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Abstract. The dynamic model of tree-like multibody systems is linear with respect to the parameters of mass 
distribution for instance when barycentric parameters are used. Thus, assuming that the parameters related to 
the kinematics are perfectly known, these quantities can be estimated through linear regression techniques. The 
necessary data are obtained by measuring the joint forces and/or torques and the resulting motion given in terms 
of positions, velocities and accelerations. An alternative method uses measurements of the reaction forces and 
torques applied to the bedplate. 
The linearity of the dynamic and reaction models with respect to the barycentric quantities does not however imply 
that the latter constitute the minimum set of parameters characterizing the mass distribution of the system. In other 
words, some barycentric parameters may disappear from the models or may be redundant in the sense that they 
appear only via linear combinations. In the first case they are not identifiable, while in the second case the linear 
regression technique leads to estimated values which are correct for the combinations but can be erroneous for the 
individual parameters. 
The various options taken to derive the dynamic and reaction models by use of the ROBOTRAN programme are 
briefly reviewed. Then the rules leading to the minimal parametrization are presented and illustrated by means of 
a practical example related to a robot calibration problem. 
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1. Introduction 

Various problems in robotics require the computation of the dynamic model of the robot 
which relates the generalized control forces that are transmitted through the joints and the 
corresponding generalized coordinates qi, their velocities and accelerations. For instance, high 
speed and high precision control can only be achieved using advanced control algorithms, 
such as the "computed torque" control, which require an accurate and in-depth knowledge of 
the robot dynamics. 

The structure itself of  the dynamic equations is well known. However, these equations 
contain parameters which correspond to the physical characteristics of  the various bodies 
constituting the robot and therefore, a good knowledge of these parameters is absolutely 
necessary. In particular, measuring the parameters related to the mass distribution is not trivial 
and leads naturally to an identification problem [1-4]. 

In the second section of  this paper, it is s h o w n -  often noted "aposteriori"  as a fact [4] - that 
the dynamic model is linear with respect to the parameters of  mass distribution if barycentric 
quantities are used [5]. However, it should be noted that this linearity with respect to these 
unknown parameters is valid only if the geometrical lengths of the system are supposed to be 
known, for instance by a kinematic calibration [6]. 

In order to emphasize these properties, the equations of motion of  a tree-like multibody 
system have been written in a particular vectorial form derived from the Potential Power 
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Principle (a modified version of d'Alembert Principle). As presented in Section 3, this form 
is used by the programme ROBOTRAN [7] to provide automatically the dynamic model. 
ROBOTRAN deals with mathematical expressions by means of pointers (C programming 
language) and prints the resulting equations in a literal form (character strings). One purpose 
of this programme is to emphasize the linearity with respect to barycentric parameters, so the 
derived equations are not necessarily optimal as regards the number of arithmetic operations 
for numerical simulations. 

In the fourth section of this paper, an original procedure for the estimation of the barycentric 
parameters of a robot is presented [8-10]. This procedure is based on the property that the 
relations between the robot motion and its reactions on the bedplate are completely independent 
of the internal joints forces. The procedure thus requires only the processing of measurements 
provided by an external experimental set-up [8]. The robot is placed on a sensing platform 
which is provided with sensors able to measure the three components of the forces and the 
three components of the torques between the bedplate and the first link of the robot. 

Section 5 deals with the parameter combinations which are required to satisfy the identifia- 
bility conditions. A systematic way to obtain these combinations is presented. In particular, it 
is shown that the reaction model used for identification has the same structure as the dynamic 
model and that all the barycentric parameters occurring in the dynamic model also appear 
explicitly in the identification model. Finally, a practical example of parameter combination 
as well as identification numerical results are given in the sixth section. 

2, Dynamic and Identification Models 

2.1. GEOMETRICAL STRUCTURE AND KINEMATICS 

In this section, we will review the various options taken to describe the multibody systems 
under consideration. 

The system is considered as a set of n rigid bodies interconnected by joints. In the present 
paper, it is assumed that the structure is a topological tree. The joints are numbered in ascending 
order, starting from the base-plate (body 0) and each body has the same index as the preceding 
joint. A function, INBODY, is then defined to provide for every joint the index number of 
the preceding body. By means of a recurrent use of this function, the whole set of indices of 
bodies and joints of the kinematic chain which connect an arbitrary body to the base can be 
obtained. The notation i < j means that the joint (body) i belongs to this chain for body j .  
For later convenience, a Boolean matrix T is used whose elements are defined as: 

1 i f i < j ;  (1) 
TiJ = 0 otherwise. 

The characteristic geometrical dimensions of body i (see Figure 1) are given by the vectors 
I ij and Iil. Two  indices are needed because of the tree structure. However, although such 

vectors should be defined only for consecutive bodies, the notation is extended to all the 
indices k satisfying i < k, defining 1/k as follows: 

pa = liJ for Vk such that i < j < k. (2) 
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/ / / / / / /  
Fig. 1. Geometrical structure 
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ThUS defined, Iik provides the contribution of body i to the kinematic chain leading from 

the base to body k. Since the bodies are supposed to be rigid, all the vectors ! ij have constant 

components if they are expressed in a frame (X i} attached to body i. 

