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Abstract. This paper presents a methodology in computational dynamics for the analysis of mechanical systems 
that undergo intermittent motion. A canonical form of the equations of motion is derived with a minimal set of 
coordinates. These equations are used in a procedure for balancing the momenta of the system over the period 
of impact, calculating the jump in the body momentum, velocity discontinuities and rebounds. The effect of dry 
friction is discussed and a contact law is proposed. The present formulation is extended to open and closed- 
loop mechanical systems where the jumps in the constraints' momenta are also solved. The application of this 
methodology is illustrated with the study of impact of open-loop and closed-loop examples. 
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1. Introduction 

Impact occurs in many mechanical systems, such as crushing and feeding machinery. Such 
multibody systems undergo intermittent motion essentially characterized by discontinuities 
they encounter when two bodies within the system collide. 

The use of the canonical form of equations of motion, in impact analysis involving impulse 
and momentum variables, has been presented in several text books [1-3], where solutions are 
obtained for velocity changes during impact of particles and simple examples of rigid body 
collisions. The problem is more complex for kinetically constrained mechanical systems, once 
the change in momenta and velocities are not solely due to the impulsive forces of the colliding 
bodies, but also involves the change in the reactions of the kinematic constraints. 

Piece-wise analysis formulations have been developed for the solutions of the rebounds in 
the intermittent motion of the mechanical systems [4-6]. During the period of the impact, the 
integration of the equations of motion is halted and a momentum balance analysis is performed 
to calculate the velocity jumps. Impulsive forces are a byproduct of these calculations. In these 
methods it is assumed that no significant change in the system configuration occur during the 
collision time which is considered small compared to a typical time scale of the motion before 
and after the impact. 

Based on Newton's impact law and the Poisson's impact hypothesis, Stronge [ 18] proposed 
an energetically consistent theory for dynamics of partly elastic 2D collisions. Also a theory of 
the impact or collision of two rigid bodies tacking account of friction was presented by Keller 
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[19]. The main difficulty in using his theory arises in calculating the direction of tangential 
impulse when the direction of sliding is not constant during the collisions. 

Lankarani and Nikravesh [7] solved the direct central frictionless impact of a mechanical 
system using a canonical form of the equations of motion expressed in terms of a large set of 
Cartesian variables. The work presented here starts from that Cartesian canonical form of the 
equations of motion, then the equations are converted to a minimal set of equations in terms 
of a set of joint coordinates and associated generalized momenta. 

The resulting formulation together with a proposed contact law corresponding to the 
general oblique impact problem between two bodies of a multibody system is applied to 
several examples. The role of the coefficient of restitution and the coefficient of friction is 
discussed and a methodology is suggested to establish the conditions whether or not sliding 
or stiction can take place. 

2. Equations of Motion 

The equations of motion can be described in terms of different sets of coordinates. If the 
number of generalized coordinates is greater than the number of system's degrees of freedom, 
then algebraic equations are required to show the dependency of the coordinates. One such 
set of coordinates which leads to defining algebraic constraints for the kinematic joints is the 
so-called absolute Cartesian coordinates [8]. 

Another set of generalized coordinates which can provide a minimal set of equations is 
known as the joint coordinates. In the following sections, the equations of motion in terms of 
the joint coordinates are discussed. 

2.1. STANDARD FORM 

In order to specify the position of a rigid body in a global non-moving x - y - z  coordinate 
system, it is sufficient to specify the spatial location of the origin (center of mass) and the 
angular orientation of a body fixed ~-r/-( coordinate system. For the ith body in a multibody 
system qi denotes a vector of coordinates which contains a vector of translational coordinates 
ri and a set of rotational coordinates. Matrix Ai represents the rotational transformation of 
the ~i-~i-(i axes relative to the x - y - z  axes. A vector of velocities for body i is defined as 
vi, which contains a three vector of translational velocities/'i and a three vector of angular 
velocities wi. A vector of accelerations of this body is denoted by 4i which contains i:i and 
&i. For a multibody system containing b bodies, the vector of coordinates, velocities and 
accelerations are q, v, and 4i, respectively, for body i = 1 , . . .  b. Also a generalized mass 
matrix is denoted by M and a vector of generalized forces g is defined for the multibody 
system [8]. 

