) for all p in V and all 2 in 
~, and the proof is complete. 

Note that Theorem 1 states that, if f (0)  = 0, then the condition f(2p) = [2If(p) 
can be replaced by (n2) and a betweenness condition, namely the requirement, 
equivalent to (n4), that points on the linear segment joining 0 and p are metrically 
between 0 and p (see [2, Sec. 3.3]). 



Vol. 46, 1993 On the definition of a probabilistic normed space 95 

We now apply Theorem 1 to obtain: 

LEMMA 1. Suppose thepair (S, sV') satisfies ( N I )  and (N2). Then (S, X )  satisfies 
(S) if and only i f  

up = z.(g~..  N~,_ ~ )  (6) 

for atl p in S and all ~ in [0, 1], where M is the t-norm given by M(x,  y) = min(x, y) 
for all x, y in [0, 1]. 

Proof For  any F in A +, let F ^ denote the left-continuous quasi-inverse of  F, 
i.e., the function defined for all t in [0, 1] by 

F~(t)  = sup{x IF(x)  < t}. (7) 

It is known that, for any F, G , H  in A +, H='CM(F, G) if and only if 
H A = F A + G ^ [2, Sec. 7.7]. Thus (6) holds if and only if 

N ;  = N ~  + N~  _ ~)p (8) 

for all p in S and all c~ in [0, 1]. 
Now suppose that (S, JV) satisfies (N1), (N2) and (g). Then, for a n y p  in S, any 

in (0, 1), and any x in ~, 

N~p(x) = Np(x/a) and N ._~p(X)  = Np(x/(1 - a)). 

It follows from (7) that 

A N ~ p = a N ;  and N ^ = ( 1 - ~ ) N ;  ( I  - ~ ) p  

whence (8) holds for  ~ in (0, 1). Since (8) holds automatically for  ~ = 0 and ~ = 1 
(by virtue of  (NI)) ,  (8) holds for all a in [0, 1], whence (6) holds. 

In the other direction, if (NI ) ,  (N2) and (6) hold then it follows from (8) that 
the function f , :  S ~  + defined for a fixed t in [0, 1] by f ,  ( p) = N ;  ( t) satisfies 
condit ions (n2) and (n4) of  Theorem 1. Therefore,  for all 2 in ~ and all t in [0, 1], 

N~.p (t) =f ,  (2p) = 12 Ift (P) = 12 IN~ (t), 

whence N;.) = [ 2 [N~ ,  which is equivalent to (S) and completes the proof.  

An immediate consequence o f  Lemma 1 is: 
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THEOREM 2. I f  the triple (S, Jff , z) satisfies (N1), (N2) and (N3), then (S, Jff , z) 
is a PN space in the sense of  ~erstnev i f  and only i f  (6) holds for all p in S and all 
ot in [0, 1]. 

COROLLARY. If (S, ,fl,/', "c) is a P N  space in the sense of Serstnev then 

z(N:p, N<, _ :)p) ~< Np = zm(N:p, N<, _ :)p) (9) 

for all p in S and all a in [0, 1]. 

The bounds in (9) are related to certain betweenness relations in PM spaces (see 
[2, Chap. 14]). This observation, together with the fact that Theorem 1 shows that 
ordinary normed spaces can be defined in terms of betweenness relations motivates 
the following: 

DEFINITION 1. A probabilistic normed space (briefly, a P N  space) is a quadruple 
(S, JC, z, ~*), where S is a real linear space, z and z* are continuous triangle 
functions, and +V is a mapping from S into A + such that, for all p, q in S, the 
following conditions hold: 

(NI) N p = e o i f a n d  o n l y i f p = 0 ,  

(N2) N_ r =Up, 

(N3) Np+q>~z(Np, Nq), 

(N4) Np <. z*(N:p, N . _  =)p), for all a in [0, 1]. 

Note that (N3) and (N4) together yield 

z(N:p, N(, _:)p) <~ Np <~ z*(N:p, N<I _:)p) (10) 

for all p in S and all u in [0, 1]. 

If  z* = T M and equality holds in (N4) then, by Lemma l, we have a PM space 
in the sense of  ~erstnev, and conversely. Note also that if (S, ]I'ID is a real normed 
space, if  z and z* are triangle functions such that 

z(ea, eb) ~< e:+b ~< z*(~a, eb), (11) 

for all a, b/> 0, and if we define JV': S --+A + via Np = ellpP F , then (S, +V, z, z*) is a PN 
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space. Since (5) shows that  there are m a n y  pairs of  triangle functions that  satisfy 
(11), it follows that  any real normed space may  be viewed as a PN space. 

I f  T is a cont inuous  t -norm and T* is the t -conorm of  T, then it is known that  
Zr~<Zr , ,  i.e., that  zr (F,G)<~rr*(F,G)  for all F , G  in A + [2, Sec. 7.3]. I t  is 
therefore consistent with (10) to introduce the following definition. 

DEFINITION 2. A Menger PN space, denoted by (S, Jff, T), is a P N  space 
(S, JV', r, r*)  in which T = z r  and ~* = r r ,  for some cont inuous t -norm T and its 

t - conorm T*. 

The name is appropr ia te ,  since the PM space derived f rom a Menger  PN space 
by setting Fpq = Np_q is a Menger  space [2, See. 8.1], and the r ight-hand inequal- 
ity in (10) in a Menger  PN space is the assertion that  points on the linear segment 
joining 0 and p are Menger-between 0 and p [2, Sec. 14.3]. Similarly, if in a given 
PN space, r*  = z ,  then (10) reduces to the equality Np =~(N,p ,  Nu_~)p), which 
means that  points on the segment  joining 0 and p are Wald-between 0 and p [2, 

Sec. 14.1]. 
It is known that  TM = TM, [2, Cor.  7.5.8]. Thus,  if s = vM, then the not ions of  

a PN space in the sense of  gerstnev and a Menger  PN space are equivalent; and 
Menger-betweenness  and Wald-betweenness  also coincide. In general, since 
r ~  ~< rT* for  any t - no rm T, if (S, X ,  ~r )  is a PN space in the sense o f  ~erstnev, 
then it is a Menger  PN space. The  converse is false, as the following example 

shows: 
Let Jff: ~ ~ A + be defined by No = ~0 and 

l O, 

N,( t )  -- exp( -- x / / ~ ) ,  

[1, 

t<~0,  

O < t  < o r ,  

t = o o .  

A s t ra ightforward calculation shows that  (R, JV', z~, %,),  where 7t(x, y ) =  xy  and 
7t*(x,y) = x + y  - x y ,  is a Menger  PN space but  that  (~) fails. 
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