The joints are restricted to one degree of freedom: revolute or prismatic. There is no loss of 
generality since any physical joint can be modelled as a succession of such elementary joints. 
In order to develop the kinematics, we thus consider that each joint allows: 

- a relative rotation expressed by the rotation matrix A j that relates the jth body frame 

(~J} to the previous one {~i}. This matrix is constant for prismatic joints and depends 

on the angular coordinate qJ in the case of revolute joints. 
- a relative translation represented by the vector .zJ. This vector is equal to zero for revolute 

joints and depends on the translational coordinate qJ in the case of prismatic joints. 
The previous definitions are quite general and still allow us to choose the orientations of the 

body frames {~i} as well as the locations 0 i of their origins (Figure 1) in order to minimize 

the number of geometric parameters such as for instance by using the Denavit and Hartenberg 
conventions. An equivalent minimal kinematic description (suggested in [11 ]) is illustrated in 
Figure 2 in the case of a serial link structure. 

2.2. MASS DISTRIBUTION PARAMETERS AND DYNAMICS 

The dynamics of the system depends on the mass distribution of each body. The related 
parameters could be considered individually for each body, but some of these parameters would 
then combine to provide the actual parameters in the dynamic equations. These combinations 
could be performed manually [4] but this effort can be avoided if appropriate combinations 
are introduced from the outset by considering the position of the bodies in the topological 
structure [ 12]. 

Denoting by m i the mass of the ith body, by |ii the position vector of its centre of mass 

G i with respect to 0 i (Figure 3) and by I i its inertia tensor with respect to 0 i, the following 

barycentric parameters are introduced: 

rhi = Z Tikmk (3) 
k 
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Fig. 2. Kinematic parameters [11]. 

Fig. 3. Augmented body. 

m_b i = ~ Tikmkl  ik (4) 

and 

where i denotes the skew-symmetric tensor associated with the cross product by a vector 
x. 

These parameters are independent linear combinations of the basic mass parameters m k, 
mkI  kk and I k. Moreover, according to the previous definitions, ~ i  is constant and the moments 

of order 1 (m_b/) and order 2 (K i) have constant components when expressed in the frame 

{~i}. These barycentric quantities may therefore be chosen as constant parameters which 

fully describe the mass distribution of the multibody system. Since there are 10 such scalar 
quantities for each body in the system, the total set of barycentric parameters is i0n. 
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From a physical point of view, the mass rh i represents the mass of an augmented body i 
which consists of body i and point masses rhJ (with i = INBODY(j)) located by the vector 
!iJ. 

The vector m b i is the moment vector locating the mass centre of this augmented body and 

the tensor K i is its inertia tensor with respect to its attachment point O i. 

As shown in [5] the Principle of Potential Power for rigid body systems leads to the 
following vector dynamic equations 

\k:k<j 

+ ~TJk(~k~_k + (~_k + ~k~k)mbk ) (6) 

k 

L j = ~ T J k ( z  k x F k + rob  k x (~k_ g )+Kk~k  +Wk X Kkw k) 
k 

+ Z m × (** + + 
k l:l<k 

+ ~ T  jk ~ lktx (rhl~ t + (w_ "l + ~.t~_~)m.bt) (7) 
k l:k<l 

and two important properties which are often noted "a posteriori" as a fact [4], arise: 
(i) the torques L.J and the forces F.J are linear functions of the barycentric parameters ~k,  

m_b k, K_ k with k such that j < k. They become bilinear if the geometric lengths I. jk 

(j < k) are also considered as parameters. 
(ii) the definition of T jk  given in (1) allows us to observe that L. i and F. i, with i = 

INBODY(j), contain all the terms included in V. and F. j, and therefore the same 

barycentric parameters (in addition to those related to the augmented body i ). 
In order to obtain the scalar equations of the dynamic model, we need to project the vectors 

L_ j (or F_ j) onto the axis of its corresponding revolute (or prismatic) joint. Then all the products 

(scalar, vector, tensor) must be performed to obtain the final form of the dynamic model in 
which the generalized coordinates qi, velocities 0 i and accelerations ~i appear explicitly. The 
latter can be written under the following matrix form: 

M(q, 0)~ + F(q, (t, O) = Q, (8) 

where M is the (n x n) positive definite symmetric inertia matrix of the system, F is the 
n-vector specifying gravitation, Coriolis and centrifugal effects, Q is the n-vector of the 
generalized forces associated with q, and 0 is the iOn-vector containing the barycentric 
parameters. 

Although the above operations preserve the linearity of the model with respect to the 
components of the barycentric parameters, the dynamic model involves a few independent 
combinations of those barycentric parameters. These combinations depend on the particular 
nature (either prismatic or revolute) of the joints and recursive methods for obtaining them 
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Fig. 4. Tree representation of a symbolical expression. 

in a systematical way will be described in Section 5. They lead to a set of Na combined 
parameters denoted/~a: 

6d=SaO, (9) 

where Sd is a full range matrix. Equation (8) can therefore be rewritten in the linear form: 

~d(q,O,~)6d=Q, (10) 

where q~d is a regressor vector depending on joint positions, velocities and accelerations. 