The relative configurations of two adjacent bodies can be defined by one or more so-called 
joint coordinates equal in number to the number of relative degrees of freedom between these 
bodies. The vector of coordinates for an open-loop system is denoted by 0 containing all of 
the joint coordinates and the absolute coordinates of a base body if the base body is not the 
ground. Therefore, vector/9 has a dimension k, equal in number to the number of the degrees 
of freedom in the system. The vector of joint velocities is defined as 0. It can be shown that 
there is a linear transformation between 0 and v as [9-11] 

v ---- B0, (1) 
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where B is a n x k matrix. When the number of selected coordinates is equal to the number of 
degrees of freedom, the generalized equations of motion for an open-loop multibody system 
can be written as 

M0 = f  (2) 

where 

M = BTMB (3) 

f =  Br(g  - Ul3b). (4) 

In order to solve these equations, a set of initial conditions must also be defined as 

0(0) = 0 °, 0(0) = ~0. (5) 

Assume that there are one or more closed kinematic loops in a multibody system. To derive 
the equations of motion for such a system, each closed-loop is cut at one of the kinematic 
joints in order to obtain an open-loop system without defining any joint coordinates for the 
cut joints. Therefore, vector of joint coordinates 0 has a dimension k greater than the number 
of degrees of freedom of the closed-loop system. If the cut joints are reassembled, the joint 
coordinates are no longer independent. Therefore, there exist algebraic constraints between 
the joint coordinates as [12] 

xP(0) = 0. (6) 

The first and second time derivatives of the constraints are 

- C0 = 0 (7) 

- + = 0 ,  ( 8 )  

where C is the Jacobian matrix of the constraints. Then, the differential equations of motion 
of equation (2) are modified as 

MO - cTv =f, (9) 

where v is a vector of Lagrange multipliers. 
Equations (6)-(9) represent a set of differential-algebraic equations for a closed-loop 

system. A set of initial conditions, such as the set given by equation (5), but consistent with 
the constraints of equations (6) and (7), must also be defined. These equations can further 
be reduced to a minimal set of second-order differential equations, equal in number to the 
number of the degrees of freedom of the system [12]. 

2.2. CANONICAL FORM 

The equations of motion for a multibody system can also be derived in terms of the total 
momenta of the system. The process of converting the equations of motion described in terms 
of a large set of absolute accelerations to a canonical form has been shown in [7]. In order to 
transform the open-loop equations of motion of equation (2) to the canonical form, a vector 
of joint momenta p is defined as [13] 

M(9 = p, (10) 
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where 

1 ~ = f + / ~ 0 .  (11) 

Equations (10) and (1 I) form a simultaneous system of 2 x k differential equations of the first- 
order which can be considered as the solution of the Lagrangian problem assuming that 0 and 
p are varied independently [14]. For these equations, an appropriate set of initial conditions 
must be defined as 

0(0) = 0 °, p(0) = p0. (12) 

For closed-loop systems, a number of prescribed scleronomic conditions may be given by 
equation (6) and a mixed representation corresponding to the general canonical transformation 
is defined as [13] 

MO - CT a = p, (13) 

where vector of Lagrange multipliers a is defined as 5- = v. The time derivative of equa- 
tion (13) yields 

l~ = f +  M0 - c T a .  (14) 

Equations (13) and (14), in conjunction with equations (6) and (7), provide the constrained 
equations of motion in canonical form. A proper set of initial conditions such as the set given 
by equation (12) and consistent with the constraints of equation (6) are also required. 

Numerical solution of the canonical equations of motion, for either an open- or a closed- 
loop system, can be obtained by introducing integration arrays as 

y: [ :J  (1,, 
At every integration time step, ~' array is integrated to obtain y. For open-loop systems, 

vector 0 is used to determine the absolute coordinates q, vector p is used to obtain 0, and then 
v is found from equation (1). Equation (11) yields 1 i, which in addition to 0 provides all the 
elements of ~' in order to continue with the integration. 