3. D e s c r i p t i o n  o f  the R O B O T R A N  Software 

The main purpose of ROBOTRAN [7] is to provide a literal expression (character strings) of 
the dynamic model of any multibody system. By using the option dedicated to identification, 
the barycentdc parameters appear explicitly in these expressions 1 so that the user can easily 
regroup their coefficients in order to obtain the regression vectors q~d. 

3.1. THE PROGRAMME SYNTAX 

Each mathematical expression of equation (10) contains one or several terms linked by 
minus or plus signs, each term being the product of several factors. A factor can be an 
integer, a barycentric parameter, a generalized coordinate (qi, qi, qi), a geometrical constant, 
a trigonometrical function whose argument is a factor, or a mathematical expression between 
brackets. Thus defined, an expression can be considered as a tree whose nodes represent the 
nature of the expressions: 

- integer whose value has to be given as a constant, 
- barycentric parameter, generalized coordinate or geometrical constant which have to be 

identified by an appropriate string of characters, 
- cosine or sine function whose argument (also an expression) must be given, 
- plus, minus, times operators whose two operands must be given as expressions. 

For instance, the expression {9 * sin(q1 ) + a * q2} Can be represented in Figure 4. 

3.2. THE MANIPULATIONS AND SIMPLIFICATIONS 

In order to avoid expressions like: x = a + b - a, some order is introduced to classify the 
expressions. This order is given first by their nature and then by a lexicographical order on 
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Fig. 5. The PUMA 562 (UNIMATION®). 

the strings of characters (for instance, 0 < cos(qi ) < sin(q1 ) < (q2 + q3)). At each operation, 
the resulting expressions are rewritten according to the prescribed order and then consecutive 
equal terms with opposite signs are simplified. It can thus be ensured that the expressions 
appearing in the obtained equations cannot be further reduced without using specific formulae 
of trigonometry. This kind of reductions can be performed manually or by several dedicated 
programmes (MACSYMA, SMP, REDUCE, ... ). 

Finally, in order to reduce the size of the output, intermediate auxiliary variables can be 
used to replace each product of trigonometrical functions. These variables are produced by 
taking the relation order into account so it is as easy as before to find the possible combinations 
of barycentric parameters and the regression vectors. 

3.3. APPLICATION TO THE PUMA ROBOT 

The PUMA 562 (UNIMATION®) is a serial six degrees of freedom manipulator with revolute 
joints (Figure 5). Assuming here that the influence of the wrist is negligible, only the first 
three joints are considered. 

Three body-fixed frames have been introduced for the dynamic modelling. In the reference 
configuration, when the wrist is located straight above the shoulder, all these frames are aligned 

with the inertial frame {~0} attached to the bedplate. The physical characteristics (geometry 

and mass distribution) of each body are given in Table 1. 
According to the symbols defined in Table 1, the barycentric parameters and the dynamic 

model are obtained automatically by the software ROBOTRAN: 



172 P. Fisette et aL 

Barycentric m a s s e s  

m m l =  ml  + m 2 + m 3  
ram2 = m2 + m3  
ram3 = m3 

Barycentric m o m e n t s  2 

m b l y  = l l l y  * m l  
m b l z  = ram2 * 112z + 111z • m l  
mb2y = 122y * m 2  
mb2z = ram3 • 123z + 122z * rn2 
rab3y = 133y * m3 
mb3z = 133z * m3 

Equations 3 
Q3 = K 3 y z  * qppl * C23 

+ K 3 y y  * qpp2 
+mb3z  * qpp2 * 123z * C3 
+ K 3 y y  * qpp3 
- K 3 x x  • qpl • qpl * C23 • $23 
+ K 3 z z  * qpl * qpl * C23 * $23 
- m b 3 z  * qpl * qpl * 123z * C23 * ,5'2 
+mb3z  * qp2 * qp2 * 123z * $3 
- m b 3 z  * g * 5'23 

Q1 = K l z z  • qqpl 
+ K 2 x x , q p p l  , $ 2  • $2 
+ K 2 z z  • qppl • C2 • C2 
+ K 3 x x  • qppl , $23 • $23 
+ K 3 z z  • qppl • C23 • C23 
+mb3z  * 2 * qppl * 123z • $2 * $23 
+ K 2 y z  * qpp2 * C2 
+ K 3 y z  * qpp2 * C23 
- m b 3 y  * qpp2 * 123z • C2 
+ K 3 y z  * qpp3 * C'23 

Barycentric t e n s o r s  

K l x x  = J l x x  + ram2 • l l 2 z  , 112z 
- m l  * ( - l i l y * l i l y -  l l l z *  l l l z )  

K l y y  = J l y y  + r a m 2 ,  l l 2 z  , l l2z  + l l l z  , l l l z  , m l  
K l y z  = - l I l y  * l l l z  , m l  

K l z z  = d l z z  + l l l y  , l l l y  , m l  
K 2 x x  = J 2 x x  + r a m 3 , 1 2 3 z  * 123z 

- m 2  • (-122y • 122y - 122z ,  122z) 
K 2 g y  = d2yy  + m m 3  • 123z • 123z + 122z • 122z • m 2  
K 2 y z  = - 1 2 2 y ,  122z • m2 
K 2 z z  = J 2 z z  + 122y • 122y • m2  
K 3 x x  = d3xx  - m3 • (-133y • 133y - 133z ,  133z) 
K 3 y y  = J3yy  + 133z * 133z * m3 
K 3 y z  = -133y * 133z • m3 
K 3 z z  = J 3 z z  + 133y * 133y * rn3 

Q2 = Q3 
+ K 2 y z  * qppl • C2 
- m b 3 y  • qppl • 123z • C2 
+ K 2 y y  * qpp2 
+mb3z  * qpp2 * 123z • C3 
+mb3z  • qpp3 * 123z • C3 
- K 2 x x  * qpl * qpl * C2 * $2  
+ K 2 z z  * qpl * qpl * C2 * $2 
- m b 3 z  * qpl • qpl * 123z * C2 * $23 
- m b 3 z  * qp2 * qp2 * 123z * $3 
- m b 3 z  * qp3 * qp3 * 123z • $3 
- m b 3 z  * 2 * qp2 * qp3 * 123z * $3 
- m b 2 z  * g • $2 
- K 2 y z  * qp2 * qp2 * $2 
- K 3 y z  * qp2 * qp2 * $23 
+mb3y  * qp2 * qp2 * 123z • $2 
+ K 2 x x  • qpl * qp2 * $22 
- K 2 z z  * qpl * qp2 * $22 
+ K 3 x x  * qpl * qp2 * $2233 
- K 3 z z  * qpl * qp2 * 5:2233 
+mb3z  * 2 * qpl * qp2 * 123z * $223 
- K 3 y z  * qp3 * qp3 * $23 
+ K 3 x x  * qpl * qp3 * $2233 
- K 3 z z  * qpl * qp3 * $2233 
+ m b 3 z  * 2 * qpl * qp3 * 123z * C23 * $2 
- K 3 y z  • 2 * qp2 * qp3 * $23 

4. Identification of  Dynamic Parameters 

In the classical identification approach the values of 5d are estimated from input data (torques 
applied to the links) and output data (positions, velocities and accelerations of the joints) 
provided by "internal" measurement devices located inside the arms (see, e.g., [1-3]). The 
model relating these input and output variables is described by the linear equations (10). 
Therefore, in principle, parameters can be estimated through linear regression techniques. 
However, there is a major drawback in the practical implementation of such techniques: direct 
measurements of torques applied to the links are not available, so that torques have to be 
evaluated as sums of torques provided by the actuators and of friction torques which may be 
relatively large. Two problems then occur: 
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Table I. PUMA description. 

Mass Central inertia tensor Center of mass position Joint position 

link 1 ml 
3~ 0 0 0 0 

o 
0 0 j l l~X 0 

link 2 m2 
J~ 0 0 0 0 
0 J~u 0 l:v 2 0 
0 0 JL l~ 2 l~ 2 

link 3 m3 
j 3  0 0 0 0 

o 

o o sL 

(a) For most commercial robots, torques provided by the actuators can be obtained from 
internal measurements, but with poor accuracy. Consider for instance a permanent mag- 
net d-c motor controlled through its armature voltage or current. The torque can be 
estimated from input current measurements using the torque constant available from the 
manufacturer's technical data, albeit with uncertainties up to 10%; furthermore the value 
of this constant can change over the robot lifetime. 

(b) The implementation of a parameter estimation procedure requires an accurate model of 
friction effects and estimation of the characteristic parameters of the friction. It means 
that barycentric parameters and friction parameters must be estimated simultaneously, 
based on an adequate friction model. This coupling between barycentric and friction 
parameters may degrade the accuracy of the barycentric parameter estimates. 

An alternative approach has been proposed in order to avoid the above drawbacks [8-10]. 
It is based on a reformulation of the system dynamics relating the motion of the robot to the 
reaction forces and torques on its bedplate. The robot is placed on a sensing platform equipped 
with sensors providing measurements of the three forces and the three torques components 
between the bedplate and the robot. The main advantage of such an experimental set-up is 
that it supplies the estimation algorithm with data which are far more accurate than the data 
which could be obtained from classical sensors located inside the robot arms. Furthermore, 
the reaction model is independent from internal effects (i.e. friction). 

Analytical expressions of the reaction model can be obtained for the reaction torque and 
force components on the bedplate by projecting the vectors L 1 and F 1 (given by equations (6) 
and (7)) onto the axes of the inertial reference frame attached to the bedplate. As a result of 
conclusion (Section 2.2 (ii)), all the barycentric parameters contained in the vectorial joint 
equations (6) and (7) will appear in L 1 and F 1 and therefore in the reaction model which 
contains all the components of these two vectors. Moreover, the few linear combinations 
6r of barycentric parameters which will appear when projecting L z and F 1 on the axes of 
the bedplate frame, contain the set of linear combination 8,/which occur while deducing the 
dynamic model (8) from its vectorial form (6-7). In other words, the combined barycentric 
parameters set 8,/defined in (9) is a subset of the Nr parameters 8r which appear independently 
in the reaction model: 
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5d = SSr with 5r = SrO. (11) 

The reaction model has thus the form: 

¢~(q,0,~)Sr = Q~, (12) 

where Cr is a regressor vector depending on joint positions, velocities and accelerations 
and where the Qr vector contains the six components of force/torque reactions between the 
bedplate and the robot. 