For closed-loop systems, vector 0 is found from the solution of equations (7) and (13), 
where a is also found at the same time, then equation (14) is used to find [~, The rest of the 
process is the same as that of the open-loop systems. A possible problem with this procedure 
is that due to the accumulation of numerical errors during integration, the position constraints 
of equation (6) may become violated. Different techniques for eliminating the possibility of 
constraint violation can be found in [8]. 

In a piece-wise impact analysis, it is assumed that the contact between points P/ and 
Pj lasts for a short period from t(-) to t (+), during which the configuration of the system 
does not change. As a result, the dynamics of the open-loop and closed-loop systems are 
governed under this smoothness assumption by equations (10) and (11 ), or equations (13) and 
(14) respectively. A contact-impact law involving the relative velocity Vr and the generalized 
forcesfmust also be provided. 

3. Points of  Contact and Relative Velocities 

Assume that an impact occurs between bodies i and j of a multibody system. The relative 
velocity between the points of contact Pi and Pj is written in terms of the absolute velocities 
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Fig. 1. Impact between two bodies of a multibody system. 

of these points as 

: - 

: Divi -- Djvj 
= Di,jv, (16) 

where Di,j is a 3 x n incidence matrix and it is a function of the coordinates of bodies i and j 
only. Substituting equation (1) into equation (16) yields 

vr = R0, (17) 

where R = Di,jB is a 3 x k matrix describing a 0-dependent linear mapping of the generalized 
velocities. 

The relative velocity vector vr is represented by its components relative to some chosen 
orthonormal base n -q - t 2 .  We shall assume that the unit vector n is defined in the normal 
direction to the contact surfaces and directed toward body i. A schematic representation of 
the contact between bodies i and j is shown in Figure 1. 

The component of vector vr along the normal direction is 

Vn = (nTvr)n 

= (nTRO)n 

= 

where 

T = nTR Cn 

(18) 

(19) 

is a k-vector. The tangential component of vr corresponding to the slip velocity is denoted as 
vt and lies in the tangential plane tl-t2,  perpendicular to n, such that 

v,. = vt + (20)  
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At t(-) and t(+) the relative velocity vectors are denoted by v (-) and v! +) respectively. 
The normal components of these vectors, v (-) and v (+), are collinear along n. However, their 
tangential components, v I-) " (+), anct v t are not necessarily collinear. Velocity jumps are defined 

'(+) v (-), and Avt v~ +) - vl -) a s A v r = v !  + ) - v  ( - ) , A v n = - n  - = 
A coefficient of restitution in the normal direction is introduced as the ratio between the 

relative separation velocity and the relative approach velocity as 

n 
e=- TY = " (21) 

The introduction of the intrinsically non-negative values of e has been traditionally associ- 
ated with the loss of kinetic energy in impacts in which the tangential component of impulse 
is absent. This occurs when the contacting surfaces are perfectly smooth or in direct/oblique 
and central/eccentric impacts. The explicit use of e as a kinematic constraint is extended for 
the analysis of more general impact situations, playing a role in the material constant based 
on the common assumption that local inelastic material behavior is solely characterized by 
that coefficient. 

From equation (20) the relative velocity jump during impact is given by 

AVr = Avt + Avn. (22) 

Substituting equations (17) and (21) into equation (22) yields 

RA0 = Avt - (1 + e)cT0(-)n. (23) 

This equation, which involves the coefficient of restitution and the incoming velocities, yields 
the jumps in the generalized velocities and slip velocity. 