Assuming that the geometric parameters are perfectly known from a static calibration [6], 
the barycentric parameters can be estimated through linear regression techniques based on 
the dynamic or reaction model. Indeed by taking measurements of Q(t), q(t), O(t) and ~(t) 
for different values ti, t2, . . . ,  tM of time, the following linear regression model is obtained 
either from (10) or (12): 

• 5 = Z, 

where 

Z =  

~ =  

(13) 

(QT( t l ) , . . .  , QT(tM))T and 

(¢(q(tl), it(tl),~(tl)), .. . , ¢(q(tM), (t(tM),(t(tM))) T • 

The problem of the identifiability of 5 is stated as follows: does there exist only one set of 
values of 5 satisfying the linear regression model (13) for any motion? We have the following 
trivial result: 

"5 is identifiable iff there exists a trajectory of  the robot such that ~ has full rank". 

Indeed in this case: 

5 = (d2Tff2)-I~Tz.  (14) 

In order to satisfy this condition, we have to avoid redundant parametrizations and to select 
sufficiently rich trajectories. 

( a ) to avoid redundant parametrizations of  the model [15-17]. A parametrization 5 is said 
to be redundant for the model, if there exists another parametrization 6* of dimension N* with 
N* < N, a full rank matrix S* and a regressor ~* such that along any trajectory: 

5 " = S ' 5  and Z=ff5=~I)*5*.  (15) 

In such a case it is clear that 4) cannot be full rank. For most mechanical structures, the full 
set of barycentric parameters is redundant for the dynamic and reaction models. 

(b) to select trajectories which are sufficiently rich. In [ 13] Gauthier describes a procedure 
for the automatic generation of test trajectories which guarantees the identifiability rank 
conditions of (I, assuming a non-redundant parametrization. We have however observed in 
practical experiments that an empirical selection of such trajectories is fairly easy when 
condition (a) is satisfied [ 14]. 

5. Minimal Dynamic Parametrization 

5.1. THE RECURSWE MODEL 

In this section a recursive method for obtaining the minimal set of parameters 6 in a systematic 
way will be developed. Since any joint mobility is restricted to one degree of freedom (i.e. 
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Fig. 6. Prismatic joint recursive model. 
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Fig. 7. Revolute joint re, cursive model. 
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revolute or prismatic), the two models depicted in Figure 6 and Figure 7 will be considered. 
These systems are composed of a body j and a carrying body i (with i = INBODY(j)). 
Depending on the kinematic chain which links body i to the base, this carrying body may 
have up to six degrees of freedom with respect to inertial space. 

According to Section 2, frames {~i} and {~J} are attached to the bodies and the axis 

vector of the joint j is denoted by ~ .  

5.2. PRISMATIC JOINT 

The angular velocity of the carrying body i is represented by w i and the absolute position of 

0 i is given by the vector xi: 

x. i = y~ (z k + ! ki) + z i. (16) 
k:k<i 



176 P. Fisette et al. 

Since no a priori  assumption is made concerning the mobility of the carrying body i, the 
vector forms of equations (6) and (7) are retained for the body i: 

~ = ~ ( ~  - g) + (~' + ~ ) m b  ~ + ~ J  + ( ~  + ~ i ~ ) m ~  (17) 

L i = zj x F~ + m b ~ x ($~ - g) + K ~  ~ + ~ x K ~  ~ 

+ !~ x (~J~J + ( ~  + ~ i ) m b ~ )  

+ zJ x FJ +mb j X (~J-g) +KJ~ i-t-~i X K J~ i 

+ m b~ x (~  + ( ~  + ~ i ~ ) r  ~) (18) 

where 

(19) 

and the dynamic equation of joint j is given by: 

(20) 

As a preliminary conclusion of property (Section 2.2 (ii)), the equations (17) and (18) 
contain the contribution of all the barycentric parameters related to the two considered bodies. 
For a general system in which the j th body is not a terminal one, these equations would involve 
additional terms corresponding to the barycentric quantities associated with the bodies located 
downstream from body j .  Equations (17), (18) and (20) can therefore be used to detect, at 
each step of a recursive reasoning, the combinations which may occur in the models. 

The various barycentric parameters of body j have now to be investigated in order to 
establish the recursive relations leading to 5J, the minimal parametrization related to body 
j. 

Since the frame {~J} has no relative angular motion with respect to the frame {~} ,  

the components of m ~  and KJ are also constant in the {~i} frame. Using the following 

properties: 

D~a_ + a'~b = -(ha" + ~[a)& (21) 

(22) 

we can write 

! ~j × ( ~  + ~_i~i)m.td + mbJ × ( ~  + .~i.~)r j 

= + _ ¢i(ii   j + , 
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and looking at equation (18), we may suggest the following combinations: 

m b */ - m b i + m b  j 

177 

K*/= K '  + - + (23) 

where it must be noted that all vectors and tensors have constant components in the {~/} 

frame. 
Using (23), equations (17), (18) and (20) are now rewritten as: 

~i ~- ?=ni(~i _ g) + (~i q- ~ i~ i )mb , i  + ?~j~j (24) 

L / = zj x F ~ + nab *~ x (~i _ g) + _K,i~_~ + ~_/x  .K*/w ~ 

F j = ~ . ,~J(~  - g) + ¢ • (~' + ~ /~ ' )mW. 

(25) 

(26) 

This new presentation clearly shows that K s is redundant. On the contrary ~J  can easily be 

identified from (26) by choosing an excitation such that ij j = ~ J .  Finally, the identifiability 

of m b j can be analysed by means of its individual contribution to L i given by: 

(27) 

and by its contribution to FJ given by 

¢. (~ + ~ ) m ~ .  (28) 

This analysis leads to different combinations depending on the particular values of w i [17]. 

In the general case, expressions (27) and (28) allow the identifcation of the three components 
of m ha using the dynamic or the reaction model. It is therefore unnecessary to include the 

barycentric vector m ~  in the parameter combinations suggested in (23). 

If the mobility of body i is restricted (i.e. ~i is inertially fixed), the minimal set of parameters 

of the dynamic model depends on expressions (28) and the projection of (27) onto the fixed 
direction w of w i. In this case the component mbJzo of m b / along this direction is not identifiable 

using the dynamic model. Moreover, if ~i = 0 or if the direction of ~i coincides with ~ ,  the 

two normal components m ~  and m ~  also disappear from (28) and the projection of (27). In 
both cases the parameter combinations (23) must consequently be applied to the components 
of m b j which become redundant for the dynamic model. The results may be summarized as 

indicated in Table 2 for the dynamic model. 
Similar considerations can be applied to the reaction model in which less components are 

redundant because this model can retain all the components of relation (27). The results are 
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Table 2. Combination rules for prismatic joints in the dynamic model. 

angular velocity 
of body i 

minimal set of 
body j parameters 

redefinition of the carrying 
body i barycentric parameters 

general case 

~i inertially fixed: 

~/inertially fixed 

with w / = w/e / 

or ~ = 0 

(~J, mr,,:, rag,  rag) 

(~i,  m~,  ~ )  

(,~J) 

nab * /=  nab / 

K "~ = K / + K J 

rT-~ *i _-- r ~  i 

nab * /=  m b ~ + m~,w 

_K*' = _K' + W - m~(i /J~ + w_l_ '~) 

ff-~*i = rT-~ / 

m b  " / =  n l b  / + l n b  / 

Table 3. Combination rules for prismatic joints in the reaction model. 

t£; i 

angular velocity 
of body i 

minimal set of 
body j parameters 

oal 

redefinition of the carrying 
body i barycentric parameters 

general case 

w ~ inertiaUy fixed: 

w / = wlw 

~i inertially fixed 

with wi = w/e./ 

or~ i = 0 

if2 *i  _-- ff-~i 

l l l b  */ = i n b  / 

K */= ~ / +  KJ 

ff~ . i  ---- rTZ l 

m_b */= m b ' 

K */= _K' + KS 

r?~*i __ ff~i 

m.b */= nab / +mM d 

K *i = K i "b K_ j - ~bJ(i/J'.~ dr ~ J )  

summarized as indicated in Table 3 (where m ~  denotes the component  o f  the vector  m b j 

along the joint axis e J). 



Minimal Dynamic Characterization of Tree-Like Multibody Systems 179 

For both models, the indicated rules must be applied recursively from the end(s) of the 
structure towards its base in order to determine the minimal sets of parameters 6J for the 
whole system. 

5.3. REVOLUTE JOINT 

The angular velocity and acceleration of body j are: 

~J = ~ + e_J0 j (29) 

+5 = +~ + ~ x dO t + ~ .  (30) 

Since again no a priori assumption is made concerning the mobility of the carrying body i 

for the general case, the vector forms of equations (6) and (7) are retained: 

F i = rhi(~i _ g) + (~i + ~i~i)mb i + (~j + ~j~j)mbJ (31) 

L i = z i × F  i+nab i x ( ~ i - g ) + K i & ~ + w i × K i w ~  

+ !~ × (~3 + ~_J)m. t¢  + L J (32) 

where 

L~ = K J~J + j × K J~_~ + m W × (~J - ~) 

and the dynamic equation of joint j can be written: 

L j = L j . ¢ .  