4. Impulsive Forces and Impulses 

During impact, a pair of impulsive forces, f(i), act at the point of contact between bodies i and 
j. Superscript (i) denotes the impulsive nature of these forces. The corresponding power of 
the pair of contact forces can be written as 

P = v~f(i) 

= OTRTf(i) 

= ~Tj(i), (24) 

where 

j(i) = R f(i) (25) 

is the k-dimensional generalized force vector associated with the impulsive force f(i). 
The impulsive force f(i) can be decomposed along the normal direction n, and along a 

tangential direction t in the plane tl, t2 (the direction of t will be discussed later on). Thus 

= f(n/)n + ~i)t (26) 
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and 

j(i) = R T(f(/)n + ~i)t) 

= f(~)cn + ~i)ct, (27) 

where ct is defined similar to cn in equation (19) and using t instead of n. 
The generalized impulse vector rr due to the generalized impulsive forces f(0 is 

t(+) 
P 

f) dt 
, /  

t ( - )  

t(+) t(+) 

t ( - )  t ( - )  

--= 7men  q- 7rtCt, (28) 

where 7rn and 7rt are the normal and the tangential impulses due to the impulsive forces f(/) 

and ~i), respectively. 
The method of obtaining the generalized impulsive forces f(i) and the generalized impulse 

7r through the linear mappings e~ and et suggests the usual concept of virtual motions at 
fixed time, expressed as a family of configurations 0(e), depending on a real variable ¢, in a 
differentiable manner with subsequent calculations made at constant t. 

5. Open-Loop Systems 

From equation (10) the generalized velocity jumps can be obtained as 

At) = M - l A p .  (29) 

Integrating the canonical equations of motion described by equation (11) for the period of 
contact, the generalized impulse vector Ap is given as 

t(+) t(+) 

Ap (30) 
, /  

t ( - )  t ( - )  

The generalized force vector f can be described as the sum of two generalized impulsive 
and non-impulsive forces 

f=j( i )  +j(ni). (31) 

Since the period of contact is assumed to be very short, i.e., almost zero, only the impulsive 
forces have non-zero impulse - all other forces are finite including the gyroscopic and Coriolis 
forces. In fact it can be shown that integrating by parts, the last term in equation (30) vanishes; 
i.e., 

t (+) it(+) t (+) 

f Mo,,, : , , , , o -  f 
d t ( - )  J 

t ( - )  t ( - )  

.i t(+) .i t(+) 

= MOt(-) - MOt(-) = 0. (32) 
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Therefore equation (30) becomes 

t(+) 

Ap = / ] ( i )  dt 71". 

t(-) 

(33) 

5.1. Tim SLIDING PROBLEM FOR OPEN=LOOP SYSTEMS 

Assuming that during contact the process of tangential force generation is the result of dry 
friction, then the impulsive force ffi) can be written as 

f(i) = f(/)(n + #t), (34) 

where # is the coefficient of friction. The generalized impulse vector, for this case, yields 

~r = 7r,~(c. + ge t ) .  (35) 

Substituting equations (35), (33) and (29) into equation (23) yields 

7rnRM-l(cn + get) = Avt - (1 + e)c~0(-)n. (36) 

Premultiplying both sides by n T and realizing that by definition Art is perpendicular to n, 
nTn = 1, and from equation (18) the scalar value ofvn is given by v (-) = c~0(-), then 

r,~nTRM-I(c~ + get) = - (1  + e)v (-). (37) 

This scalar equation can be solved for the normal impulse 

(1 + e)v (-) 
Zrn = CTnM_l(Cn + gCt ) (38) 

5.2. THE STICKING PROBLEM FOR OPEN-LOOP SYSTEMS 

When sticking occurs as the result of an impact, in addition to equation (28) an extra kinematic 
condition must be considered in order for the outgoing relative tangential velocity to vanish; 
i.e., v~ +) = 0 and Art = -v~ -). The slip velocity of equation (20), for t = t(-), can be 
expressed in the more convenient form v~-) = v (-) - v (-). Using equations (17) and (18), 
we have 

= ( R  - 

which allows us to write equation (23) in the form 

RAO = - ( R  + enc~)O(-). 

(39) 

(40) 

In order to write an impulsive equation, substitute equations (28), (33) and (29) in equa- 
tion (40): 

R / ~ - I  (CnTl'n "~- CtTrt) = - ( R  + encnT)0 (-). (41) 
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Finally, premultiplying the preceding equation by n T and by t T, a set of two momentum 
balance impulse equations can be written in matrix form as 

_ _  (42) 
cTM-'c,, cTM-lct ~t -vl -) 

i 

Equation (42) is a set of two linear equations in terms of the normal and tangential components 
of the impulse. 