(33) 

The barycentric mass ~J  does not appear anywhere in the equations and is therefore redundant. 
Using equations (29), (30) and the following relation: 

~j + @j~j = ~i + ~zi& i + 2@i~Oj + ~ j  + ~ j ( 0 j )  2 (35) 

the properties (21) and (22) lead to the possible combination (23) defined in the case of a 
prismatic joint. However, in the present case, {~J } has a relative angular motion with respect 
to {X'}. The only component of m ~  that remains constant in the frame {~*} is rag .  In order 
to determine which components of K 3 are concerned, it is decomposed in an auxilia~ frame 
(y~} attached to body i. Without loss of generality, this frame is chosen such that _Y~ = _~. 
Due to the rotation q J, the components of K j in the {y~} basis are given by means of the 
symmetric matrix: 

cos(2qJ)K j - sin(2qJ)KJy + KJs 

cos(2qJ)KJ u + sin(2qJ)KJd 

cos(qJ)KJzz - sin(qJ)KJuz °'° °°° t 
--cos(2qJ)KJd + sin(2qJ)KJ v + KJ . . .  , (36) 

sin(qJ)KJ z + cos(qJ)KJz KJ z 

(34) 
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where 

K~ = K~z + K~v and tf~ = K ~ -  K~y (37) 
2 2 

As a preliminary result, this expression shows that the components K~z and Kgy will only 

appear through the combinations K~ and K~. The component KJzz is obviously identifiable 
in LA. 9 / via an excitation motion for which ~J = ~ J .  The following combinations: 

m b *~ = m b ~ + mb~¢ 

i *i ~. K i - ro, b~(rJ[~ + ~ i  ij) - K J ~  (38) 

are still applicable. Indeed it is easy to see that if we introduce these combinations into 
equation (31) of ~ ,  then use (35) the only residual term that involves m ~  independently 
is: 

(2@i~(t j d,.~Jq j -t- ~ ( O J ) 2 ) ¢ m ~  (39) 

and vanishes because ~ = O. Introducing (38) into equation (32) of L i leads to the following 

residual term: 

(z? + r  j) × j (4o) 

which vanishes for the same reason. The individual contribution of m ~  also disappears in 
(34). As a consequence, this component cannot be identified and is redundant. Similarly, using 
(29) and (30), the individual contribution of K J = - K J ~  reduces in (32) to: 

(41) 

and in (34) to 

~ . K Jd2J + ~ . ~JKJw j. (42) 

It is easy to verify that both residual contributions vanish so that Ks j is also a redundant 
parameter. 

In the general case, i.e. when the mobility of the carrying body is not restricted, aU the other 
components of m ~  and K j are identifiable in the dynamic model as well as in the reaction 

model [10, 17]. As for the prismatic joint, if ~i is inertially fixed additional components of 

m b j and K j can disappear. The results are summarized in Tables 4 and 5. 

6. Application to the PUMA 562 Robot 

6.1. MINIMAL SET OF PARAMETERS 

According to the recursive rules given in Table 5, the redefined (non-zero) barycentric param- 
eters 0* of the PUMA 562 robot are: 

{ - - -  K~3 K*3 } K ~ 2 K ~  1 K*2K .1 
~.3  rob,3 tab:3 K ~  

O~ = ~,2 rubY,2 rob,2 K~  
fft*l --tV*l mb:l K~ 1 
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Table 4. Combination rules for revolute joints in the dynamic model. 

o2 i 

angular velocity of 
the carrying body i 

minimal set of 
body j parameters 

07 

redefinition of the carrying 
body i barycentric parameters 

general case 

CL2i ~ ~ i ¢ ,  

an,~ g = g ¢  

m~, Ki~, K~ ~ , Kvz, Ka, 

(~ ,  ~ ,  KL) 

( K ~ )  

rob*' = m b'  + m ~  

_K*' -- ~ '  - ~ '  ~ - ' e +  _V.~ j ) - K!VV 

r~ *i = r~ i 

m b */ = rob' + r a g e  

r '  --_ s' - mg (_rJe + e_r ~) - ~.~eV 

m b*' = nab i + r a g e  i 

Table 5. Combination rules for revolute joints in the reaction model. 

angular velocity of 
the carrying body i 

minimal set of 
body j parameters 

redefinition of the carrying 
body i barycentric parameters 

general case 

and g = 9¢ 

(mV~,rag, rc~ z~ zJ Ks K~ ~ 

(rnb~, m ' J d J ~ , K ~ , , K v = , K , , )  

K~, K~,) 

mb *i = m b  i + r a g e  

IC' = K' - ~ g C ¢  + e r  ~) - K.Jve  

fit *i = r~  i 

m b*' = m b i + r a z e  

~- '  = K' - -~g C_V + ~.r ~) - KCVe 

rab *i = m~b ~ + r a g e  

~ "  = w - m g C ¢  + e r  ~) - KLV¢ 

among which the minimal set of non-redundant parameters is given by: 

~ =  (~b~ K ~  K~ ~rc~ ~b: ~ K;~ g ~  K;~ K:~ *~ *~)~ 
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Indeed, the barycentric masses ~ i  (i = 1 , . . . ,  3) are redundant while mb; 1, K~ 1 and K ~  
disappear because of the restricted mobility of body 1 (w ° = 0, ~1 = 0, and g = gel). 