6. Closed-Loop Systems 

The change in the generalized joint velocities during impact must satisfy the constraints of 
equation (7); i.e., 

CA/~ = 0. (43) 

From equation (13) we have 

A0 = M-I (Ap  + cTAa). (44) 

Then, 

CM-I(Ap + CTA~) = 0. (45) 

Integrating the canonical equations of motion described by equation (14) for the period of 
contact yields 

t(+) t(+) t(+) 

: f , d ,  + f d,-  f d,. A p  (46) 
. 1  , ) "  

t(-)  t(-)  t(-)  

All the forces in the right hand side of equation (46) are bounded except for the impulsive 
forces. The integral of the bounded forces, including the term containing a are zero. This can 
be shown easily by writing 

d (C Ta) = c, Ta + C T&. (47) 
dt 

Then, 

t (+) it(+) t (+) 
f c, T~ dt = cT tr - cT f ~ dt 

t ( - )  
t(-)  t(-)  

-~ c T  A¢7 - c T  A o  " : 0 (48) 

which allows us to conclude that the change in the total momenta for closed-loop systems is 
the result of the impulsive forces as described by equation (33). 

6.1. THE SLIDING PROBLEM FOR CLOSED-LOOP SYSTEMS 

Using the same procedure as in Section 5.1 and taking into consideration equation (44) instead 
of equation (29), an equivalent of equation (37) is obtained for the closed-loop systems as 

cTM-1 [7rn(Cn +/zct) + C TAa] = - (1  + e)cT~) (-). (49) 
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Equation (45), after substituting Ap from equations (33) and (35), finds the form 

7rnCM-l(cn + #Ct) + CM-1CTAa = 0. (50) 

Equations (49) and (50) can then be written in matrix form as 

[ o ] 
c~M-1C T c~M-l(cn + #ct) 7r,~ = - (1  + e)v (-) ' (51) 

which can be solved for the internal impulses Aa and the normal component of the impulse 
7r acting at the point of contact. 

6.2. THE STICKING PROBLEM FOR CLOSED-LOOP SYSTEMS 

Using the same procedure as in Section 5.2 and taking into consideration equation (45) instead 
of equation (29), an equivalent of equation (42) is then obtained for closed-loop systems as 

CM-1C T CM-Icn CM-lct 

c n T n - l c  T CnTn-lcn cnTn- lc t  

cTM-1C T ctTM-lcn cTM-lct 

Aa 
71" n 

71" t 

0 

= - ( l + e ) v  (-) 

_v~-) 

, (52)  

which can be solved for the internal impulses Aa and the normal and tangential components 
of the impulse 7r acting at the point of contact. 

7. Contact Law 

A contact law is now suggested for the traditional isotropic Coulomb law of friction: 
- vl +) is zero when the magnitude of the tangential impulse is less than # times the 

magnitude of the normal impulse: 

If 7rt _> #Tr,~, then v~ +) = 0. (53) 

- v (+) has a non-zero tangential component, i.e., vl +) # 0, if the tangential impulse has a 
magnitude # times the magnitude of the normal impulse: 

If 7rt = #Tr,~, then v~ +) # 0. (54) 

For planar oblique impacts, the contact law involves the preceding conditions and the 
assumption that the tangential impulse acts along the opposite direction of v~ -). This means 

1 (55)  t - (_) 
V t 

This is a plausible assumption which will be shown to correspond to a maximum energy 
loss in planar impacts. However, in spatial oblique impacts, the tangential velocity generally 
undergoes a change in direction which enables a direct determination of the direction of the 
tangential impulse. Formulations using standard Convex Analysis [15, 16] have shown that 
the Coulomb's law of friction is exactly similar to the law of perfect plasticity and it can be 
derived from a "principle" of maximal dissipation. As a result, the direction of the tangential 
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impulse, t, should be such that the energy loss during impact is maximized. The impact law 
for spatial cases is better illustrated in the example described in Section 9.3. 

8. Velocity Jump and Rebounds 

Procedures for updating velocities after impact are now obtained. Without any loss of gen- 
erality, consider the sliding problem for open-loop systems described in Section 5.1. Taking 
into consideration equation (33) and substituting equation (38) in equation (29), the jump in 
the generalized velocities can be obtained as 

c'  (l+e)v(. -) 
A0 = - / - ' ( c n  + # t) cT~r_-i(-~n 7]zct)  • (56) 

From equations (23) and (21) the jump in the tangential velocity can be described as 

+ "c ~ (1 + e)v (-) 
Avt = - ( R  - ncnT)/ - i (cn /~ t) cT]V~_-T(~-n T~Ct) • (57) 

A procedure for updating velocities in a general oblique impact can be stated for closed- 
(open-)loop systems as: 

ALGORITHM: 
Knowing the positions and velocities at t(-): 

1. Find 7rn and 7rt from equation (52) (42): 
if 7rt < #Trn go to 2. 
if 7rt > #7rn go to 3. 

2. We have stiction with v~ +) = 0: 
2.1. From equation (28) we evaluate Ap = CnTrn q- ctTrt. 
2.2. Go to 4. 

3. We have sliding: 
Find 7r,~ fro.m equation (51) (38). 

4. Evaluate A0 from (44) (29). 
5. Update joint velocities at 0(+) = 0(-) + A0. 
6. Resume with integration. 

9. Examples and Numerical Results 

The purpose of this section is to apply the present piece-wise analysis to typical examples 
of mechanical systems and to show the validity of the method by examining the impact 
responses. 

9.1. SLIDER-CRANK MECHANISM 

This first example is taken from [7] where it was solved using a piece-wise formulation with 
equations of motion described in terms of a large set of absolute Cartesian coordinates. This 
is a closed-loop multibody system impacting a sliding body. A schematic representation of 
the system is shown in Figure 2. A set of relative joint coordinates 01, 02, 03 and 04 are used 
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11= 0.153 m ml = m3 = 0.038 kg 
12= 0.306 m m2= 0.076 kg 
01 = 150 rad/s m4= 0.190 kg 

/ ~  . I1 = 7 . 4 x  10-5 kg.m2 
/ , , ~ - , . , , , ~  04 = - 1 5  m/s I2 = 5.9x 10-5 kg.m2 

/ /  ~ 2  ~ 13 = 1.8 x 10-5 kg.m2 
/ f ~ ~  17 I4 = 2.7 x 10-5 kg.m2 

I1 L 

x ~  ................... 0 .......... ~:z :: ii!iiiiiiii! :~iiiiii:::: ii~ 
l ~ /  ......... :~ ::ii:=iiii!i!iiii::ii!ili!!i ~. 

.., I I I I I 1 ~ 1 1 1 1 1 1 1 1 1  I I I I  

.,~ 04 _ 

Fig. 2. Impact between a slider-crank mechanism and another slider. 

Table 1. Comparison of results. 

Present results (m/s) Reference [7] (m/s) 

A04 41.58 41.8 

A03 --68.285 --68.3 

to describe the configuration of the system. Due to the closed-loop, 01, 02, and 03 must satisfy 
equation (6), and their first time derivatives must satisfy equation (7) (or equation (43)). 

The slider crank is driven by a restoring torque such that the crank maintains almost a 
constant angular velocity. At some instant, the slider (body 3) impacts the free slider (body 4) 
which is driven inertially to the left at a constant speed. A coefficient of restitution e = 0.83 
between the blocks is considered. This case corresponds to a central impact problem, therefore, 
no tangential relative velocities are observed and no tangential impulsive forces are developed 
between bodies 3 and 4 during the impact. The results from this analysis and those of [7] are 
summarized in Table 1. 