For example, the equation Q1 of the first joint can be rewritten as follows: 

Output ROBOTRAN 
Q1 = K l z z  • qqpl 

+ K 2 x x  * qppl * $2 * $2 
+ K 2 z z  * qppl * C2 * C2 
+ K 3 x x  * qppl * $23 * $23 
+ K 3 z z  * qppl * C23 * C23 
+rab3z * 2 * qppl * 123z * 512 * 5123 
+ K 2 y z  * qpp2 * C2 
+ K 3 y z  * qpp2 * C23 
- m b 3 y  * qpp2 * 123z * C2 
+ K 3 y z  * qpp3 * C23 
- K 2 y z  * qp2 * qp2 * $2 
- K 3 y z  * qp2 * qp2 * 5123 
+mb3y * qp2 * qp2 * 123z * 512 
+ K 2 x x  * qpl * qp2 * 5122 
- K 2 z z  * qpl * qp2 * 5122 
+ K 3 x x  * qpl * qp2 * $2233 
- K 3 z z  * qpl * qp2 * 512233 
+rab3z * 2 * qpl * qp2 * 123z * $223 
- K 3 y z  * qp3 * qp3 * 5123 
+ K 3 x x  * qpl * qp3 * $2233 
- K 3 z z  * qpl * qp3 * 512233 
+rab3z • 2 * qpl * qp3 * 123z * C23 * 512 
- K 3 y z  * 2 * qp2 * qp3 * 5123 

Reduced dynamic equation 
Q1 = K • l zz  • qppl 

+K*2d  • qppl * C22 
+ K 3 d  * qppl * C2233 
+mb3z  • 2 • qppl * 123z * $2 • $23 
+ K * 2 y z  • qpp2 * C2 
+ K 3 y z  • qpp2 * C23 
+ K 3 y z  * qpp3 * C23 
- K * 2 y z  * qp2 * qp2 * $2 
- K 3 y z  • qp2 * qp2 * $23 
- K , 2 d  * qpl * qp2 * $22 
- K 3 d  • qpl * qp2 * $2233 
+rab3z • 2 * qpl * qp2 * 123z * $223 
- K 3 y z  * qp3 * qp3 * 5:23 
- K 3 d  * qpl * qp3 * $2233 
+mb3z  * 2 * qpl * qp3 * 123z * C23 * $2 
- K 3 y z  * 2 * qp2 * qp3 * $23 

6.2. IDENTIFICATION OF ~d: NUMERICAL RESULTS 

Internal and external methods have been applied to estimate the PUMA 562 parameters. As 
mentioned above (Section 4), the internal method suffers from a lack of accuracy due to joint 
friction, whose characteristic parameters are unavoidably coupled with the barycentric param- 
eters to be evaluated. In Table 6, the estimated values are compared with values calculated on 
the basis of blueprints [ 18] and by pendulum determination [ 19].4 This table clearly shows that 
the estimated values (columns 2 and 3) are of the same order of magnitude as those deduced 
from the literature although there are some significant differences. 

7. Conclusions 

A recursive method for determining the minimum set of dynamic parameters of a tree-like 
multibody system has been presented. Using simple rules, the number of independent dynamic 
parameters can be determined a priori. Depending on the mobility of the first joints of the 
kinematic chain, this number is equal to or less than 4nprismatic + 7nrevolute while the total 
number of inertial parameters which is commonly used is given by 10(nprismatic + •revolute). 
The reduction of independent parameters due to restricted mobility is also obtained from these 
rules in a straightforward manner. For instance, the first revolute joint of the PUMA arm being 
vertical, it can be seen from Table 4 that 9 parameters disappear from the dynamic model. 
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Table 6. Estimation of inertial parameters of a PUMA 562. 

Parameters External identification Internal identification Ref. [18] Ref. [19] 
8a4-~ ~Sa4-a 

mb~ kgm 0.802-t-0.027 0.8154-0.027 1.061 0.864 
Kuay kgm 2 0.5454-0.044 0.5664-0.045 0.547 0.336 
2 * / f a  3 kgm 2 0.5674-0.262 0.4084-0.264 0.533 0.300 
Kay~ kgm 2 -0.1034-0.029 -0.0734-0.030 -0.150 -0.142 
mb .2 kgm 3.2124-0.039 3.2114-0.040 3.702 3.790 
K~ 2 kgm 2 2.2344-0.100 2.2304-0.264 2.786 2.174 
2 * K~ 2 kgm 2 2.8884-0.250 3.1684-0.250 2.384 2.829 
K ~  kgm 2 -0.5984-0.049 -0.5074-0.095 -0.558 -0.605 
K~. ~ kgm 2 1.6654-0.138 1.2214-0.124 1.920 1.357 

Notes 

~These expressions are thus not necessarily optimal as regards the number of arithmetic operations for online 
applications. 
~The particular values given in Table 1 lead to a zero value for mbix, Kizy  and Kizz  (with i = 1,2 and 3). 
3Where for instance, qpl stands for 4(1), qppl for ~(1), $2 for sin(q(2)), C2 for cos(q2)), 5'223 for sin(q(2) + 
q(2) + q(3)) , . . .  
4In fact, the results presented in [18] and [19] are related to the PUMA 560 robot which differs from the PUMA 
562 by the presence of a counterweight on the second segment. These results were easily adapted to the PUMA 
562 robot considered here. 
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