The implied loss of kinetic energy induced by the impact is given by 

TL = T (-) - T (+) = 10(_)TMo(_) _ 1 0(+)TM0(+ ) (58) 
2 2 ' 

For central impacts, equation (58) can be written in the form 

1 (1  - e2)v (-)2 (59) 
T L  - -  2cTM_ 1 Cn 

For general oblique impacts, the induced energy loss can be shown to be 

1 
TL = --~ 7r2(m,~m + 2#m,~t + #2mtt) - 7r.(v (-) + #v}-)),  (60) 

where 

T -1 cnTM-lct; ctTM-1 et. (61) m n n  = c n n  On; m n t  = m t t  -~ 
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Fig. 3. Energy loss versus the coefficient of restitution. 

Figure 3 shows a plot of the non-dimensionalized energy loss of the system, A T / ( - ) ,  for 
the range of the coefficient of restitution 0 < e < 1,0, and for three different masses of the 
inertially driven slider (case 1: ma = 0.19; case 2 :m4  -- 0.95 and case 3 :m4  = 1.9). 

For case 1, with e = 0, the energy loss is almost equal to the initial kinetic energy of 
the system before impact, which means that the system came to a halt. For cases 2 and 3, 
where the mass of body 4 was increased, only 54% and 32%, respectively, of the initial kinetic 
energies were dissipated during perfectly plastic collisions (e = 0). Case 1 is a particular 
case where the generalized mass of the crank and slider is equivalent to the inertially driven 
mass. Case 1 can be reasoned to be "equivalent" to the perfectly plastic central impact of two 
particles that is known to come to a halt when the masses are equal, thus releasing all of the 
kinetic energies. 

9.2. DOUBLE PENDULUM-PLANAR CASES 

9.2.1. Case I 

Figure 4a shows two slender rods connected together and to a fixed support with revolute 
joints. The system is only allowed to move in the :c-y plane. The rods are identical and the 
approaching joint velocities are 81 = - 1 and 02 = - 1 (rad/s). This configuration implies an 

incoming velocity v (-) = ( -  1.309n - 2.683t). 

Figure 5 shows the tangential velocity, vl +), for 0 < e < 1.0 and -0 .5  < / z  < 0.5. Positive 
values of/z correspond to tangential impulses in the t-direction whereas negative values of/z 
correspond to tangential impulses along the positive :c-direction. A plot of the energy loss, as 
defined in equation (60), is shown in Figure 6. 

It can be observed that the negative values of # corresponding to smaller energy losses or 
even energy gains. On the other hand, sticking is not always possible. For example, for values 

of e < 0.3, even for larger values of #, there is always a positive v~ +). For larger values of e, 
sticking can only occur, eventually with energy gains which is not plausible. 
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9.2.2. Case 2 

The double pendulum illustrated in Figure 4b is also analyzed, where the first rod is in vertical 
position. For this configuration, and assuming the same angular velocities as in case (a), the 
relative incoming velocity is v! - )  = ( -0 .416n  - 2.956t). 

Figure 7 shows the predicted outgoing tangential velocities for 0 < e < 1 and - 0 . 4  < 
# < 0.6. The results show that this pendulum never sticks, even for large values of/z,  the 
outgoing tangential velocity is always positive. 

These results clearly show that the impact conditions are strongly dependent on the mechan- 
ical system and its configuration at the time of impact. A new method is now proposed to 
verify analytically whether or not stiction can occur. 
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Without any loss of generality, consider the open-loop case under sticking conditions. As 
the normal n was defined from body j to body/ ,  and the tangential vector t was considered 

along Avt, or, in the opposite sense of v~ -) ,  the solution of equation 942) should always yield 
positive normal and tangential impulses. 

According to Crammer's rule, 7rn = D1 /D and 7rt = D2/D where 

r M - l c n  c ~ M - l c t  . 
D = cTM - lcn  ctTM - le t  ' 

- 1 ( 1  +e)v(n -)  cnTM-lct 

D 1 = __v~- ) c t T / - l c t  

9 2 = 
cnTM-lc~ --(1 + e)v (-) 

cTt M-lcn -v~ -) 

Therefore, if D > 0, then D1 > 0 and D2 > 0, or if D < 0, then D1 < 0 and D2 < 0. Since 
D > 0, then the necessary conditions for stiction to occur can be written as 

T- - - I  . (-) _ (1 + e)cTtM-lctv (-) > 0 C t 1)/1 Ctv t (62a) 

(1 + e)cTM-lc,~v (-) T.--I (-) --  C n M  CnV t > O, (62b) 

which can be used to find bounds on the coefficient of restitution for stiction to be possible. 

9.3. THREE-DIMENSIONAL DOUBLE PENDULUM 

Consider the double pendulum is also allowed to rotate around the y-axis with an angular 
velocity ~)3. As shown in Figure 8, vectors tl (opposite to the z-axis) and t2 (along the z-axis) 
define the contact plane. At the time of impact, the joint velocities are ~)1 = - 1, 82 = - 1, and 
03 = 1 (rad/s), resulting in the approach velocity v! -)  = ( -  1.309n - 2.683tl + 0.809t2). 
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The algorithm described in Section 8 was used and it can be shown that sliding conditions 
prevail for this case, therefore, equation (38) must be used to obtain the normal component of 
the impulse. However, according to the proposed contact law, the direction t of the tangential 
impulse must be such that the energy dissipation during the impact is maximized. Equation (60) 
clearly shows the dependency of TL on t. A plot of the variation of TL for the present 3D 
pendulum, when t is considered to rotate an angle oL counter-clockwise from the direction of 
vl -), is shown in Figure 9. The direction of t corresponding to a maximum energy dissipation, 
is denoted by the angle c~m. It should be observed that for this direction a value of 7r,, = 
4.02 N.sec is predicted which is 78% of the maximum normal impulse (for ~ = 196.25). 
The angle values c~0 and c~1 define a sector corresponding to the directions of the tangential 
impulse that imply energy gains, therefore are not acceptable. 

Figure 10 illustrates the incoming tangential velocity, v(-)t , the tangential velocity jump, 

eXvt, the outgoing tangential velocity, v(+),t and the tangential impulse, 7rt, corresponding to 
the maximum energy dissipation. Another vector t for the direction of the tangential impulse 
is also represented which was obtained from [17] where an averaging process of the tangential 
components of the approach and separation velocities was used. This figure clearly shows that 
the tangential impulse, in general is not collinear with v~ -) and v~ +). The present calculation 
predicts a rebound velocity and an impulse at the point of contact as 

v! +) = 0.916n + 0.675tl + 0.41t2 

Ap = 4.026n + 1.26h - 0.99t2. 

A modification in the algorithm of Section 8, step 3, must then be introduced where 7rn must 
be found from equation (51) (38) for closed-(open-)loop systems, using a direction t that 
maximizes TL. This process is highly non-linear and can be carried out with the use of any 
standard optimization algorithms. 



70 M. S. Pereira and P. Nikravesh 

Direction of tangential 
for maximum Energy/ impulse ,~oss , / ~  , 

energy dissipation 

"-.'5,. Direction of tangential / [  ~ ~ 

t ]vl-)] v~- ) +lvl+] vt+) 1 

[ t)l 

g'dn 

Fig. 10. Impulse and rebound predictions for the 3D pendulum. 

10. Conclusions 

In this paper, a method was presented for the piece-wise analysis of the intermittent motion 
of mechanical systems. A canonical form of the impulse-momentum equations for multibody 
systems can be established in terms of a minimum set of  joint coordinates and can be solved 
for the jump in the joint velocities during the impact. This solution also finds the impulsive 
forces exerted on the contact surfaces of the colliding bodies and provides a means by which 
necessary conditions are introduced for the occurrence of stiction or sliding. The analytical 
set is completed by a system of contact laws involving the introduction of a coefficient of 
restitution traditionally used for the description of two body collisions and a coefficient of 
friction associated with the Coulomb's dry friction, assuming that friction is developed in 
such a way that a maximum dissipation of energy is observed. Since the impulse-momentum 
represents a first integral of the motion, velocity jumps can be calculated in a straightforward 
manner allowing an immediate assessment of energy changes. 
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